000040951 001__ 40951
000040951 005__ 20200423203905.0
000040951 0247_ $$2DOI$$a10.1021/cm040167h
000040951 0247_ $$2WOS$$aWOS:000224541600006
000040951 0247_ $$2Handle$$a2128/992
000040951 037__ $$aPreJuSER-40951
000040951 041__ $$aeng
000040951 082__ $$a540
000040951 084__ $$2WoS$$aChemistry, Physical
000040951 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000040951 1001_ $$0P:(DE-Juel1)VDB518$$aGuo, X.$$b0$$uFZJ
000040951 245__ $$aProperty degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules
000040951 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2004
000040951 300__ $$a3988 - 3994
000040951 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000040951 3367_ $$2DataCite$$aOutput Types/Journal article
000040951 3367_ $$00$$2EndNote$$aJournal Article
000040951 3367_ $$2BibTeX$$aARTICLE
000040951 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000040951 3367_ $$2DRIVER$$aarticle
000040951 440_0 $$01225$$aChemistry of Materials$$v16$$x0897-4756
000040951 500__ $$aRecord converted from VDB: 12.11.2012
000040951 520__ $$aTetragonal ZrO2 exhibits good ionic conductivity, high strength, and fracture toughness. But while annealing at relatively low temperatures (63-400degreesC), tetragonal ZrO2 spontaneously transforms to a monoclinic one, and its electrical and mechanical properties degrade severely. The phenomenological observations of the low-temperature degradation of tetragonal ZrO2 are summarized, and major degradation mechanisms are critically reviewed. It is crucial to maintain sufficient oxygen vacancy concentration to stabilize the tetragonal structure; excess reduction of the oxygen vacancy concentration causes the tetragonal to monoclinic transformation. Water molecules can be incorporated into the ZrO2 lattice by filling oxygen vacancies, which leads to the formation of proton defects. Experimental and theoretical evidence support such a defect reaction between oxygen vacancies and water molecules. And a degradation mechanism based on this defect reaction satisfactorily explains all the phenomenological observations. The diffusion rate of oxygen vacancies at low temperatures is not high enough to cause the observed degradation depth; therefore, the relatively fast diffusion of proton defects most probably controls the degradation process.
000040951 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000040951 588__ $$aDataset connected to Web of Science
000040951 650_7 $$2WoSType$$aJ
000040951 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/cm040167h$$gVol. 16, p. 3988 - 3994$$p3988 - 3994$$q16<3988 - 3994$$tChemistry of materials$$v16$$x0897-4756$$y2004
000040951 8567_ $$uhttp://hdl.handle.net/2128/992$$uhttp://dx.doi.org/10.1021/cm040167h
000040951 8564_ $$uhttps://juser.fz-juelich.de/record/40951/files/55950.pdf$$yOpenAccess
000040951 8564_ $$uhttps://juser.fz-juelich.de/record/40951/files/55950.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000040951 8564_ $$uhttps://juser.fz-juelich.de/record/40951/files/55950.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000040951 8564_ $$uhttps://juser.fz-juelich.de/record/40951/files/55950.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000040951 909CO $$ooai:juser.fz-juelich.de:40951$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000040951 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000040951 9141_ $$y2004
000040951 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000040951 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000040951 9201_ $$0I:(DE-Juel1)VDB321$$d31.12.2006$$gIFF$$kIFF-IEM$$lElektronische Materialien$$x0
000040951 970__ $$aVDB:(DE-Juel1)55950
000040951 980__ $$aVDB
000040951 980__ $$aJUWEL
000040951 980__ $$aConvertedRecord
000040951 980__ $$ajournal
000040951 980__ $$aI:(DE-Juel1)PGI-7-20110106
000040951 980__ $$aUNRESTRICTED
000040951 980__ $$aFullTexts
000040951 9801_ $$aFullTexts
000040951 981__ $$aI:(DE-Juel1)PGI-7-20110106