001     40951
005     20200423203905.0
024 7 _ |a 10.1021/cm040167h
|2 DOI
024 7 _ |a WOS:000224541600006
|2 WOS
024 7 _ |a 2128/992
|2 Handle
037 _ _ |a PreJuSER-40951
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |a Guo, X.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB518
245 _ _ |a Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules
260 _ _ |a Washington, DC
|b American Chemical Society
|c 2004
300 _ _ |a 3988 - 3994
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Chemistry of Materials
|x 0897-4756
|0 1225
|v 16
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Tetragonal ZrO2 exhibits good ionic conductivity, high strength, and fracture toughness. But while annealing at relatively low temperatures (63-400degreesC), tetragonal ZrO2 spontaneously transforms to a monoclinic one, and its electrical and mechanical properties degrade severely. The phenomenological observations of the low-temperature degradation of tetragonal ZrO2 are summarized, and major degradation mechanisms are critically reviewed. It is crucial to maintain sufficient oxygen vacancy concentration to stabilize the tetragonal structure; excess reduction of the oxygen vacancy concentration causes the tetragonal to monoclinic transformation. Water molecules can be incorporated into the ZrO2 lattice by filling oxygen vacancies, which leads to the formation of proton defects. Experimental and theoretical evidence support such a defect reaction between oxygen vacancies and water molecules. And a degradation mechanism based on this defect reaction satisfactorily explains all the phenomenological observations. The diffusion rate of oxygen vacancies at low temperatures is not high enough to cause the observed degradation depth; therefore, the relatively fast diffusion of proton defects most probably controls the degradation process.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
773 _ _ |a 10.1021/cm040167h
|g Vol. 16, p. 3988 - 3994
|p 3988 - 3994
|q 16<3988 - 3994
|0 PERI:(DE-600)1500399-1
|t Chemistry of materials
|v 16
|y 2004
|x 0897-4756
856 7 _ |u http://dx.doi.org/10.1021/cm040167h
|u http://hdl.handle.net/2128/992
856 4 _ |u https://juser.fz-juelich.de/record/40951/files/55950.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/40951/files/55950.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/40951/files/55950.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/40951/files/55950.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:40951
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 0
970 _ _ |a VDB:(DE-Juel1)55950
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21