001     41064
005     20200423203906.0
017 _ _ |a This version is available at http://dx.doi.org/10.1088/1367-2630/9/1/005 Copyright © IOP Publishing Ltd.
024 7 _ |a 10.1088/1367-2630/9/1/005
|2 DOI
024 7 _ |a WOS:000243590400002
|2 WOS
024 7 _ |a 2128/2617
|2 Handle
024 7 _ |a 2128/2890
|2 Handle
037 _ _ |a PreJuSER-41064
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Friák, M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Ab initio study of the half-metal to metal transition in strained magnetite
260 _ _ |a [Bad Honnef]
|b Dt. Physikalische Ges.
|c 2007
300 _ _ |a 5
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a New Journal of Physics
|x 1367-2630
|0 8201
|v 9
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Using density-functional theory, we investigate the stability of the half-metallic ground state of magnetite under different strain conditions. The effects of volume relaxation and internal degrees of freedom are fully taken into account. For hydrostatic compression, planar strain in the (001) plane and uniaxial strain along the [001] direction, we derive quantitative limits beyond which magnetite becomes metallic. As a major new result, we identify the bond length between the octahedrally coordinated iron atoms and their neighbouring oxygen atoms as the main characteristic parameter, and we show that the transition occurs if external strain reduces this interatomic distance from 2.06 angstrom in equilibrium to below a critical value of 1.99 angstrom. Based on this criterion, we also argue that planar strain due to epitaxial growth does not lead to a metallic state for magnetite films grown on (111)-oriented substrates.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Schindlmayr, A.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB20916
700 1 _ |a Scheffler, M.
|b 2
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/1367-2630/9/1/005
|g Vol. 9, p. 5
|p 5
|q 9<5
|0 PERI:(DE-600)1464444-7
|t New journal of physics
|v 9
|y 2007
|x 1367-2630
856 7 _ |u http://dx.doi.org/10.1088/1367-2630/9/1/005
|u http://hdl.handle.net/2128/2617
856 4 _ |u https://juser.fz-juelich.de/record/41064/files/magnetite.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41064/files/magnetite.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41064/files/magnetite.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41064/files/magnetite.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:41064
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)56197
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21