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The self-organized criticality(SOC) behavior of the edge plasma transport has been studied using
fluctuation data measured in the plasma edge and the scrape-off layer of Torus experiment of
technology oriented research tokamak[H. Soltwischet al., Plasma Phys. Controlled Fusion26, 23
(1984)] before and during the edge biasing experiments. In the “nonshear” discharge phase before
biasing, the fluctuation data clearly show some of the characteristics associated with SOC, including
similar frequency spectra to those obtained in “sandpile” transport and other SOC systems, slowly
decaying long tails in the autocorrelation function, values of Hurst parameters larger than 0.5 at all
the detected radial locations, and a radial propagation of avalanchelike events in the edge plasma
area. During the edge biasing phase, with the generation of an edge radial electric fieldEr and thus
of Er 3B flow shear, contrary to theoretical expectation, the Hurst parameters are substantially
enhanced in the negative flow shear region and in the scrape-off layer as well. Concomitantly, it is
found that the local turbulence is well decorrelated by theEr 3B velocity shear, consistent with
theoretical predictions. ©2004 American Institute of Physics. [DOI: 10.1063/1.1810160]

I. INTRODUCTION

Understanding the nature of anomalous transport in
magnetically confined plasmas is still a subject of intensive
research. It is known that such cross-field transport can be
caused by several distinct mechanisms such asdiffusion by
random Coulomb collisions or turbulence mixing,convection
by convective cells, avalanches or magnetic stochasticity,
and relaxation oscillationsby sawteeth or edge localized
modes, etc. A purely diffusive model proposed earlier by
Kadomtsev leads to a gyro-Bohm scaling of heat diffusivity,1

while the experimental results revealed that the scaling may
vary between gyro-Bohm and Bohm.2,3 The essential differ-
ence between these two scalings is the characteristic dimen-
sion of the transport, which in the latter case is on the order
of the system size and in the former on the order of the
correlation length of the turbulence. Long-range spatial and
temporal correlation through scale invariance is the central
idea of the concept of self-organized criticality(SOC),4–7 in
which avalanche-type long-range transport is the result of the
self-organization of near-critical, nonlinear dynamical sys-
tems. In general, mixed diffusive and SOC dynamics will
control transport. Distinguishing the SOC channel from the
diffusive one can be done by the experimental identification
of a number of features considered as key ingredients of
SOC behavior,5,7–10 such as(i) the existence of a critical
threshold, (ii ) radial correlations in fluctuations over dis-
tances longer than turbulence correlation lengths,(iii ) time
correlations on the order of many times the turbulence
decorrelation time,(iv) the existence off−1 behavior in the

measured broadband fluctuation spectrum as an indication of
important degree of avalanche overlapping,(v) the observa-
tion of self-similarity. In recent years, experimental evidence
of these and other features, such as long-range time correla-
tions (or self-similarity),11 empirical similarity of frequency
spectra,12 intermittent behavior,13 radial propagation of ava-
lanchelike events,14 and the self-similar distortion of
Poisson-distributed quiet times to the power-law form15 of
plasma fluctuations has been found in several fusion devices
consistent with some SOC predictions, although other non-
SOC explanations of long-range correlation and bursty trans-
port are possible.16 Nevertheless, on the other hand, absence
of long-range correlation has also been reported from both
“nonfusion” plasmas17 and more recently the ADITYA
tokamak.18

In this paper, we report on the analysis of fluctuation
data measured in the plasma edge and the scrape-off layer
(SOL) of the TEXTOR(Torus experiment of technology ori-
ented research) tokamak in the edge electrode biasing
experiment.19,20A partial account of this work was published
earlier.21 Two goals were aimed at. First, we look for pos-
sible evidence of SOC behavior in the ohmically heated plas-
mas in TEXTOR before biasing. This discharge phase is
slightly different from the “standard” ohmic discharge in
TEXTOR. Because of the insertion of the electrode at zero
voltage, theEr profile in the plasma boundary is flattened
with approximately zeroEr 3B shear rate, while in the “stan-
dard” ohmic discharge a naturally occurringEr 3B velocity
shear layer often exists around the last closed flux surface
(LCFS). We will further on refer to this phase as the “non-
shear” phase. Second, we investigate how long and short
time transport events are affected by a controlled sheareda)Partner in the Trilateral Euregio Cluster.
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edgeEr 3B flow as imposed by edge electrode polarization
during the biasing or “shear” phase. For this, we systemati-
cally studied the power spectraSsfd, autocorrelation func-
tions (ACF), and the Hurst parameters via rescaled range
sR/Sd analysis22,23and structure functions(SFs) analysis24–26

of the potential fluctuation data detected at different radial
locations. The rest of the paper is organized as follows. Sec-
tion II gives description of the experimental setup. The re-
sults and discussions are presented in Sec. III and conclu-
sions formulated in Sec. IV. A concise definition of some of
the statistical tools is given in the Appendix.

II. EXPERIMENTAL CONDITIONS

The experiments subjected to this study were performed
in the TEXTOR tokamak with the following discharge pa-
rameters:R=175 cm, a>48 cm, BT=2.33 T, Ip=200 kA,
Vl =1 V, and n̄e=1.031019 m−3 in ohmically heated plas-
mas. The floating potential fluctuations were measured in
both the plasma edge and the SOL region by a set of Lang-
muir probes consisting of carbon tips with 3.5 mm in diam-
eter. The probe pins are 3.75 mm separated radially. The
whole probe system can be moved radially from shot to shot.
But during each shot, the radial positions for all probe pins
are fixed. The fluctuation data were digitized at a rate of
500 kHz. For creating an edge electric fieldEr and hence a
shearedEr 3B flow, a biasing voltage quickly ramped from 0
to 600–700 V was applied between an inserted electrode
located atr >41 cm and the toroidal belt limiter(ALT-II )
during the flat top of the discharge. The time evolution of a
typical set of discharge parameters of the edge electrode bi-
asing experiment is displayed in Fig. 1. From Fig. 1(a), we
can see that in the “nonshear” phase before biasing, the dis-
charge wave forms of the plasma currentIps,200 kAd, cen-
tral line-averaged electron densityn̄e0s,1.031019 m−3d, and
loop voltageVis,1 Vd all keep rather flat. Shown in Fig.
1(b) are the voltage(Vbia, thin line) and current(Ibia, thick
line) signals on the polarized electrode. The figure shows that
before biasing,Vbia is set to be zero(as stated earlier) and a
current of Ibia<20 A is drawn by the electrode due to its
insertion into the plasma. At about 1.05 s, a positive biasing
voltage is applied to the electrode, starting as a quick linear
ramp and then holding constant atVbia>600 V in an aver-
aged sense. As explained previously,20 the slow oscillation of
Vbia at a frequency off <25 Hz is caused by the ringing of
the voltage power supply upon changes in its plasma load
during the period ofEr bifurcation. The effects of this low-
frequency oscillation on the fluctuation data measured by the
probes have been filtered. From 1.05 s,Ibia increases linearly
until the Er bifurcation occurs at about 1.2 s resulting in a
drop in Ibia. The discharge then evolves into another quasi-
stationary state phase. The influence of biasing on edge po-
tential fluctuations can be seen in Figs. 1(c) and 1(d) , where
time traces of the floating potential measured at two radial
positions(r =47.6 cm inside the LCFS andr =49.5 cm in the
SOL) are displayed. Here, we can see that after the polariza-
tion, the potential fluctuation amplitudes are clearly in-
creased in the plasma edge and decreased in the SOL, re-
spectively.

Typical radial dependences of the floating potentialf f

detected by probes befores,0.6 sd and durings,1.6 sd the
polarization of another similar shot are plotted in Fig. 2
along with the profiles of the radial electric fieldEr and Er

shear. Here,Er is estimated directly from the radial deriva-
tive of f f neglecting the contribution from theTe gradient,
and therefore underestimatingEr slightly. The radial deriva-
tions for calculatingEr andEr shear are taken by differenti-
ating spline fits and smoothing extraneous curvature before
taking next derivative. From the figures, it can be seen that in
the “nonshear” phase before biasing, the potential profile,
across the whole measured plasma edge and SOL region, is
very flat, resulting in rather flatEr andEr shear profiles. The
values off f, Er, and Er shear are all close to zero in that
phase. Therefore, the poloidal plasma rotation caused byEr

3B drift in that stage is also very small. This may provide
advantages for the study of the SOC behavior because in
such “quiet” plasmas the possible influence due to correlated
blobs moving in the poloidal direction on the long-range
correlations can be excluded. During the polarized phase, the
f f profile is highly enhanced inside the LCFS, leading to a

FIG. 1. Time evolution of discharge parameters in the edge electrode bias-
ing experiment on TEXTOR(shot No. 93 018). (a) Plasma current, line-
averaged electron density, and loop voltage,(b) voltage(thin line) and cur-
rent (thick line) signals on the polarized electrode. Shown in(c) and(d) are
time traces of floating potential measured atr =47.6 cm andr =49.5 cm,
respectively.
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narrow positive Er structure betweenr <46.7 cm andr
<48.3 cm, with a maximal value,480 V cm, as shown in
Fig. 2(b). The resultantEr shear is positive in the plasma
edge(maximal,600 V/cm2) and negative across the LCFS
location s,−600 V/cm2d, respectively[see Fig. 2(c)].

III. RESULTS AND DISCUSSIONS

A. Frequency spectra, autocorrelation functions, and
Hurst parameters in the “nonshear” discharge
phase

The first aim is to investigate the existence of SOC char-
acteristics in the “nonshear” discharge phase. For this, we
mainly studied some typical features associated with SOC
dynamics in the fluctuation data, i.e., autopower frequency
spectrum, ACF, and the Hurst parameter of the fluctuations.
A concise definition of these notions is given in the Appen-
dix.

In the present study of long-range correlations, a practi-
cal importance is that the data samples used should be sta-
tionary. We therefore start with a test of the stationarity of
the floating potential fluctuation data record using Eqs.(3)
and (4) of the SFs analysis exposed in the Appendix. The
results are shown in Fig. 3 as examples for two radial loca-
tions (one atr =47.1 cm in the plasma edge and the other at
r =49.4 cm in the SOL) before and during the biasing, re-
spectively. In Fig. 3, for each case, theqth order SFs of the
raw dataXstd, Sx,qstd, is plotted vst for q=0.5,1,2,3,4,5. It
can be seen that, in each log-log plot, there always exists a
certain range oft, from about 100–150ms (marked by ver-

tical dotted lines) to ù3000ms, whereSx,qstd is roughly con-
stant with zero slope, indicating that the data are stationary
within these ranges. Furthermore, the corresponding SFs of
the integrated dataSw,qstd in these ranges can be then applied
to determine the Hurst exponents.

Detailed measurements, presented in Fig. 4, were done
at three different radial positions:(i) r =50.1 cm in the SOL;
(ii ) r =48.1 cm around the LCFS, and(iii ) r =45.6 cm in the
edge plasma zone. For the present analysis, the data set of
each discharge was broken into eight unoverlapping sub
blocks of 8000 points(total time lag=16 ms). TheSsfd, ACF,
R/S [as defined in Eq.(2) of the Appendix] and SF[the
average of the 1/q power ofSw,qstd, kSw,q

1/ql, as defined in Eq.
(5) of the Appendix], for each sub block was calculated for
the floating potential fluctuation data and then averaged over
the eight sub blocks.

In Figs. 4(a) and 4(d), it can be seen that either in the
SOL or nearby the LCFS, the frequency spectrumSsfd shows
roughly three distinct regions in the frequency range off
=s0.2–250d kHz with approximate decay indices of 0, −1,
and −2, respectively, although the separation between ranges
is not sharp. These results are in good agreement with other
experimental observations12,27–29 and resemble those ob-
tained in the sandpile modeling and in turbulence model re-
alizations of SOC systems,5,9,30 i.e., (i) a high-frequency part
(scaled asf−n, wheren is 2 or higher) signifying small scale
events involving very small parts of the system,(ii ) a low-
frequency part(scaled nearly asf0) reflecting single events
with a global scale, and(iii ) the intermediate range(with f−1

dependence), which has been related to the overlapping of
avalanche transport. Figures 4(a) and 4(d) also show that the
frequency range of each subregion is slightly different. These
differences might be associated with local variations in the

FIG. 2. Radial profiles of(a) the floating potentialf f, (b) the radial electric
field Er, and(c) the Er shear befores,0.6 s, open symbols and thin lines)
and during(,1.6 s, filled symbols and thick lines) the polarization. The
symbols in(a) indicate the locations of probe pin measurements. The verti-
cal dotted line marks the approximate position of the last closed flux surface.

FIG. 3. Structure functionSx,qstd for q=0.5, 1, 2, 3, 4, 5, of the floating
potential fluctuation data detected at(a) r =47.1 cm before biasing;(b) r
=49.4 cm before biasing;(c) r =47.1 cm during biasing; and(d) r
=49.4 cm during biasing. Data are stationary for time lag from about
100–150ms (marked by vertical dotted lines) to ù3000ms.
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importance of diffusive versus SOC transport.10 It is interest-
ing to see that from the SOL to the LCFS zone, the interme-
diate f−1 range, shifting froms3–20d to s8–100d kHz, be-
comes broader, implying that the nonlinear interaction of
transport events is stronger in the vicinity of the LCFS than
in the SOL. In the plasma edge, Fig. 4(g) displays strong
coherent modes(CMs) in the power spectrum with peaks at
about 10 kHz. This can also be seen in Fig. 3(a) at another
edge position, whereSx,qstd shows periodic oscillations in its
first several harmonics. It has been found that this CM har-
monic Ssfd usually appears at locations starting from
,10 mm inside the limiter. As seen in the figure, these co-
herent modes hide the intermediatef−1 range arising from the
background turbulence, but the other two frequency regions
remain similar to those observed at other two radial posi-
tions.

The corresponding ACFs measured at the above three
positions are shown in Figs. 4(b), 4(e), and 4(h), respectively.
From the figures, it can be seen that at the small time lags the
value of ACF at each position drops very rapidly with time.
The peak part of the ACF carries information on the corre-
lation of local fluctuations. Here, the e-folding time of the
ACF, i.e., the width of the peaktD is taken to be the
decorrelation time of the local turbulence.31 Figures 4(b),
4(e), and 4(h) show thattD is around 10–20ms at the three
measured locations(see dashed lines). The existence of long-
time correlation should be evident from an algebraic tail in
the ACF.32 Such a slow decay can be clearly seen in Figs.

4(b) and 4(e), over large intervals of time lags untilt
ù120 ms. Because of 10 kHz CM harmonics, the ACF tail
measured at the plasma edgesr =45.6 cmd strongly oscillates
at a main CM period of,100 ms, as displayed in Fig. 4(h).

Self-similarity is studied by means of the Hurst param-
eterH, using theR/Sand SF methods for cross checking the
accuracy ofH value obtained. The corresponding plots of
R/S values(solid circles) versus time lags at the above three
radial positions are shown in Figs. 4(c), 4(f), and 4(i), respec-
tively. From Figs. 4(c) and 4(f), we can see that for time lags
smaller than a fewtDst,100 msd, there is a transient pro-
cess giving a constant slope of about 0.9. This nonstationary
process quantifies the local turbulence decorrelation behav-
ior. At longer time scales,R/S settles on an “asymptotic”
power law in the “self-similarity range,” over whichH
=0.65 and H=0.74 are determined from theR/S slope
(shown by dashed lines) at the SOL and the LCFS area,
respectively. The error bar ofH is about 0.03, which is esti-
mated from the statistical dispersion of the results from the
eight calculated sub blocks of the data. Using SF method, the
slope of the SF curve in the stationary range gives alsoH
directly. In Figs. 4(c) and 4(f), we can see that theR/S and
SF methods show good agreement for gettingH, only with a
slight difference for the lowH casesH=0.65d, in agreement
with simulations.25,26 In comparison with the SOL, the
broaderf−1 region and longer ACF tail at the LCFS zone are
consistent with the higher Hurst parameter detected at that
position. At r =45.6 cm inside the LCFS, the presence of

FIG. 4. Power spectrumSsfd [(a), (d),
(g)], autocorrelation function(ACF)
[(b), (e), (h)] and R/S (SF) analysis
[(c), (f), (i)] of the floating potential
fluctuations measured at three radial
positions: (i) r =50.1 cm in the SOL,
(ii ) r =48.1 cm nearby the LCFS, and
(iii ) r =45.6 cm in the plasma edge in
the “nonshear” discharge phase before
biasing. In(c), (f), and(i), R/S values
are shown by solid circles; the SF
curve in each plot is the average of the
1/q power of Sw,qstd for q=0.5, 1, 2,
3, 4, 5. The dashed lines in(c), (f), and
(i) are the best fit to theR/Sslope with
H=0.65, 0.74, and 0.73, respectively;
and the parallel ones show comparison
with the SF curves.
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coherent modes perturbs the evaluation of the Hurst expo-
nent. As CMs can correlate over long times withH<1.0,17 it
is necessary to exclude their influence in the study of long-
range dependence of the broadband turbulence. Such effects
have been investigated in detail in Ref. 25 by adding a peri-
odic sine function to a simulated fractional Gaussian signal
in the R/S and SF analysis. It has been shown that theR/S
scaling range affected by the CMs may cover the time range
across the CM period because of the existence of a transition
range inherent in theR/Salgorithms, while for SF the effects
of CMs on its scaling behavior is negligibly small for lags
larger than the CM period. Similar phenomena also appear in
our case. In Fig. 4(i), it can be clearly seen that theR/S
curve has an increased slope around 100ms, the main CM
period. However, at time lags far above that, sayù1500ms
marked by the vertical dotted line, the Hurst parameter of
H<0.73 can still be extracted from the straight part ofR/S
curve. On the other hand, the influence of CM on SF is much
smaller and affects only the region up to the main CM period
,100 ms. The upper part of the SF curve clearly scales as a
power law with H<0.73 s.0.5d. Both the R/S and SF
analysis suggest an existence of self-similarity of the back-
ground fluctuations at the plasma edge.

To search for the universality of SOC characteristics, we
also extend our analysis to the density fluctuation data,
which have been measured by two thermal Li beams in the
SOL region.33 The results show similar features to those ob-
tained from the floating potential fluctuations. As an ex-
ample, the power spectrumSsfd andR/S values measured at
a normalized radial location ofr /a=1.04 in the SOL under
similar ohmic discharge conditions are plotted in Fig. 5. In
Fig. 5(a), Ssfd also exhibits three frequency regions with
power-law indices of 0, −1, and −2, respectively. The corre-
spondingR/S plot of Fig. 5(b) displays a self-similarity pa-
rameterH<0.72 in the mesoscale time lags. In spite of some
difference appeared in theSsfd and R/S plots between the
two type of fluctuation data, the common features, such as
the presence off−1 power-law dependence and Hurst param-
eterH.0.5, strongly support the idea that SOC is an impor-
tant mechanism in plasma transport.

A further documentation of the turbulence in the edge of
TEXTOR in the “nonshear” phase is given in Figs. 6 and 7.
Figure 6 gives the radial profiles of Hurst parameterH and
the local decorrelation time of turbulencetD, which are ob-

tained from theR/S plot (open circles) and SF(solid tri-
angles) and thee-folding time of ACF of the floating poten-
tial fluctuations, respectively for a large number of shots.
Figure 6(b) shows that thetD values are slightly higher in the

FIG. 5. (a) Power spectrumSsfd and (b) R/S analysis of the density fluc-
tuations measured atr /a=1.04 by thermal Li beams in an ohmic discharge
(shot No. 61 028). The solid line in(b) shows the best fit to the slope ofR/S
ratio (open symbols) with H=0.72.

FIG. 6. The radial dependence of(a) Hurst parametersHd estimated byR/S
(open circles) and SF(small solid triangles) and (b) the local decorrelation
time of turbulencestDd in the nonshear discharge phase before biasing. The
vertical dotted line marks the position of the last closed flux surface.

FIG. 7. Contours of the pairwise cross-correlation function(CCF) measured
in (a) the plasma edge and(b) the scrape-off layer in the “nonshear” dis-
charge phase before biasing. The motion of maximum CCF in(a) indicates
a radially outward propagation in the plasma edge.
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SOL than in the edge plasma region, implying that the local
short time scale electrostatic fluctuations are more decorre-
lated in the edge plasma zone. The lowesttD values at the
limiter location could be related to plasma diamagnetic drifts
due to a sudden change of the pressure gradient at the last
closed flux surface. In such a case, the decorrelation time of
turbulence is dominated by the correlation length of the tur-
bulence structures which are swept over the probe, but not by
the temporal decay of the structure. Therefore,tD measured
might be smaller than the real one.31 In Fig. 6(a), it is seen
that at all the detected radial locations, the Hurst parameters
are well above 0.5, indicating the existence of long-range
dependencies in the fluctuation dynamics in both the plasma
edge and the SOL. Moreover, we find that the values ofH in
the “nonshear” plasma edge under the present conditions are
appreciably higher than those in the SOL(other discharge
conditions show different features, see Ref. 21). These re-
sults reveal a stronger avalanche transport behavior existing
inside the LCFS.

In Fig. 7 we document the existence of long scale spa-
tially correlated events. The measurements were performed
using six radially spaced probes(7.5 mm separation between
pins) and carried out in the plasma edge and in the SOL,
respectively. The cross-correlation function(CCF) of the
floating potential fluctuations between the six radial probes is
then calculated. Shown in Figs. 7(a) and 7(b) are contours of
the pairwise CCF of each probe with a reference one atr
=47.85 cm in the plasma edge andr =50.35 cm in the SOL,
respectively. In Fig. 7(a), the motion of the position of maxi-
mum CCF to larger time lags indicates an outward propaga-
tion in the plasma edge at an effective speed ofVr

<330 m/s. To have a good identification of a pure SOC-
type avalanche propagating behavior, the CM harmonic fre-
quency components detected at several inner plasma edge
locations have been filtered from the fluctuation data prior to
calculating the CCFs. This motion in the radial direction
clearly identifies this feature as an avalanche. This result is
similar to that observed in DIII-D of the temperature
fluctuations.14 Note that the radial extent of the coherent fea-
ture is ,22 mm, much larger than the local gyroradiussri

<0.4 mmd, which is the typical scale length for gyro-Bohm
scaling.1 On the other hand, in the SOL, no clear signature of
radial propagation is manifested in the measured CCFs, as
seen in Fig. 7(b). The results appear to be in accordance with
lower H values detected in the SOL[see Fig. 6(a)], where
less avalanche behavior is expected.

To summarize, in the “nonshear” discharge phase of
TEXTOR, experimental results of the power spectra, auto-
correlation (cross-correlation) functions and self-similarity
parameters calculated from both the potential and density
fluctuations all show some characteristic properties of SOC,
i.e., existence off−1 falloff in the power spectrum, long-
range time dependencies showing by slowly decaying tail in
ACF, large scale spatial correlations and avalanche like
events by CCF, and self-similar character of fluctuations by
R/Sand SF analysis of Hurst parameters well larger than 0.5.
All these facts are consistent with plasma transport charac-
terized by SOC dynamics.

B. Change of long-range dependence and local
turbulent correlation by a sheared edge ErÃB flow in
the “shear” phase

The influence of a shearedEr 3B flow on long-term and
short-term correlations can most conveniently be studied in
biasing experiments. Up to now, the predictions of shear flow
effects on long-range time correlations are mainly based on
the sandpile modeling, in which theR/S analysis indicates a
decorrelation(i.e., decrease of correlation) of avalanches
when a sheared wind flow is included into the sandpile.8

Experimental investigation on this aspect is very limited. In
Ref. 11, evidence has been shown that theH values near the
edge shear flow layer in Wendelstein 7 Advanced Stellarator
are slightly lower than those on either side, in agreement
with the sandpile modeling. The interpretation of data mea-
sured in regions where the poloidal plasma flowVuÞ0 de-
serves special attention. As pointed out by several
authors,29,31 the presence of a plasma rotation may signifi-
cantly modify the structure of frequency spectrum and also
the correlation time of fluctuations depending on whether
they are measured in the moving frame or the laboratory rest
frame. The reason is that a poloidal flow can affectSsfd by
Doppler shift in frequencies and ACF due to the movement
of the correlation structures across the probe. From Fig. 2(b),
we can see that in our experiment the large poloidal flows
during the biasing phase are mainly located withinr <46.7
to 48.3 cm, sinceVu is dominated by theEr /B effects(B is
magnetic field) as substantiated by direct measurements.34 To
mitigate the flow impact, the frequency spectra measured in
this region have been reconstructed following the method
used in Ref. 29. The correction of Doppler shift inSsfd is

made by formulaf = f̂ − k̄usfdVu /2p, where f̂ and f are the
frequency measured in the laboratory frame and the plasma

rest frame, respectively, andk̄usfd is the averaged poloidal

wave number at a given frequencyf. Here, k̄usfd data are
taken from previous measurements by a fixed two-point
probe with an average value about 1–2 cm−1.35 The ACFs
and R/S (and SF) values in those locations are then calcu-
lated in a reconstructed time domain, which is reverse trans-
formed from the corrected frequency domain. An example of
such a correction at the location ofr =48.1 cm is shown in
Fig. 8, where theSsfd, ACF, andR/S ratios before(black
color) and after (red color) the correction are compared.
From Fig. 8(a), it is seen that either before or after the cor-
rection, the shape ofSsfd in the biasing phase can be char-
acterized by two parts, one roughly followingf−1 decay in
the low-frequency range and the other keeping flat at high-
frequency region. Although Doppler shift modifies the struc-
ture of Ssfd in the frequency domain, these leading features
of Ssfd remain unchanged. The modifications on ACF and
R/S ratio due to Doppler shift are shown in Figs. 8(b) and
8(c), where tD decreases slightly andH value is reduced
from 0.87 to 0.85 after the correction. It must be pointed out
that such corrections can only minimize the flow effects, but
may not be fully accurate, as no direct and simultaneous

measurements ofVu and k̄usfd were available.
The radial dependencies ofH andtD before(black sym-

bols) and during(red symbols) the biasing phase are plotted
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in Figs. 9(a) and 9(b). Note that in Fig. 9(a), the H values
calculated fromR/S (open circles) and SF(solid triangles)
during the biasing phase are both plotted to validate their
accuracy. For comparison, Figs. 9(c) and 9(d) show the radial
profiles of the fluctuation amplitudes and the edge electric
field Er shear measured in a number of shots under the same
discharge conditions before and during the biasing. Figure
9(a) clearly indicates that during the biasing phase theH
values are increased in the SOL and in the region of negative
Er shear, as is seen in Fig. 9(d). Details of Ssfd, ACF, and
R/S ratio before/during the biasing have been plotted in Fig.
10 for two radial positions, i.e., one outside flow-shear re-
gion atr =50.1 cm and the other at the location of maximum
flow-shear atr =48.1 cm in the biasing phase. At the first
position, Fig. 10(a) shows that during biasing, the shape of
Ssfd is changed considerably and the range off−1 power
falloff becomes much more broader, suggesting that the in-
teractions among the avalanches are much stronger than be-
fore or that diffusion is now much less important, according
to the modeling in Ref. 10. Correspondingly, in the biasing
phase, the tail of ACF becomes longer and thus the Hurst
parameter is higher than before over the self-similarity range,
as seen in Figs. 10(b) and 10(c). At the second position
where there is a velocity shear during the biasing, theSsfd
structure is also clearly modified with respect to before[see
Fig. 10(d)]. At the high-frequency regionsf ù10 kHzd, Ssfd
becomes flat; however, in the low-frequency end,Ssfd as-
sumes a moref−1 like power-law dependence in the fre-
quency region of 0.1,10 kHz. Because of this, the ACF tail
[see Fig. 10(e)] turns to be more flat in the biasing phase and
hence theH value [see Fig. 10(f)] is increased from 0.74
before to 0.85 during the biasing. Indications are that with
biasing the importance of long-range dependence in the flow
shear region is increased and that the radial propagation of
avalanches leads to an increase of self-similarity in fluctua-
tions at the SOL.

It should be noted, however, that the subsistence of long-
range correlations in the flow shear region is surprising, and
in contrast with the sandpile simulations.8 Several factors
might be thought of as possibly able to contaminate theH
values.(i) On Alcator-C-Mod tokamak36 contamination by
low-frequency perturbations at 50–60 Hz has been found to
increase theH values. In our case, no such perturbations
either clearly show up in time traces of the raw signals[ex-
cept for 25 Hz ringing of power supply as can be seen in Fig.
1(b) in the biasing voltage signal, which has been filtered on
the fluctuation data analyzed, as stated earlier] nor in the
stationarity tests of the fluctuation data during the biasing

FIG. 8. (Color online). Comparison of
(a) frequency spectrumSsfd, (b) auto-
correlation function (ACF), and (c)
R/S ratio of floating potential fluctua-
tions detected atr =48.1 cm during bi-
asing phase without(black curves and
symbols) and with (red curves and
symbols) the correction due to Dop-
pler shift in frequency domain. Note
that Ssfd shown in (a) is in arbitrary
unit.

FIG. 9. (Color online). Radial profiles of(a) Hurst parametersHd estimated
by R/S (open circles) and SF(small solid triangles), (b) local decorrelation
time of turbulencestDd, (c) fluctuation amplitude, and(d) radial electric field
Er shear before(black symbols) and during(red symbols) the biasing phase.
The vertical dotted line marks the position of the last closed flux surface.
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phase.(ii ) The accurateness of Doppler-shift correction could
also affect H value in the high-flow zone
s46.7 cm, r ,48.3 cmd. However, in the outer SOL region
sr .49 cmd the flow is very small or close to zero and this
correction cannot therefore play a role. One plausible expla-
nation for the deviation with respect to the sandpile simula-
tion may come from the modeling done in Ref. 10, where the
interplay between the diffusive and SOC transport dynamics
is studied. For the dominant discontinuous SOC transport
channel and the subdominant continuous diffusive channel,
the modeling indicates that with the increase of diffusivity
ratio, the 1/f region of the power spectrum shrinks and the
Hurst exponent decreases as the continuous smoothing of the
local inhomogeneities in the slope profile by the increased
diffusion makes avalanches more difficult to take place. In
contrast, at low ratio of diffusivity, the diffusive component
cannot well balance the source at the submarginal level,
causing the slope to buildup so that large SOC-type ava-
lanches can occur. This seems to be consistent with our ex-
periment. In the shear phase, the local turbulence is strongly
decorrelated, which will be further elucidated in the next
paragraph, and thus the SOC channel prevails. The present
results demonstrate that anEr 3B flow shear alone, at least
in our case, is not sufficient to suppress avalanchelike trans-
port. The question as to the conditions necessary to effec-
tively decorrelate SOC-type avalanches by sheared flow ap-
pears therefore still unanswered. The fact that the Hurst
parameters are almost unchanged during the biasing phase in
the positiveEr shear locations, as seen in Fig. 9(a), remains
also to be explained.

On the other hand, the role of anEr 3B flow shear on
the decorrelation of local turbulence is clearly shown in our
experiment. Comparing Figs. 9(b) and 9(d), it can be seen
that the local decorrelation timetD, drops sharply in the
negative and slightly in the positiveEr shear region in the
biasing phase. This result is consistent with other experimen-
tal data31,35 and also with theoretical predictions.37 In the
BDT model of Ref. 37, it is described that fluid elements can

be fissured by a poloidal velocity shear in addition to their
radial scattering. As a consequence, the local turbulent eddy
can be strongly decorrelated in the case of shear flow. Ac-
cording to the model, the shear decorrelation timets is de-
fined as the time in which the correlation volume is separated
poloidally by a correlation length ,cu, i.e., ts

<,cu,cr
−1uEr8 /Bu−1, where ,cr denotes the radial correlation

length andEr8=]Er /]r is the radial electric field shear. In the
case of strong shearts!tc, where tc is the characteristic
time of the diffusive scattering of the ambient turbulence, the
fluctuations are effectively decorrelated at a timetsc

<ts
2/3tc

1/3. For a comparison with the measurements oftD,
we calculated the localtsc value using the measured param-
eters around the LCFS, whereEr8<500 V/cm2 [see Fig.
9(d)] and B<2.3 T. Taking tc<10 ms in the “nonshear”
phase whenVu is about zero[see Fig. 9(b)] and assuming
,cu<,cr, givestsc<1.3 ms. This value is very close to the
measured decorrelation time of,2 ms in the biasing phase
in the vicinity of the LCFS, as seen the Fig. 9(b). These
results indicate that the influence of negativeEr 3B shear on
the decorrelation of local turbulence is still valid. Further
evidence for the shear effect on short time events can also be
seen from Figs. 10(d)–10(f), whereSsfd is flattened(random-
ized like white noise) at the high-frequency range,R/Sslope
(H value) is close to 0.5 in the small time lags and accord-
ingly tD is reduced remarkably in the ACF. From Fig. 9 it is
seen that the reduction oftD in the positiveEr shear region is
much less pronounced.

IV. SUMMARY

In conclusion, the floating potential fluctuation data mea-
sured at the plasma edge and the SOL of TEXTOR in the
edge biasing experiments, together with the density fluctua-
tion data detected in the SOL of ohmic discharges on TEX-
TOR, have been analyzed for the study of SOC-relevant phe-
nomena. Evidence has been found that, in “nonshear”
discharge phase before biasing, the fluctuations exhibitf−1

FIG. 10. (Color online). Comparison
of power spectrumSsfd, autocorrela-
tion function(ACF), andR/S ratio be-
fore (black curves and symbols) and
during (red curves and symbols) the
biasing at two radial locations:(i) r
=50.1 cm outside the flow-shear re-
gion and (ii ) r =48.1 cm where the
flow-shear is maximum.
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power-law dependence in their spectra, the autocorrelation
function displays long decaying tail, theR/Sand SF analysis
show self-similarity parameters well larger than 0.5 at all
measured locations and a radial propagation of avalanche
events is manifested in the edge plasma area. All these re-
sults are consistent with the presence of a transport channel
showing SOC behavior and plasma transport mechanisms
based on avalanches.

During the biasing phase of the edge electrode polariza-
tion experiment, with the generation of an edge radial elec-
tric field Er and therefore an edgeEr 3B velocity shear, the
Hurst exponents are enhanced substantially in the negative
Er shear zone and also in the SOL. The results indicate that
an Er 3B flow shear alone, at least in our case, is not suffi-
cient to suppress the SOC-type transport.Er 3B velocity
shear, especially in the negativeEr shear region, can how-
ever very well decorrelate the local turbulence by reducing
the local decorrelation time close to theoretically predicted
values. The diffusive transport channel is thereby very
strongly suppressed. We tend to conclude that(i) in the
ohmic phase most transport is diffusive in the TEXTOR
edge, while, with strong shear, SOC transport prevails, and
(ii ) in the negativeEr shear region, “the dynamics governing
the decorrelation of the local fluctuations and the long-range
time dependencies are probably different, one being the
decorrelation of the turbulence and the other being the deco-
rrelation of the transport events (avalanches)” as stated in
Ref. 11.
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APPENDIX: FREQUENCY SPECTRA,
AUTOCORRELATION FUNCTIONS, AND HURST
EXPONENTS

The shape of the auto-power frequency spectrumSsfd
which is the Fourier transform of the autocorrelation func-
tion, is closely linked to the correlation properties of a signal.
For instance, for a sine periodic wave, theSsfd has a narrow
band peak indicating that all fluctuations occur at the same
frequency, while for a white noise theSsfd is nearly flat
implying that the fluctuation intensity does not depend on
any preferable frequency. According to the work of Hwa and
Kadar on SOC dynamics in models of “running sandpile,”
the shape ofSsfd can be divided into three distinct frequency
regions, each with characteristic power dependence5,30 and
discussed in our main text under Sec. III A. For a long time,
the existence of an asymptotic power falloff ofSsfd at the
high-frequency range with decay indices close to −2 or
higher has been observed.27 Also at the lowest-frequency
part, S(f) exhibits a weak dependence of frequency. Because
of a possible connection to the paradigm of SOC, the inter-
acting avalanche subrange has captured much attention in
recent years in the search for thef−1 power law in the inter-
mediate frequency domain.12,14,17,28,29

Another expected property of SOC-governed systems is
the existence of long-range dependence or self-similarity in
the fluctuation data. In general, self-similarity of a time se-
ries is linked to an algebraic tail(i.e., slowly decaying for
long time lags) in the autocorrelation function(ACF).32 The
related concepts can be seen as follows: For studying the
correlation structure of a time series,X;hXt : t=1,2, . . .nj,
on different time scales, a standard method is to divideX into
subseries of lengthsm=2k data points, where k
=0,1,2, . . .M, and 2M !n. For eachm, the values of the data
points in each subseries are averaged to generate a new
coarse-grained time series,Xsmd;hXu

smd :u=1,2, . . . ,n/mj,
where Xu

smd=sXum−m+1+¯ +Xumd /m. The corresponding
variancesm

2 can be written as:

sm
2 =

s2

m
+

2s2

m2 o
p=1

m

o
t=1

p−1

rstd <
s2

mF1 + 2o
t=1

m−1

rstdG , s1d

where s2 denotes the variance of the original time series,
X,rstd=covhX i ,Xi+tj /s2 denotes the ACF ofX, andt is the
time lag. For a random variableX, which corresponds to
Gaussian processes with short-range time dependence,
sm

2 varies asymptotically asm−1 whenm→`. However, if the
integral term in Eq.(1) diverges, we rather findsm

2 decreases
slower thanm−1 and the asymptotic dependence becomes
sm

2 ,m−bs0,b,1d asm→`. This can be further written as
limm→`sm

2 ~m−b=m2H−2, whereH=1−b /2 is introduced as
Hurst parameters0.5,H,1d. In such a case, the ACF ofX
decays as a power law, i.e.,rstd=d2st2−bd /2~t−b, where the
operatord2 denotes the second-order central derivative op-
erator in finite differences. As a consequence, it is said thatX
exhibits long-range dependence.

Although the calculation of ACF can provide direct in-
formation on the long-range time dependence, it is not easy
to accurately determine the values ofb and H via its long
time lag tail, for which very high statistics are needed. How-
ever, there are some techniques effective for the determina-
tion of long-range dependence in a finite time series. One
such technique is the rescaled rangesR/Sd analysis proposed
by Mandelbrot and Willis, following the pioneering work of
Hurst on the hydrological analysis.22 For a time series of

length, X;hXt : t=1,2, . . .nj, with meanX̄snd and standard
deviationSsnd=Îs2snd, theR/S ratio is defined as

Rsnd
Ssnd

=
maxs0,W1,W2, . . .Wnd − mins0,W1,W2 . . .Wnd

Îs2snd
,

s2d

whereWk=oi=1
k Xi −kX̄snd. Then the expected value ofR/S

depends asymptotically onn asn→`, i.e.,

EhRsndSsndj →
n→`

cnH,

where the Hurst exponentH, expresses increasing long-range
dependence asH increases from 1/2 to 1; namely,H=1/2
for a random process andH.1/2 for a sequence with long-
term correlations. It has been shown that, in comparison to
the direct calculation of the ACF or other altemative methods
calculatingH, theR/S analysis is remarkably robust.23
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Aside fromR/S, another robust technique for determin-
ing H is via structure functions(SFs).24 The SF method has
been recently discussed in detail by Yuet al.25 with several
advantages, including straightforward tests for stationarity of
data samples and reduced sensitivity to coherent mode ef-
fects, etc. For a process(or time series), X;hXt : t
=1,2, . . . ,nj, the qth-order structure function,Sx,qstd, is de-
fined as theqth moment of the increments ofXstd,

Sx,qstd ; kuXsti + td − Xstiduql, s3d

where i denotes theith data point,t is the time lag, andkl
denotes the ensemble average. IfXstd is self-similar over a
certain range oft, Sx,qstd in this range is thus scaled as

Sx,qstd = cqt qHsqd, s4d

where cq is approximately constant andHsqd is the Hurst
exponent. The SF method is applicable to either nonstation-
ary processes with stationary increments such as fractional
Brownian motion or cumulative sums of stationary self-
similar processes such as fractional Gaussian noise. In the
latter case,Sx,qstd in Eq. (4) exhibits no scaling witht, i.e.,
qHsqd;0, then the original data seriesXstd in Eq. (3) is
replaced by its cumulative one,Wk=oi;1

k Xi, therefore, Eq.
(3) becomes

SW,qstd ; kuWsti + td − Wstiduql. s5d

Then, the Hurst exponentH can be determined from Eq.(4)
usingSw,qstd instead ofSx,qstd.
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