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Electronic, magnetic, and transport properties of the noncollinear naturally multilayered compounds
LaMn2Ge2 and LaMn2Si2 are addressed by first-principles calculations based on the density-functional theory.
At low temperatures, these systems show a magnetic state with the Mn moments ordered in a conical arrange-
ment(spin spiral) with a ferromagnetic coupling along thec axis and an in-plane antiferromagnetic coupling.
The magnetic structures are studied by means of the full-potential linearized augmented-plane-wave method
within both the generalized-gradient approximation and the local-density approximation. In both compounds, a
conical magnetic state is obtained with energies lower than canted and collinear structures. The trends in the
experimentally observed magnetic configuration when replacing Ge by Si are discussed. The origin of the
experimentally observed inverse giant magnetoresistance in LaMn2Ge2 is traced back to the presence of many
noncollinear low-energy magnetic configurations.
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I. INTRODUCTION

Noncollinear magnetism has been known for more than
40 years, and even though in recent years much progress has
been achieved in the description of itinerant magnetic order-
ing, only few first-principles calculations have been per-
formed for complex systems with a noncollinear magnetic
ground state.1–5 In the past decade, electronic structure meth-
ods have been extended to describe noncollinear spin struc-
tures within density-functional theory and the formalism has
been mainly used to study magnetic excitations and finite-
temperature properties of ferromagnets such as Fe, Co, or
Ni.6 First-principles calculations extended to noncollinear
magnetism have not only been used to investigate finite-
temperature properties of magnetic materials through the de-
termination of magnon spectra and Curie temperatures, but
they have also been applied to frustrated antiferromagnets,7

g-Fe,8 and, lately, to the spin spirals appearing in the Heusler
alloys, Ni2MnGa and Ni2MnAl.1

The magnetism of systems containing Mn exhibit a rich
variety of magnetic ground-state structures. This behavior
has its origin in the well-known fact that the magnetic mo-
ment and the exchange interactions of Mn are highly sensi-
tive to geometry and interatomic distances. Antiferromag-
netic interactions between nearest-neighbor atoms compete
with ferromagnetic interactions between more distant atoms.
External parameters determining the geometry can cause dra-
matic changes in the spin arrangement. For instance, bulk
manganese itself crystallizes in complex structures such as
the a and b phases with noncollinear spin arrangements.3,4

The large magnetic moment of Mn gives a lot of weight to
higher-order exchange interactions. For example, as a conse-
quence monolayers of Mn deposited on Cus111d display a

noncollinear three-dimensional magnetic arrangement,7 and
families of compounds which have Mn as a constituent show
frequently a rich variety of complex magnetic configurations
depending on the Mn-Mn distances. Among these systems
are the intermetallic ternary compounds of the typeRMn2X2
(R=Ca, La, Ba, Y, etc., andX=Si, Ge) which crystallize in
the ThCr2Si2 structure. The Mn-Mn distances in these struc-
tures are mainly determined by the size of the other atoms
building the compound. For example, the in-plane lattice
constant of LaMn2Ge2 and LaMn2Si2 is 4.19 Å and 4.11 Å,
respectively. Experimentally they show a large variety of
magnetic ground states which depend onR andX. The spins
on the Mn sublattice can arrange in spiral spin-density waves
(SSDW), antiferromagnetic(AFM), ferromagnetic(FM), or/
and canted magnetic structures.9–12 In these structures, the
Mn atoms occupy every fourth layer stacked along thec axis.
The Mn sublattice forms a simple tetragonal framework(cf.
Fig. 1) and the Mn-Mn interlayer distance along thec axis,
RMn-Mn

c , ranges between 5.4 and 5.6 Å, whereas the Mn-Mn
intralayer distance,RMn-Mn

a , lies in the range of 2.8–3.2 Å,
being roughly half the one corresponding toRMn-Mn

c .
Among the above-mentioned systems, the bulk magnetic

properties of the compounds withR=La and X=Ge or Si
show a complex magnetic structure which has been recently
re-examined by neutron diffraction experiments.12 At high
temperatures, these systems are purely collinear antiferro-
magnets, showing a FM stacking of AFMs001d planes. At
low temperatures, they present noncollinear magnetic struc-
tures with the magnetic moments of Mn ordered in a conical
spin spiral along thec axis. The moments couple FM along
thec axis, while they exhibit an AFM component within the
s001d Mn planes. At a temperature ofT=2 K, the wave vec-
tor q of the spin spiral of LaMn2Ge2 is oriented along thec
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axis with an absolute valueqz of 0.71 s2p /cd, and the semi-
cone or canting angleu (measured from thec axis) is 58°,
while for LaMn2Si2 the corresponding values areqz
=0.91s2p /cd and u=25°. The total Mn magnetic moments
are 3.06mB and 2.43mB for LaMn2Ge2 and LaMn2Si2,
respectively.11,12

The presence of conical helical magnetic order in
LaMn2Ge2 and LaMn2Si2 makes these systems ideal candi-
dates to study the evolution of the magnetic properties as a
function of canting angle and helicitysqzd. To our knowl-
edge, noab initio calculations have been undertaken yet to
study many-atom compounds exhibiting simultaneously
conical and helical magnetic order. In this contribution, we
investigate the magnetic and electronic structure of both
compounds and show that, within the local-density approxi-
mation (LDA ) to the density-functional theory(DFT), coni-
cal spin spirals are obtained as the ground states for both
systems and that the values of the ground-state spin-spiral
wave vectorsq follow the experimental trends.

Another interesting feature of these systems is that forX
=Ge, an inverse magnetoresistance has been reported.13 In
the past decade, characterized by the search of new materials
with specific electronic and magnetic properties, much atten-
tion has been devoted to the transport properties of layered
structures. In particular, the stress has been put on those
showing a giant magnetoresistance14 effect (GMR). The
magnetoresistive properties are strongly dependent upon the
magnetic structure, therefore its determination is crucial for
the computation of the transport coefficients. We address in
this work the dependence of the band contribution to GMR
on the different magnetic configurations of LaMn2Ge2.

This paper is organized as follows. In Sec. II, the compu-
tational scheme and method of calculation are discussed. In
Sec. III, the results of the calculations are presented and ana-
lyzed and Sec. IV is devoted to the concluding remarks.

II. METHOD OF CALCULATION

The calculations are performed self-consistently using
the FLEUR code,15 which is an implementation of the full-
potential linearized augmented plane-wave(FLAPW)
method16 that allows the treatment of noncollinear magne-
tism including incommensurate spin spirals.17 As there have
been several discussions regarding the different exchange-
correlation(XC) potentials to be used in the context of non-
collinear magnetism, we present here the results obtained
within the local-spin-density approximation(LSDA) to the
XC potential and within the generalized-gradient approxima-
tion (GGA). The results obtained within both approximations
are compared with the experimental ground-state configura-
tions.

Although in noncollinear magnetic systems no global
spin-quantization axis exists, at every point of space a local
coordinate system can be defined such that the magnetization
is locally oriented in thez direction. Since the LSDA de-
pends only on the magnitude of the magnetization, the XC
potential can be calculated at every point in the local coor-
dinate system just as in the usual collinear case. The noncol-
linear potential is obtained by back-rotation to the global
frame of reference. On the other hand, the GGA depends also
on the gradients of the magnetization. As the direction of
magnetization may vary, when calculating the gradients only
projections of the magnetization on the local quantization
axis are taken into account in the standard GGA implemen-
tations. If the magnetization direction varies slowly, this ap-
proximation is sufficient. Nonetheless, a previous study sug-
gests that in some cases the disagreement between theory
and experiment might come from the projection errors,18

while in attempts to improve the GGA for noncollinear cal-
culations the effects were found to be small.19 We used the
XC potential as given by Moruzzi, Janak, and Williams
(MJW) (Ref. 20) in the case of the LDA calculations and by
Perdew and Wang(PW) (Ref. 21) and Perdew, Burke, and
Ernzerhof(PBE) (Ref. 22) for the GGA calculations.

The FLEUR code allows for the treatment of the noncol-
linear magnetism with magnetic momentsMa at an atomic
site a oriented along arbitrarily chosen directionsêa as well
as incommensurate spiral spin-density-wave(SSDW) states.
Assuming a rotation of the spins around thez axis, the com-
ponents of the local magnetic moments of an atom with the
basis vectorta in the unit celln (with the origin at the lattice
vectorRn) are given in the global reference frame by

êna = 1cosfq · sRn + tad + jagsin ua

sinfq · sRn + tad + jagsin ua

cosua 2 . s1d

For more than one magnetic atom in the unit cell, an
additional atom-dependent phase,ja, has been introduced in
the above equation. As suggested by the experiment,12 we

FIG. 1. Magnetic unit cell of LaMn2Ge2 at 2 K. The Ge atoms
are not displayed. In the ThCr2Si2 (space groupI4/mmm) structure,
the rare-earth atoms occupy the(0,0,0) sites[Wyckoff position 2(a)]
and the Ge atoms thes0,0, ±zd sites withz<0.38 [Wyckoff posi-
tion 4(e)]. The Mn atoms occupy the special position 4(d) at
s0,1/2,1/4d with an additional I translation mode(Ref. 12).

Di NAPOLI et al. PHYSICAL REVIEW B 70, 174418(2004)

174418-2



have chosen a phase shiftDj=p for the two Mn atoms in the
(001) plane for both LaMn2Ge2 and LaMn2Si2. The semi-
cone anglesu have been found to be identical for the two
atoms.

In the implementation of theFLEUR code, the magnetiza-
tion is treated as a continuous vector field in the interstitial
region, while inside each muffin-tin sphere an average direc-
tion of magnetization is used. The 3d transition metals in
open structures are elements showing weak intra-atomic non-
collinearity, and for Mn the magnetic moments are fairly
large, therefore we believe that our implementation is most
appropriate for the systems under study. The SSDWs are
treated by means of the generalized Bloch theorem,23 which
states that, in the absence of the spin-orbit coupling, a gen-
eralized translation operator can be defined combining the
regular translations in the Bravais lattice with the rotation in
the spin space.17 Due to the generalized Bloch theorem, even
incommensurate spin spirals with the underlying lattice can
be studied restricting the calculation to the chemical unit cell
and thus no large supercells are needed. Since spin-orbit cou-
pling is neglected, the directions in spin space and real space
are not coupled and all calculated quantities depend only on
the relative orientations of the magnetic moments.

In our calculations, thek-point set used corresponds to
100 k points in the irreducible wedge of the Brillouin zone
(IBZ), which corresponds to 1/4 of the total unit cell in the
case of a noncollinear configuration. The tetragonal magnetic
unit cell contains ten atoms and the calculations are per-
formed including all basis functions with wave vectors
smaller thanKmax=3.4 a.u.−1, leading to about 95 basis
functions per atom. The convergence of the energies with
respect to these quantities has been carefully checked. The
number ofk points andKmax were chosen in such a way to
ensure convergence of total energy differences to 10−3 eV.
The La 5s and 5p semicore states are treated as valence
states and are described by local orbitals, which are added to
the LAPW basis set. The muffin-tin radii have been set to
2.3 a.u. for all atoms.

To estimate the GMR ratio, i.e., the relative change in the
resistivity as a function of an applied magnetic field, the
conductivities are calculated within the semiclassical Boltz-
mann approach in the relaxation-time approximation.24 As
we are only treating the band contribution to the GMR ratio,
the dependence of the relaxation time onk and spin is ne-
glected, as well as the vertex corrections. In a first approxi-
mation, spin accumulation and interface disorder effects can
be neglected because the present systems are natural multi-
layers with perfect interfaces. The semiclassical Boltzmann
equation is valid only in the low impurity limit, and in the
absence of vertex corrections the conductivity tensor is given
by

si j =
e2

8p2to
ns
E vns

i skdvns
j skdd„ensskd − eF…d

3k. s2d

The indexs denotes spin,n is the band index,eF is the Fermi
energy, andt is the relaxation time assumed to be indepen-
dent of the scattering state and magnetic configuration. To
compute the semiclassical velocities,vns

i , which are the de-

rivatives of the energy with respect toki, vns
i =1/" ]ens/]ki,

we used 2475k points in the IBZ. Equation(2) is computed
by means of the tetrahedron method.25 As a general expres-
sion for the giant magnetoresistance, we use the definition

GMRi =
siisNFd
siisFMd

− 1, − 1, GMR , + `. s3d

With NF we indicate a nonferromagnetic configuration as,
for instance, the AFM case or the noncollinear arrangements
of the magnetic moments of Mn in LaMn2Ge2. If i =z, i.e., if
i is along thec axis of the unit cell, GMRz corresponds to the
current perpendicular to the plane(CPP) GMR; if i is parallel
to the plane of the unit cell, GMRx,y is called current in-plane
(CIP) GMR. Direct or negative GMR is indicated by a nega-
tive value of GMR: otherwise an inverse GMR is observed.
With the approximations listed above made to the relaxation
time, t cancels out from Eq.(3).

III. RESULTS AND DISCUSSION

A. GGA versus LDA for LaMn 2Ge2

Since the computation of conical helical structures is
time-consuming, we decided to do first a preliminary study
of the influence of the exchange-correlation(XC) potential
on the ground-state magnetic configuration. With that pur-
pose in mind, we made a systematic investigation of
LaMn2Ge2. As mentioned in the Introduction, the magnetic
ground state suggested by experiments has a SSDW along
the (001) axis withqz=0.71s2p /cd and a semicone angle of
58° at 2 K. In Fig. 1, the magnetic and atomic structure of
the system is shown.

In a first step, we optimized the lattice parameter of
LaMn2Ge2 within the GGA and the LDA by keeping thec/a
ratio at the experimental value of 2.616 and the internal pa-
rameter of the Ge atoms atz=0.38. Thus, the internal coor-
dinates of the different atoms of the system were kept at the
experimental values. We studied the dependence of the total
energy, corresponding to different magnetic configurations,
as a function of the volume. We considered a collinear fer-
romagnetic alignment(FM) of Mn moments, a configuration
with antiferromagnetic alignments simultaneously in-plane
as well as between the planes(AFM1), and a conical helical
one for which experimental values for theq vector of the
SSDW and for the canting angle have been used. In Figs. 2
and 3, we show the total energy per unit cell with respect to
the energy of the FM configuration at the experimental in-
plane lattice parameter as well as the evolution of the local
Mn magnetic moment,mMn, as a function of the in-plane
lattice parametera. The magnetic moment of all other atoms
in the compound is small compared to the Mn ones, and
therefore the cell magnetic moment per Mn atom is in good
approximation(to 98%) given by the local Mn moment it-
self.

Figure 2 shows the results obtained within the GGA,
given by Perdew and Wang(PW).21 We did further calcula-
tions using the Perdew, Burke, and Ernzerhof(PBE) (Ref.
22) XC potential, but the results obtained are similar to those
depicted here. From Fig. 2, it is seen that within the GGA,
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the AFM1 magnetic structure has the lowest total energy. It
can be seen that within the GGA, the optimized in-plane
lattice parameter, for the AFM1 configuration, is less than
0.6% smaller than the experimental one. For this optimum
in-plane lattice parameter, we have also optimized the inter-
nal coordinates of Ge by force calculations. We found that
the Ge-Mn distance is 1.3% smaller than the experimental
value. At the minimum total energy, the internal Ge coordi-
nates are not significantly different from the experimental
values; we decided to continue the analysis by keeping the
latter values fixed. The magnetic moment per Mn atom at the
optimized volume is 3.14mB, i.e., close to the corresponding
experimental value. However, within the GGA, AFM1 is the
magnetic ground structure, in disagreement with experiment.

The results obtained within the LDA are shown in Fig. 3.
They display that the optimized in-plane lattice parameter,
a0, is 4% smaller than the experimental value. Also the mag-
netic moment per Mn atom at the optimized volume, 2.47mB,
is much smaller than the value observed experimentally. But
within the LDA, the SSDW is the magnetic structure with
the minimum energy. The energy differences between the
different magnetic structures are larger than the computa-
tional error bars. For the SSDW at the optimized lattice con-
stant in the LDA, the total Mn moment is 19% smaller than
the experimental value of 3.06mB, while it is in good agree-
ment s3.00mBd at the experimental volume. With decreasing
volume a crossover to a FM ground state is observed, which
is reasonable since the direct Mn-Mn exchange interaction
for small interatomic distances is ferromagnetic.26 The val-
ues of the magnetic moments of Mn depend strongly on the
in-plane lattice parameter or, in other words, on the Mn-
Mn distance, as pointed out in the Introduction, and this can
be observed in Figs. 2 and 3.

Within the LDA, the SSDW configurations are those with
the lowest energies, giving the proper experimental trends,
while this is not the case within the GGA, for which the
AFM1 structure is the one giving the lowest energy as a
function of the in-plane lattice parameter. This is in line with
the general observation that the GGA tends to increase the
lattice parameters and magnetic moments, but as compared
to the LDA (Ref. 27) it does not necessarily improve the
description of magnetic materials. From this analysis, we
decided to perform further calculations within the local-
density approximation and use the experimental lattice pa-
rameters, both for LaMn2Ge2 and LaMn2Si2, in order to ob-
tain magnetic moments close to the corresponding
experimental values. The obtained results, both within the
GGA and the LDA, are summarized together with the experi-
mental values in Table I.

B. Magnetic properties at experimental volume within the
LDA

1. Canted structures inLaMn 2Ge2 and LaMn 2Si2

For q=0, we optimized, for the germanide as well as for
the silicide, the canting angle assuming ferromagnetic cou-
pling between successive planes along thec axis by keeping
the experimental in-plane AFM coupling. The optimized
canting angleu0 is 65° for LaMn2Ge2 and u0=53° for
LaMn2Si2 (see Figs. 4 and 5). The calculated total magnetic
moments per Mn atom at the optimized canting angles are
3.00mB for LaMn2Ge2 and 2.57mB for LaMn2Si2, both in
fairly good agreement with experiments.12 Although the op-
timized canting angles differ from the experimental ones
(58° and 25° for germanide and silicide, respectively), the
tendency towards an increasing canting when replacing Ge
for Si is well reproduced in the present calculations.

FIG. 3. Same as Fig. 2 but for the LDA.
FIG. 2. Total energy per unit cell and local Mn magnetic mo-

ment of LaMn2Ge2 as a function of the in-plane lattice parametera,
calculated within the GGA. Thec/a ratio was kept at the experi-
mental value of 2.616(Ref. 12). The vertical dashed-dotted line
indicates the experimental equilibrium valuea0.
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In Table II, we compare these results with the energies
obtained for different collinear arrangements. Besides the
FM and AFM1 configurations, we also considered other col-
linear cases, namely, the AFM2 configuration, exhibiting an
in-plane AFM coupling and a FM coupling between the
(001) planes, as well as the AFM3 configuration, consisting
of an in-plane FM coupling and an AFM coupling between
the (001) planes. For LaMn2Si2, the optimized canted mag-
netic arrangement lies lower in energy than any other con-
sidered collinear structure. In the case of LaMn2Ge2, the op-
timized canted structure lies higher in energy than the
collinear AFM2 structure. In Figs. 4 and 5, it is clearly
shown that the value of the magnetic moment of Mn also
depends on the canting angle. Together with its dependence
on the Mn-Mn interatomic distance and on the neighboring

atom type(Si or Ge), this complex behavior of the magnetic
moment is another manifestation of the richness of the mag-
netic interactions in systems containing Mn.

2. Spin spirals inLaMn 2Ge2 and LaMn 2Si2

As seen in the last section, for LaMn2Ge2 a collinear con-
figuration is lower in energy than the canted magnetic struc-
ture. Therefore, we introduced spin spirals withq vectors
along the experimentally observed direction, that iss0,0,qzd,
and studied the evolution of total energy as a function ofqz
for different canting angles. For this system, SSDWs for
three different canting angles,u=58°, 60°, and 65° were
considered. We chose these canting angles because they lie
close to the optimized valueu0 for qz=0. In Fig. 6, this
evolution as a function of the spin-spiral anglea=pqz is
shown. The lowest energy was found for a canting angle
u0=60° and a spin-spiral wave vector ofqz=0.64s2p /cd.

TABLE I. Calculated and experimental equilibrium in-plane lattice parameter,a0, and corresponding local
Mn magnetic moments for different calculated magnetic structures of LaMn2Ge2. (1) Ferromagnetic(FM)
structure(FM coupling in and between planes) corresponding toqz=0 andu=90°. (2) Antiferromagnetic 1
(AFM1) structure(AFM coupling in and between planes) corresponding toqz=2p /c andu=90°. (3) Spiral
spin-density-wave(SSDW) structure calculated at the experimentalqz=0.71s2p /cd and u=58°. The LDA
showed that the SSDW structure is the ground state in good agreement with experiment, while surprisingly
the GGA showed incorrectly that the AFM1 is the ground state. The values ofa0 andmMn for those LDA and
GGA ground states as well as the experimental values are displayed in bold.

LaMn2Ge2 a0 sa.u.d mMnsmBd

FM AFM1 SSDW FM AFM1 SSDW

LDA 7.57 7.65 7.62 1.93 2.62 2.47

GGA 7.76 7.89 7.88 2.20 3.14 3.07

Experimental 7.92 3.06

FIG. 4. Total energy per unit cell of LaMn2Ge2 calculated
within the LDA as a function of the canting angle for the experi-
mental volume andqz=0. The energies are given with respect to the
FM configuration at the experimental volume. FIG. 5. Same as Fig. 4 but for LaMn2Si2.
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The corresponding energy is 41 meV lower than for the
AFM2 structure and is energetically favored over the other
two collinear configurations. This result is in good agreement
with what we obtained above forq=0 and is surprisingly
close to the experimental valuesuexp=58°d. When the SSDW
is introduced, the canting angleu0 that minimizes the total
energy shifts towards a lower value, closer to the experimen-
tal one. The optimum value ofqz, 0.64s2p /cd, is in very
good agreement with the experimental one, 0.71 in the same
units, at 2 K. The magnetic configuration for which thez
component of the Mn moment vanishes, i.e., the flat in-plane
spiral, is energetically disfavored at 0 K. At the experimental
volume, the difference in the total energy between conical
structures and flat spirals is around 52 meV, corresponding
to 600 K. Experimentally, a transition from the conical to an
in-plane helical structure occurs at 322 K. Considering that
thermal fluctuations will bring the transition temperature to a
lower value than what can be expected from total-energy

calculations atT=0 K, the obtained energy differences give
already a rough estimate of the behavior of the magnetic
order at higher temperatures.

In the case of LaMn2Si2, we did a similar study of the
total energy as a function ofqz, now for three canting angles
u=50°, 52°, and 55°. We chose these values taking into ac-
count that without SSDWs, the magnetic arrangement with
minimum energy is given byu0=53° and that the optimum
canting angle does not change appreciably when introducing
the SSDWs. It can be seen from Fig. 7 that, as expected, the
SSDWs lower the energy of the canted structures. Experi-
mentally, this system evolves as a function of temperature
from a conical SSDW to a canted arrangement(below 50 K),
and at higher temperatures(around 315 K) it changes into
the AFM1 structure. The optimizedqz value obtained for
LaMn2Si2 is 0.75 2p /c and the canting angle isu=53.5°. To
determine this last value, we calculated the total energy of an
extra magnetic configuration,u=60°, a=130°, and per-
formed a quadratic interpolation, as is shown in the inset of
Fig. 7. The experimental values are 0.91 2p /c and 25°, re-

TABLE II. Calculated total energy per unit cell relative to the ferromagnetic(FM) structure and local Mn
magnetic moments,mMn, for different magnetic structures(all calculations are performed at the experimental
in-plane lattice parameter). (1) FM structure[FM coupling in and between the(001) planes] corresponding to
qz=0 and u=90°. (2) AFM1 structure(AFM coupling in and between the planes) corresponding toqz

=2p /c and u=90°. (3) AFM2 structure(in-plane AFM coupling and FM coupling between planes) corre-
sponding toqz=0 andu=90°. (4) AFM3 structure(in-plane FM coupling and AFM coupling between the
planes) corresponding toqz=2p /c and u=90°. Forqz=0 and the turning anglea=0, the optimal canting
angleu0 that minimizes the total energy isu0=65° for LaMn2Ge2 andu0=53° for LaMn2Si2, and whena is
allowed to vary, the total energy is minimal foru0=60°,a0=115° for LaMn2Ge2 andu0=53.5°,a0=135° for
LaMn2Si2. The results for these structures are shown in the last two lines of the table. Notice that the value
of qz depends only on whether the coupling between planes is FM or AFM and that bothqz and u are
independent of the nature of the in-plane coupling.

LaMn2Ge2 LaMn2Si2
Configuration Energy(eV) mMn smBd Energy(eV) mMn smBd

FM 0.000 2.33 0.000 2.03

AFM1 −0.441 3.04 0.002 2.69

AFM2 −0.479 3.03 0.001 2.67

AFM3 −0.075 2.33 −0.055 2.08

u0,a=0 −0.476 3.00 −0.096 2.57

u0,a0 −0.520 3.00 −0.179 2.62

FIG. 6. LDA total energy per unit cell of LaMn2Ge2 at the
experimental volume as a function of the spin spiral anglea=pqz

for three different canting anglesu. The energies are given with
respect to the FM configuration at the experimental volume.

FIG. 7. Same as Fig. 6 but for LaMn2Si2. In the inset, details of
the quadratic fitting done fora=130° are shown.
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spectively. Even if the agreement with experiments is less
favorable than in the case of LaMn2Ge2, here the trends are
also obtained, i.e., the equilibrium canting angle for the sili-
cide is smaller than for the germanide, while theqz value is
larger. The larger differences between experimental and cal-
culatedqz and u values for the system containing Si, with

respect to the differences obtained for Ge, can be traced back
to the local moments of Mn,mMn, calculated at the experi-
mental volumes, whose theoretical value reproduces well the
experimental one for LaMn2Ge2 while it is 7.8% larger for
the Si system. Considering that the relevant energy differ-
ences between different collinear structures are about
50 meV, the relevant energy scale for the proper determina-
tion of cone angles lies around 10 meV, and that for the
determination of spin-spiral wave vectors it is about 2 meV,
one understands that a small change of the magnetic moment
could lead to significant energy changes. Actually, given a
canting angle, the magnetic moments do not depend strongly
on theqz value of the SSDW. Even if thermal fluctuations are
certainly going to influence the evolution of the magnetic
structure of LaMn2Si2 with temperature, from Fig. 7 and
Table II it can be seen that starting from the conical SSDW
configuration at very low temperatures, LaMn2Si2 evolves to
a canted magnetic structure, and from there, at higher tem-

TABLE III. Comparison between calculated and experimental
Mn equilibrium magnetic momentsmMn, u0, and qz. Calculations
are done at the experimental lattice parameters.

mMn smBd u0 s+d qzs2p /cd

LaMn2Ge2 Calculated 3.00 60.0 0.64

Experimental 3.06 58.0 0.71

LaMn2Si2 Calculated 2.62 53.5 0.75

Experimental 2.43 25.0 0.91

FIG. 8. (Color online) Charge-
density difference contours(in
electrons 310−3/a.u.3) for (a)
LaMn2Ge2 and (b) LaMn2Si2 in
the (100) plane.
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peratures, to a collinear one. This is exactly what happens
experimentally. In the case of LaMn2Ge2, the situation is not
as clear as the energy differences are smaller. A summary of
the results presented in this subsection is shown in Table III.

C. Dependence of Mn’s magnetic moments on Mn-Mn
intralayer distances and the role of hybridization

We have seen that Mn’s magnetic moment and magnetic
interactions depend on Mn-Mn distances. It is interesting to
find out whether the differences observed between the mag-
netic moments of LaMn2Ge2 and LaMn2Si2 are only related
to their different Mn-Mn distances or if the different hybrid-
ization strengths of these systems do play some role. For this
purpose, we replaced Ge by Si but kept the lattice parameters
of the system fixed at the experimental values of the ger-
manide. For this system, we calculated the FM structure and
obtained a Mn magnetic moment of 2.29mB, while in the

LaMn2Si2 volume it is 2.03mB. The magnetic moment of Mn
in LaMn2Ge2 is 2.33mB. We see thatmMn depends, as ex-
pected, primarily on the Mn-Mn distances, but that a hybrid-
ization effect is also present.

In Figs. 8 and 9, we show charge-density plots in the
(100) plane, from which the corresponding superposition of
atomic charge densities has been subtracted, so that the de-
gree of bonding between the constituent atoms can be ob-
served. Higher values of the difference change densities
mean stronger bonding. La atoms are located at the corners.
In Fig. 9(b), the difference between the bondings in the ger-
manide and in the silicide with the germanide lattice param-
eters is also shown. From these plots it is straightforward to
see that the LaMn2Si2 system in its own structure shows the
largest X-Mn hybridization. However, it is surprising that
LaMn2Si2 exhibits even in the structure of LaMn2Ge2 a
larger X-Mn hybridization than LaMn2Ge2. It is due to this

FIG. 9. (Color online) (a)
Charge density difference contour
plots (in electrons310−3/a.u.3)
of LaMn2Si2 in the LaMn2Ge2’s
structure in the(100) plane. (b)
Difference between LaMn2Si2 in
LaMn2Ge2’s structure [Fig. 9(a)]
and LaMn2Ge2 [Fig. 8(a)].
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extra hybridization in the case of LaMn2Si2 that mMn is
smaller than expected.

D. Transport properties of LaMn 2Ge2

LaMn2Ge2 has been reported to have an inverse magne-
toresistance at low temperatures.13 In the presence of a mag-
netic field of 70 kOe, the value of the magnetoresistance
increases to an unusually large value at 4.2 K. The large
absolute value of the GMR obtained is typical for artificial
multilayers, which generally show direct GMR coefficients.
The origin of this inverse GMR is, so far, not understood. In
a previous work, we calculated the band contribution to the
GMR within the semiclassical Boltzmann approximation
performing a fixed-spin-moment calculation, that is, con-
straining the average magnetic moment per Mn atom to be
equal to the experimental value.28 For the average canted
configuration, we obtained a small inverse CPP-GMR in the
z direction. We present here the results obtained when non-
collinearity is explicitly taken into account in the electronic
structure calculations. In Fig. 10, we show the evolution of
the band contribution to the GMR as defined in Eq.(3) as a
function of the canting angleu, for systems withqz=0, con-
sidering that the relaxation time for the FM and for the
non-FM configurations is the same. We find that the band
contribution to the GMR is always direct, in opposition to
the experimental observation of an inverse GMR. Thus, the
experimental behavior cannot be attributed to the bands. Ap-
plying an external magnetic fieldH in the z direction, the
canting angle decreases with increasingH. Since the differ-
ence in energy between the conical SSDW and the FM struc-
tures at the experimental volume is very large, around
500 meV(Fig. 3), extremely large magnetic fields would be
needed to align the magnetic moments of this system. This is
exactly what is being observed in the experiments,13 as the
value of the GMR does not saturate even at 70 kOe. The
applied field can induce spin fluctuations of lower energy,
which should give rise to scattering effects and thereafter to
growing resistivities. These scattering effects should go into
the relaxation timest in Eq. (2), which might become
smaller with increasing alignment of the magnetic moments
(increasing value ofH). This mechanism had already been
suggested by Mallik13 as one of the possible explanations for

the observed behaviors. Even if for the silicides the energy
difference between the FM state and the conical SSDW is
smaller than for the germanides, it is still sufficiently large to
be able to excite lower-energy SSDW’s. Also in this case, the
GMR is expected to be inverse and increasing with increas-
ing field.

IV. CONCLUSIONS

In this contribution, we have undertaken a systematic
study for two systems belonging to the family of intermetal-
lic compoundsRMn2X2, which exhibit a rich variety of mag-
netic behaviors, typical of systems containing rare earth at-
oms and manganese. The calculations are performed by
means of theFLEUR code within the LDA and the GGA
approximations to the DFT for the exchange-correlation po-
tential. We have selected two systems, LaMn2Ge2 and
LaMn2Si2, in which the interplay and competition of differ-
ent interactions give rise to conical helical magnetic arrange-
ments of the magnetic moments of the Mn atoms at low
temperatures.

Our first-principles total energy calculations show that the
GGA overestimates the stability of the collinear antiferro-
magnetic structure and fails to reproduce the correct mag-
netic ground state. The LDA fails to reproduce the proper
equilibrium lattice constants by 4%. We speculate that the
on-site correlation of Mn is underestimated by both approxi-
mations. However, performing the calculations within the
LDA approximation at the experimental lattice parameters,
the experimental trends shown by these systems are well
reproduced and the correct magnetic ground states are ob-
tained for both systems.

We have shown that not only are Mn-Mn distances im-
portant for the determination of the ground-state magnetic
configuration, but that also the hybridization between Mn
and Si or Ge plays an important role. We found that the
smaller lattice constant of the silicide leads to a stronger
Mn-Mn hybridization, resulting in a smaller local Mn mo-
ment and stronger dependencies of the magnetic moment and
the total energy on the cone angle, when compared to the
germanide.

We have also shown that the GMR of these systems is
highly dependent on the canting angle, but that the band
contribution by itself cannot explain the large inverse GMR
values which grow with the applied magnetic field and which
are still not saturated forH=70 kOe. We argue that this
growing inverse GMR has its origin in the large amount of
noncollinear configurations with energies close to the ground
state, which can be easily excited with the applied fields and
which should give rise to a growing magnetic disorder. The
fact that the difference in energy between SSDW configura-
tions and collinear ones is very large is the reason why the
GMR does not saturate in the experiments,13 as the FM case
is never reached with the applied magnetic fields.
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