001     41398
005     20180210133059.0
024 7 _ |2 WOS
|a WOS:000227469200007
037 _ _ |a PreJuSER-41398
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Soil Science
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Schmalholz, J.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Imaging of water content distributions inside a lysimeter using GPR tomography
260 _ _ |a Madison, Wis.
|b SSSA
|c 2004
300 _ _ |a 1106 - 1115
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Vadose Zone Journal
|x 1539-1663
|0 10301
|v 3
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a In a study to investigate water content distributions inside a lysimeter in a noninvasive manner, we used ground penetrating radar (GPR) tomography. Our main objective was to evaluate the temporal changes and spatial distributions of the volumetric water content after a short but intensive irrigation of part of the lysimeter. High frequency GPR antennas of 1-GHz nominal frequency were used because of the small dimensions of the investigated lysimeter (cylinder of 1.5-m and 1.2-m diameter) and the desired spatial resolution in the range of decimeters. To ensure a relatively steady distribution of water inside the lysimeter for the time-consuming tomographic survey, simple parallel transmission measurements were used to track the water dynamics. Water contents and water content changes were calculated by means of a mixing formula describing the relation between electromagnetic wave propagation velocity and the water content. The transmission measurements indicate a diffusive process following the irrigation for a duration of several hours. The tomographic measurements clearly show the area of increased water content associated with the irrigation.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Stoffregen, H.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Kemna, A.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB736
700 1 _ |a Yaramanci, U.
|b 3
|0 P:(DE-HGF)0
773 _ _ |g Vol. 3, p. 1106 - 1115
|p 1106 - 1115
|q 3<1106 - 1115
|0 PERI:(DE-600)2088189-7
|t Vadose zone journal
|v 3
|y 2004
|x 1539-1663
909 C O |o oai:juser.fz-juelich.de:41398
|p VDB
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-IV
|l Agrosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB50
|x 0
970 _ _ |a VDB:(DE-Juel1)57086
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21