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Using an algorithm for simulating equilibrium configurations, we study a fluctuating helical polymer either
(i) contained in a cylindrical pore or(ii ) wound around a cylindrical rod. We work in the regime where both the
contour length and the persistence length of the helical polymer are much larger than the diameter of the
cylinder. In case(i) we calculate the free energy of confinement and interpret it in terms of a wormlike chain
in a pore with an effective diameter that depends on the parameters of the helix. In case(ii ) we consider the
possibility that one end of the helical polymer escapes from the rod and wanders away. The average numbers
of turns at which the helix escapes or intersects the rod are measured in the simulations, as a function of the
pitch p0. The behavior for large and smallp0 is explained with simple scaling arguments.
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I. INTRODUCTION

In this paper we study some of the equilibrium statistical
properties of a confined helical or ribbonlike polymer. The
cases of(i) a polymer contained in a cylindrical pore and(ii )
a polymer wound around a cylindrical rod are considered.
Some motivation is provided by the following observations:

Biological polymers differ from synthetic polymers in that
they are semiflexible, with a persistence length much larger
than the monomer size, and usually have a helical structure.
This is well known for DNA, but F-actin also has a double-
helical structure, while microtubuli are helical cylinders. The
diameter of these biological polymers is in the range of
1–25 nm. Polymeric helical structures are also found in self-
assembling systems, consisting of either amphiphiles or pep-
tides. In some cases the diameters and pitch lengths are much
larger than for the biopolymers mentioned above.

In amphiphilic systems the formation of helical ribbons
has been observed in multicomponent mixtures of a bile salt
or some other nonionic surfactant, phosphatidylcholine or a
fatty acid, and a steroid analog of cholesterol[1,2]. The rib-
bons have typical diameters in the range of 5–20mm and
pitch angles between 10° and 60°. Other examples are
ethanolic/water solutions of diacetylenic phospholipids, in
which the formation of hollow tubules of diameter 0.6mm
and typical lengths of 10–100mm has been observed[3–6].
Helically coiled phospholipid-bilayer ribbons appear as
metastable intermediates in the growth of these tubules.

Other systems, which show spontaneous assembly of rib-
bons, are aqueous solutions of peptides[7–10]. Depending
on the solution conditions, the same peptide exists in differ-
ent conformations, such as random coils,a-helices, or
b-sheets. At not too low peptide concentrations, the mol-
ecules self-assemble into longb-sheet structures which form
twisted ribbons(with a straight central axis). The width of
these ribbons is about 4 nm, and their length is of the order
of 500 nm[9,10]. These ribbons can aggregate due to face-
to-face attraction into twisted fibrils of a thickness of
8–10mm.

Interestingly, in a self-assembling system of gemini sur-
factants(two surfactant molecules covalently linked at their

charged head group), the degree of twist and the pitch of the
micrometer-scale ribbons have been found to be tunable by
the introduction of opposite-handed chiral counterions[11].

The confinement of polymers in cylindrical tubes is one
of the classical problems in polymer physics. For biological
polymers, such a confinement occurs, for example, when vi-
ral DNA of a bacteriophage squeezes through the narrow tail
during DNA injection. Technological advances in the ma-
nipulation of single molecules in microfluidic and nanoflu-
idic devices[12,13] have fueled interest in the structure and
dynamics of biological polymers in confined geometries
[14].

Helical and twisted ribbons can be confined not only by
external walls, but also by winding around each other, as in
the fibril formation of twistedb-sheet peptides mentioned
above. The simple model we consider, consisting of a helical
wound around a thin cylinder, is a step in this direction but
leaves out some important physical features, such as the
face-to-face attraction in the fibrils.

II. FREE ENERGY OF CONFINEMENT

The free energyDF of confinement of a fluctuating poly-
mer of contour length, in a cylindrical pore of diameterD is
defined by

exps− DF/kBTd =
ZsD,,d
Zs`,,d

= ps,d. s1d

Here ZsD ,,d and Zs` ,,d are the partition functions of the
polymer with one end fixed in the presence and absence of
the cylindrical confining geometry, respectively. The quantity
DF represents the work required to squeeze the polymer re-
versibly into the cylindrical pore. It may be evaluated in
simulations by generating polymer configurations with one
fixed end in an infinite volume with the Boltzmann probabil-
ity, computing the fractionps,d of the configurations of arc
length , which lie entirely within a cylindrical domain of
diameterD, and making use of Eq.(1).
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For a flexible, self-avoiding polymer with vanishing bend-
ing rigidity, DF is purely entropic. The confinement of such
a polymer in a cylindrical pore is considered in Refs.
[15–17].

In the wormlike chain model of a semiflexible polymer,
the polymer is represented by an inextensible line or filament
r ssd with contour length, and elastic energy

Eworm =
k

2
E

0

, Sdt3

ds
D2

ds. s2d

Heres specifies distance along the contour,t3=dr /ds is the
unit tangent vector,k is the bending rigidity, andP=k /kBT is
the the persistence length. In the narrow-pore, long-polymer
limit D! P!,, the polymer is almost a straight line; i.e., the
angle between the tangent vectort3 and thez axis or sym-
metry axis of the cylinder is a small quantity. In this case the
right-hand side of Eq.(1) decays as

ps,d , e−E0, s3d

for large,, where exps−E0dzd is the largest eigenvalue of the
transfer matrix of a slice of the system of thicknessdz. The
quantityE0

−1 represents a typical contour length at which the
configurations intersect the pore wall. According to Eqs.(1)
and (3) the confinement free energy per unit lengthDf
=DF /, is given by

Df

kBT
= E0sP,Dd =

As

P1/3D2/3, s4d

where the dependence onP andD follows from simple scal-
ing or dimensional arguments[18–20]. Similarly, for a pore
with a rectangular cross section with edgesL1,L2! P,

Df

kBT
= E0sP,L1,L2d =

Ah

P1/3S 1

L1
2/3 +

1

L2
2/3D . s5d

The quantitiesAs andAh on the right-hand sides of Eqs.(4)
and (5) are dimensionless universal numbersAs and Ah,
which are the same for all wormlike chains.

The predictionAh=1.1036 was obtained in Ref.[20] by
solving an integral equation numerically which arises in an
exact analytical approach. Measuring the probabilityps,d in
Eq. (3) in simulations, fitting the large-, behavior with the
exponential form(3), and making use of Eqs.(4) and (5),
Bicout and Burkhardt[21] estimated

As = 2.375 ± 0.013, Ah = 1.108 ± 0.013. s6d

An earlier estimate from simulations,As=2.46±0.07, was
given by Dijkstraet al. [19].

III. HELICAL POLYMER MODEL

In this paper we generalize the above results to helical
polymers or chiral ribbons, which have spontaneous curva-
ture and torsion. Again the polymer is replaced by a curve
r ssd of fixed contour lengthS. To each point on the line a
right-handed triad of unit vectorst1ssd ,t2ssd ,t3ssd is as-
signed, wheret3=dr /ds is the tangent vector andt1, t2 cor-
respond to principal axes of the polymer cross section. The

rotation of the triad along the curve is governed by the gen-
eralized Frenet equations[22–24]

dt i

ds
= v 3 t i, v = t1v1 + t2v2 + t3v3, s7d

or

dt i

ds
= o

j ,k
ei jkt jvk. s8d

The elastic energy is given by[22–24]

Ehelix =
1

2o
j=1

3

bjE
0

S
dsfv jssd − v0jssdg2, s9d

where the coefficientb1 and b2 are bending rigidities along
the principal axes of the cross section, andb3 is the twist
rigidity. The parametersv jssd andv0jssd determine the cur-
vatures and torsions in the deformed and stress-free states of
the polymer, respectively. Since the energy is quadratic in the
deviationsdv j =v j −v0j, the distribution ofdv j is Gaussian,
with zero mean and second moment:

kdvissddv jss8dl =
kBT

bi
di jdss− s8d. s10d

We restrict our attention to the casev0jssd=const, corre-
sponding to a helical polymer with spontaneous curvature
and torsion but without spontaneous twist. In the absence of
fluctuations—i.e., in the limitb1=b2=b3=`—the Frenet
equations are readily solved[25], yielding

r ssd = r s0d +
1

v0
Ht3s0dsinsv0sd + es0dv03Fs−

sinsv0sd
v0

G
+ es0d 3 t3s0df1 − cossv0sdgJ , s11d

where

essd = t1ssd
v01

v0
+ t2ssd

v02

v0
+ t3ssd

v03

v0
,

v0 = sv01
2 + v02

2 + v03
2 d1/2. s12d

Equation(11) represents a helix with radiusr0 and pitchp0,
where

r0 =
sv01

2 + v02
2 d1/2

v0
2 , p0 = 2p

v03

v0
2 , s13d

winding around an axis pointing in the direction of the unit
vectores0d.

Including Gaussian fluctuations according to Eq.(10),
Panyukov and Rabin[22,23] showed that

kt issd · t js0dl = se−Gsdi j , s14d

whereG is the matrix with elements
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Gi j =
1

2
kBTSo

k

bk
−1 − bi

−1Ddi j − o
k

ei jkv0k. s15d

The two-point correlation function of the unit vectoressd in
Eq. (12), which is directed along the axis of the helix, fol-
lows from this result. In the special caseb=b1=b2=b3 con-
sidered in our simulations,

kessd ·es0dl = e−s/Lp, Lp =
b

kBT
, s16d

whereLp is the persistence length.

IV. SIMULATIONS

Following Kats et al. [24], we replace the differential
equations(8) by the difference equations

tikss+ dsd = o
j

Oij t jkssd s17d

in our simulations. Heretik denotes thekth component oft i
with respect to a fixed Cartesian coordinate system,O is the
orthogonal matrix,

O = S1 +
1

2
A dsDS1 −

1

2
A dsD−1

, s18d

and A is the antisymmetric matrix with elementsAij
=okei jkvk. The difference equations are consistent with the
Frenet equations(8) to first order inds, and the orthogonality
of the matrixO preserves the orthonormality of thet i in the
simulations.

For simplicity we setb=b1=b2=b3, corresponding to Eq.
(16). In accordance with Eq.(10), thedv jssd are chosen ran-
domly from a Gaussian distribution with zero mean and stan-
dard deviationskBT/bdsd1/2, whereds!Lp=b/kBT.

V. HELICAL POLYMER IN A CYLINDRICAL PORE

We have determined the confinement free energy of a he-
lical polymer fluctuating in a narrow cylindrical pore from
simulations. Cylinders with both circular and square cross
sections were considered, and we use the same symbolD for
the diameter and edge, respectively. The symmetry axis of
the cylinder defines thez axis of our fixed coordinate system.

The helical polymer was generated step by step using
the numerical procedure described in the preceding section.
The radiusr0 and pitch p0 were set to desired values by
choosingv01, v03 in Eq. (13) appropriately, withv02=0.
The starting point was chosen randomly, apart from the
requirements that the stress-free helix fit inside the cylinder,
with its axis parallel to thez axis. This is the case for the
initial vectors t1s0d=sv03/v0,0 ,v01/v0d, t2s0d=s0,1,0d,
and t3s0d=s−v01/v0,0 ,v03/v0d, which were used. The
other simulation parameters wereds=10−4, D=1, and
Lp=b1/kBT=b2/kBT=b3/kBT=8000. Clearly ds!D!Lp.
The pore is narrow in comparison with the persistence
length, andds is small in order to approximate the con-
tinuum model(7).

To obtain the free energy of confinement of the helical
polymer, we proceeded as discussed below Eq.(1), generat-
ing many polymer configurations and computing the prob-
ability Psnd that the polymer has not yet intersected the pore
wall [26] aftern steps of the algorithm. The determination of
Psnd was based on 50 000 independent helices. For largen
an exponential decay

Psnd , e−l0n, s19d

similar to the result(3) for semiflexible polymers, is ex-
pected. According to Eq.(1), the free energy of confinement
per unit length along the axis of the helix is given by

Df

kBT
=

l0

jds
, j =

p0

fp0
2 + s2pr0d2g1/2. s20d

Here we use the relation,=js between the contour lengths
and the corresponding length, along the axis of the helix.
The persistence lengthLp, defined with respect to the contour
length as in Eq.(16), and the corresponding persistence
lengthP, defined with respect to length along the axis of the
helix, also satisfyP=jLp.

A helical polymer with persistence lengthLp in a pore
with diameterD!Lp has the same confinement free energy
as a semiflexible polymer with persistence lengthP=jLp in a
pore with effective diameterDeff. To defineDeff quantita-
tively, we equate the free energies of confinement(4) and
(20), obtaining

As

Deff
2/3 =

sjLpd1/3

jds
l0,

Ah

Deff
2/3 =

sjLpd1/3

2jds
l0. s21d

The probabilityPsnd for r0=p0=0.3, with the other simu-
lation parameters noted above, is shown in Fig. 1. The data
are in good agreement with the exponential decay(19), and

FIG. 1. ProbabilityPsnd that a helical polymer with radiusr0

=0.3. pitchp0=0.3, and persistence lengthLp=8000 in a cylindrical
pore does not intersect the pore wall in the firstn steps of the
algorithm. The solid circles(P) correspond to a pore with a circular
cross section with diameterD=1 and the triangles(n) to a square
cross section with edge lengthD=1. Fitting the data to Eq.(19) for
large n yields l0=6.57310−6 and 6.01310−6, respectively. The
solid line corresponds to the exact exponential decaye−l0n.
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the values ofl0 are given in the figure caption. As in the case
of a semiflexible polymer[21], the curvesPsnd for the cir-
cular and square cylinders practically coincide when plotted
versusl0n instead ofn.

For the exponential decay(19), the mean number of steps
of the algorithm at which the polymer intersects the wall
equalsl0

−1, corresponding toNi =jds/ sp0l0d turns of the he-
lix. The values ofl0 in the caption of Fig. 1 yieldNi =8.0
and 8.7 for the circular and square cross sections. Since the
number of turns before intersecting the wall is fairly large,
the helix should be equivalent to a wormlike chain in a pore
of width Deff=D−2r0. To check the equivalence quantita-
tively, we use Eq.(21) with Deff=D−2r0 and the values ofl0
in the caption of Fig. 1 to predict the amplitudesAs, Ah.
This yields

As = 2.45 ± 0.05, Ah = 1.12 ± 0.04, s22d

in good agreement with the results(6) for semiflexible poly-
mers[27].

We have also studied the dependence ofDeff on the poly-
mer pitchp0, keeping the radiusr0 and the persistence length
Lp constant. For smallp0 the polymer makes many turns
before intersecting the wall and is equivalent to a semiflex-
ible polymer in a pore of diameterD−2r0, as discussed in
the preceding paragraph. In the limitp0→`, the helical
polymer does not make any turns before intersecting the wall
and corresponds to a semiflexible polymer in a pore of di-
ameterD. As p0 increases from 0 tò , Deff is expected to
vary monotonically between these two limiting values.

For various values ofp0 we have computed the probabil-
ity Psnd that a helical polymer with radiusr0=0.3, persis-
tence lengthLp=8000, and contour lengthnds in a cylindri-
cal pore with a circular cross section of diameterD=1 does
not intersect the wall. The correspondingl0 was obtained
from an exponential fit(19) for large n. Finally Deff was
calculated using Eq.(21) and the best estimate(6) for As.
The results are shown in Fig. 2. The data do indeed interpo-
late between the expected limiting valuesD−2r0=0.4 and
D=1 for small and largep0, respectively.

The crossover region in Fig. 2, whereDeff varies most
rapidly with p0, is aroundp0<40, Deff<0.7. According to
Eqs.(3), (4), and(20), these values ofp0 andDeff correspond
to Ni =sjLpd1/3Deff

2/3/ sAsp0d<0.2 turns of the helix before in-
tersecting the wall.

VI. HELICAL POLYMER ENCIRCLING
A CYLINDRICAL ROD

In this section we consider a helical polymer wound
around a long cylindrical rod with a circular cross section
and diameterD!Lp. We study the possibility that the poly-
mer generated in the simulation escapes from the rod asn
increases and wanders away.

In the simulations the parametersds=10−4 and b1/kBT
=b2/kBT=b3/kBT=Lp=8000 were the same as in the preced-
ing section. The diameter of the rod wasD=0.2, and the
radius of the helix wasr0=0.3. For these parametersds
!D,2r0!Lp. The starting point of the polymer was chosen
randomly, apart from the requirements that the stress-free

helix wind around the cylindrical rod without touching it,
with the axis of the helix parallel to the rod.

From the simulation data we computed the probability
Psnd that aftern steps the polymer has not yet intersected the
rod [26]. Each curvePsnd is based on 10 000 independent
helices. The results for three different values of the pitchp0
are shown in Fig. 3. Unlike the case of a polymer in a cylin-
drical pore, shown in Fig. 1,Psnd does not decay to zero as
n increases. Instead, above a characteristic value which de-
pends on the pitch, the curve flattens and approaches a non-
zero limiting value. This is because the polymer generated in
the simulation sometimes escapes from the rod, due to a
sufficiently large fluctuation, and wanders away asn in-
creases, without ever returning to intersect the rod.

FIG. 2. The effective diameterDeff as a function of the pitchp0

for a helical polymer with radiusr0=0.3 and persistence length
Lp=8000 in a cylindrical pore with a circular cross section with
diameterD=1. The data interpolate between the limiting values
D−2r0=0.4 andD=1 for small and largep0, respectively.

FIG. 3. ProbabilityPsnd that a helical polymer with radiusr0

=0.3 and persistence lengthLp=8000, wound at the fixed end
around a cylindrical rod of diameterD=0.2, does not intersect the
rod in the firstn steps of the algorithm. The pitch of the helix is
p0=10, (P) 30 (n), and 100(s).
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A simple theory of the escape, which suggestsPsnd=A
+Be−Cn, in qualitative consistency with Fig. 3, is given in the
Appendix.

We determined the average number of turns at which the
helix escapes from the rod or intersects it by making two
checks after each step of the growth algorithm:(i) If the
distance of the end pointr ssd from the axis of the rod is less
than D /2, the polymer has intersected the rod.(ii ) If the
distance of the endpointr axisssd of the axis of the helix is
greater thanr0+D /2, the circular cross section of the helix
no longer encircles the rod; i.e., the helix has escaped. Geo-
metrically r axisssd is determined as follows: Since the unit
vectorst3ssd and essd are tangent to the helix and directed
along its axis, respectively,essd3 t3ssd is directed perpen-
dicularly from the pointr ssd on the helix contour toward the
corresponding pointr axisssd on the axis of the helix. Thus,

r axisssd = r ssd + r0
essd 3 t3ssd
uessd 3 t3ssdu

= r ssd + t1ssd
v02

v0
2 − t2ssd

v01

v0
2 ,

s23d

where we have used Eqs.(12) and (13).
In Fig. 4 the average numbers of turnsNe

1, Ne
2 at which the

helix escapes from the rod and the average number of turns
Ni at which the helix intersects the rod are shown as func-
tions of p0. For each value ofp0, 10 000 independent con-
figurations were generated. Each configuration was contin-
ued until it intersected the rod[26] or the number of steps of
the algorithm exceeded 53106, whichever came first. The
averageNe

1 is based on all configurations which escape, in-
dependent of whether they return to intersect the rod or not.
The quantityNe

2 is the average value for only those configu-

rations which escape and in 53106 steps of the algorithm
still have not intersected the rod.

For p0ø1 the probability of the polymer escaping from
the rod is so small thatNe

1,2 could not be determined reliably
with configurations of 53106 steps. For largerp0, the data
for Ne

1 andNe
2 practically coincide, indicating that the poly-

mer rarely returns to intersect the cylinder once it has es-
caped. The data are in excellent agreement withNe

1,2, Ni
,p0

−1 for large p0 and Ni ,p0
−2/3 for small p0. These power

laws may be understood as follows.
The transverse fluctuations of the endpoint of the axis of

an unconfinedhelical polymer of length, and persistence
lengthP about the corresponding endpoint of the unstressed
helix are readily calculated from Eq.(16) and given by[28]

kr'
2 l =

2

3

,3

P
s24d

for ,! P. Here both,=js and P=jLp are measured along
the axis of the helix, as discussed below Eq.(20). Equation
(24) also applies to the wormlike chain. Apart from the factor
2/3, Eq. (24) follows from simple scaling or dimensional
arguments[18–20]. The powers ofr', ,, andP in Eq. (24)
are also consistent withE0,,1 andr',D in Eqs. (3) and
(4).

Replacingr' in Eq. (24) by r0+D /2=0.4, as in the simu-
lations, and solving forNe=, /p0 yields the estimate

Ne =
12

p0
2/3sp0

2 + 3.6d1/6 s25d

for the number of turns of the helix at which the typical
transverse displacement equals the value needed for escape
from the rod. Roughly speaking, the polymer wrapped
around the rod escapes inNe turns, as given by Eq.(25) for
Ne&1—i.e., p0*12. For smallerp0, the typical transverse
fluctuations in a single turn of the helix are too small for
escape from the rod, and the helix is more likely to intersect
the rod than to escape. Equation(25), which ignores this
possibility, no longer applies. As noted above, forp0,1 the
escape probability is too small for a reliable determination of
Ne

1,2 with configurations of 53106 steps.
In the regionNe&1—i.e.,p0*12, Eq.(25), which corre-

sponds to the solid curve in Fig. 4, is in good quantitative
agreement with the simulation data forNe

1,2. For largep0,
Ne<12/p0. The coefficient 12 is an order-of-magnitude es-
timate that happens to give a good fit to the simulation data,
whereas the power lawNe,p0

−1 for large p0 is exact. An
argument based on Eq.(24) similar to the one forNe predicts
Ni ,p0

−1 for large p0, in excellent agreement with Fig. 4.
Note that the data points forNe

1,2 andNi practically coincide.
Since the possibility of escape is negligible for smallp0,

the helical polymer is equivalent to a wormlike chain in a
pore with diameterDeff=2r0−D. To estimate the average
number of turns,Ni, at which the polymer intersects the rod,
we replaceD by Deff in Eqs. (3) and (4) and solve for the
typical intersection length,<E0

−1. This yields,, P1/3. Sub-
stituting r',Deff in Eq. (24) and solving for, leads to the
same result. According to the discussion below Eq.(20), P
=jLp<Lpsp0/2pr0d for p0! r0. Keeping track of the powers

FIG. 4. Average numbers of turnsNe
1 (n), Ne

2 (P) at which the
helix escapes from the rod and the average number of turnsNi (s)
at which the helix intersects the rod as a function ofp0. HereNe

1 is
based on all the configurations which escape, independent of
whether they return to intersect the rod or not;Ne

2 is based on the
configurations which escape and in 53106 steps of the algorithm
do not return to intersect the rod. The dashed lines on the left and
right have slopes −2/3 and −1, respectively, and the solid line
shows the prediction(25).
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of p0, we obtain the power lawNi =, /p0,p0
−2/3 for smallp0,

in excellent agreement with the simulation data in Fig. 4.
In Fig. 5 the fractionsfe

1, fe
2, and f i of the 10 000 configu-

rations which contribute toNe
1, Ne

2, and Ni in Fig. 4 are
shown as functions ofp0. For p0&1, fe

1,2<0 and f i <1; i.e.,
almost all the configurations intersect the cylinder and never
escape. Aroundp0<10 the curves cross, and for largerp0 the
polymer is more likely to escape than to intersect the rod.

VII. CONCLUDING REMARKS

We have studied some statistical properties of a helical
polymer in cylindrical restrictive geometries of diameterD,
in the limit that the persistence lengthP along the axis of the
helix is large in comparison withD and the radiusr0 of the
helix. In this limit the helical polymer has much in common
with the wormlike chain. We interpret the simulation data for
the free energy of confinement in a cylindrical pore using the
scaling form (4) for a wormlike chain in a pore, with an
effective diameterDeff that is renormalized by the helical
structure. As the pitchp0 of the helix increases from 0 tò,
Deff increases monotonically fromD−2r0 to D, as shown in
Fig. 2.

Thinking in terms of a wormlike chain also proves useful
in connection with the escape of the helical polymer encir-
cling a cylindrical rod. In the limitP@ r0 the transverse fluc-
tuations of the axis of the helix are given by the same result
(24) as for the wormlike chain. Asp0 increases, the typical
transverse displacement in one turn of the helix also in-
creases, resulting in a greater probability per turn of escape.
We have used Eq.(24) to estimate the average number of
turns at which the helix escapes from the rod or intersects it.
The simulation data in Fig. 4 are in excellent agreement with
the predicted asymptotic formsNe, Ni ,p0

−1, Ni ,p0
−2/3 for

large and smallp0, respectively.
It would be interesting to include an attractive interaction

between the rod and polymer wound around it. In the fibril

formation mentioned in the Introduction, the attraction is an
essential ingredient.

ACKNOWLEDGMENTS

A.L. and T.W.B. thank Gerhard Gompper and co-workers
for hospitality at the Forschungszentrum Jülich. G.G. ac-
knowledges the hospitality of the Aspen Center for Physics
during the final stages of this work.

APPENDIX: SIMPLE THEORY OF ESCAPE
OF A POLYMER

Let us definePN
ne as the probability that the polymer has

neither intersected the cylindrical surface of the rod nor es-
caped in the firstN turns of the helix andPN

e as the probabil-
ity that it has not yet intersected the cylindrical surface but
that it has escaped. Treating each turn of the helix as statis-
tically independent, we denote the probability that a polymer
which has not yet escaped does escape in the next turn byq
and the probability that it neither escapes nor intersects the
rod in the next turn byp. (The third possibility—that it in-
tersects the rod in the next turn—has probability 1−q−p.) In
addition we assume that once the polymer escapes, it never
intersects the rod.

These assumptions imply the recurrence relations

PN+1
ne = pPN

ne, sA1d

PN+1
e = qPN

ne+ PN
e , sA2d

with initial conditionsP0
ne=1, P0

e=0. Writing down the first
few iterates, it is easy to see that

PN
ne= pN, sA3d

PN
e = q

1 − pN

1 − p
. sA4d

The probability PN=PN
ne+PN

e that the polymer has not yet
intersected the rod afterN steps is analogous toPsnd in Sec.
V. From Eqs.(A3) and (A4),

PN =
q

1 − p
+

1 − p − q

1 − p
pN. sA5d

Thus, asN increases,PN decays exponentially fromP0=1 to
P`=q/ s1−pd. The mean number of turnsNe at which escape
occurs is given by

Ne =

o
N=1

`

NfPN
e − PN−1

e g

o
N=1

`

fPN
e − PN−1

e g

=
1

1 − p
. sA6d

An analogous calculation for the mean number of turnsNi at
which the polymer insects the rod yieldsNi =Ne.

This theory is obviously an oversimplification, but the
form (A5) of the decay,PN=A+Be−CN, is qualitatively con-
sistent with Fig. 3.

FIG. 5. Fractionsfe
1 (n), fe

2 (P), and f i (s) of the 10 000 con-
figurations which contribute toNe

1, Ne
2, andNi in Fig. 4, as a func-

tion of p0.
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