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Helical polymer in cylindrical confining geometries
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Using an algorithm for simulating equilibrium configurations, we study a fluctuating helical polymer either
(i) contained in a cylindrical pore @ii) wound around a cylindrical rod. We work in the regime where both the
contour length and the persistence length of the helical polymer are much larger than the diameter of the
cylinder. In casdi) we calculate the free energy of confinement and interpret it in terms of a wormlike chain
in a pore with an effective diameter that depends on the parameters of the helix. Ifi caseconsider the
possibility that one end of the helical polymer escapes from the rod and wanders away. The average numbers
of turns at which the helix escapes or intersects the rod are measured in the simulations, as a function of the
pitch pg. The behavior for large and smad} is explained with simple scaling arguments.
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I. INTRODUCTION charged head grogpthe degree of twist and the pitch of the
In this paper we study some of the equilibrium statisticaiMmicrometer-scale ribbons have been found to be tunable by

properties of a confined helical or ribbonlike polymer. Thethe introduction of opposite-handed chiral counteriftt.
cases ofi) a polymer contained in a cylindrical pore afig The confinement of polymers in cylindrical tubes is one
a polymer wound around a cylindrical rod are consideredof the classical problems in polymer physics. For biological
Some motivation is provided by the following observations:polymers, such a confinement occurs, for example, when vi-
Biological polymers differ from synthetic polymers in that ral DNA of a bacteriophage squeezes through the narrow tail
they are semiflexible, with a persistence length much largeduring DNA injection. Technological advances in the ma-
than the monomer size, and usually have a helical structuraipulation of single molecules in microfluidic and nanoflu-
This is well known for DNA, but F-actin also has a double- idic devices[12,13 have fueled interest in the structure and
helical structure, while microtubuli are helical cylinders. Thedynamics of biological polymers in confined geometries
diameter of these biological polymers is in the range of[14].
1-25 nm. Polymeric helical structures are also found in self- Helical and twisted ribbons can be confined not on|y by
assembling systems, consisting of either amphiphiles or pegexternal walls, but also by winding around each other, as in
tides. In some cases the diameters and pitch lengths are mugde fipril formation of twistedg-sheet peptides mentioned
larger than for the biopolymers mentioned above. above. The simple model we consider, consisting of a helical
In amphiphilic systems the formation of helical ribbons 5 nq around a thin cylinder, is a step in this direction but

has been observed_ in.multicomponent mixturgs ofa.bile Saﬂaaves out some important physical features, such as the
or some other nonionic surfactant, phosphatidylcholine or 3ace-to-face attraction in the fibrils K

fatty acid, and a steroid analog of cholestdibP]. The rib-
bons have typical diameters in the range of 5420 and
pitch angles between 10° and 60°. Other examples are
ethanolic/water solutions of diacetylenic phospholipids, in
which the formation of hollow tubules of diameter Qufin The free energyAF of confinement of a fluctuating poly-
and typical lengths of 10—10@m has been observg8—6.  mer of contour lengttf in a cylindrical pore of diameteD is
Helically coiled phospholipid-bilayer ribbons appear asgefined by
metastable intermediates in the growth of these tubules.

Other systems, which show spontaneous assembly of rib- Z(D,0) _
bons, are aqueous solutions of peptifiés1(. Depending Z(e0,6)
on the solution conditions, the same peptide exists in differ-
ent conformations, such as random coils;helices, or HereZ(D,€) and Z(»,{) are the partition functions of the
B-sheets. At not too low peptide concentrations, the mol{olymer with one end fixed in the presence and absence of
ecules self-assemble into lof@ysheet structures which form the cylindrical confining geometry, respectively. The quantity
twisted ribbons(with a straight central axjs The width of ~ AF represents the work required to squeeze the polymer re-
these ribbons is about 4 nm, and their length is of the ordeversibly into the cylindrical pore. It may be evaluated in
of 500 nm[9,1(]. These ribbons can aggregate due to facesimulations by generating polymer configurations with one
to-face attraction into twisted fibrils of a thickness of fixed end in an infinite volume with the Boltzmann probabil-
8—10um. ity, computing the fractiorp(€) of the configurations of arc

Interestingly, in a self-assembling system of gemini surdength € which lie entirely within a cylindrical domain of
factants(two surfactant molecules covalently linked at their diameterD, and making use of Eq1).

Il. FREE ENERGY OF CONFINEMENT

exp(— AF/kgT) =

p(e). 1)
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For a flexible, self-avoiding polymer with vanishing bend- rotation of the triad along the curve is governed by the gen-
ing rigidity, AF is purely entropic. The confinement of such eralized Frenet equatiorig2—24
a polymer in a cylindrical pore is considered in Refs.

[15-14. %:th- w=tiw;+tw,+tw (7)
In the wormlike chain model of a semiflexible polymer, ds " 1HL T2 TS
the polymer is represented by an inextensible line or filament
r(s) with contour length¢ and elastic energy or
¢ 2
K dt3 dtI
== —2 —= itk 8
Eworm 2]0 (dS) ds. (2) ds %euk j0K (8)

Heres specifies distance along the contoy=dr/dsis the  The elastic energy is given g2-24
unit tangent vectory is the bending rigidity, an®=«/KkgT is
the the persistence length. In the narrow-pore, long-polymer 13 S 5
limit D<P<¢, the polymer is almost a straight line; i.e., the Ehelix = EE bif d w;(s) — wg(9)]7, (9)
angle between the tangent vectgrand thez axis or sym- =70
metry axis of the cylinder is a small quantity. In this case theynere the coefficienb, andb, are bending rigidities along
right-hand side of Eq(1) decays as the principal axes of the cross section, amgdis the twist

p() ~ g o 3 rigidity. The parameters;(s) and wg;(s) determine the cur-

vatures and torsions in the deformed and stress-free states of

for large ¢, where exjp-Eqd2) is the largest eigenvalue of the the polymer, respectively. Since the energy is quadratic in the
transfer matrix of a slice of the system of thicknels The deviationséw; = w;— wy;, the distribution oféw; is Gaussian,
quantityEg1 represents a typical contour length at which thewith zero mean and second moment:
configurations intersect the pore wall. According to E(3.
and (3) the confinement free energy per unit lenght
=AF/{ is given by

Af E,(P.D) = As @ We restrict our attention to the casg;(s)=const, corre-
kBT_ O =) T plisp2/3; sponding to a helical polymer with spontaneous curvature

) and torsion but without spontaneous twist. In the absence of
where the dependence énandD follows from simple scal-  fjyctuations—i.e., in the limitb,=b,=bs=x—the Frenet

ing or dimensional argumenf48-20. Similarly, for a pore equations are readily solve@s], yielding
with a rectangular cross section with eddggsL, <P,

ke T
(wi(8)dwy(8')) == =8 (5= ). (10)

1 Sin(wgs
Af _ _Ag(1l 1 r(S)=r(0)+—{ts(o)sin(woS)+e(0)woa{S— (o )}
T Eo(P,Ly,Lo) = ST ?/3 + EB : (5 wo wo
The quantitieA, and A5 on the right-hand sides of Eq&l) +e(0) X t3(0)[1 - cogwes)] [, (11
and (5) are dimensionless universal numbeks and A,
which are the same for all wormlike chains. where
The predictionA;=1.1036 was obtained in R&f20] by
solving an integral equation numerically which arises in an wo1 w2 wo3
exact analytical approach. Measuring the probabijit§) in e(s) :tl(S)w— +t2(3)w— +t3(5)w—,
Eqg. (3) in simulations, fitting the largé-behavior with the 0 0 0
exponential form(3), and making use of Eq$4) and (5), ) ) 212
Bicout and Burkhardf21] estimated wo = (why + Wi + gy~ (12)
A-=2.375+0.013, A;=1.108+0.013. (6) Equation(11) represents a helix with radiug and pitchpy,
where
An earlier estimate from simulation$-=2.46+0.07, was
given by Dijkstraet al. [19]. 2 4 w212
o= (g1 ‘2"02) pe= wa_(;:e,l (13
@ @o

Ill. HELICAL POLYMER MODEL

. . _ Yvinding around an axis pointing in the direction of the unit
In this paper we generalize the above results to hehcaV

. . . ectore(0).
tpolyme(rjstor (.:h'raL”pr{LS’ wh||ch ha_ve sp?ntaget?us curva- Including Gaussian fluctuations according to Edg0),
ure and torsion. Again the polymer is replace a curv :
r(s) of fixed contougr IengthS.pTg each poiﬂt on thgline a ePanyukov and Rabif22,23 showed that
right-handed triad of unit vectors(s),t,(s),t5(s) is as- (t(9) 1,0y = (€79, (14)
signed, whereé;=dr/dsis the tangent vector ang, t, cor-
respond to principal axes of the polymer cross section. Thaherel is the matrix with elements
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1 -
Iy = EkBT<E bt = b; 1) 8= 2 €Wk (15
k k

The two-point correlation function of the unit vecte(s) in
Eq. (12), which is directed along the axis of the helix, fol- 10 F
lows from this result. In the special cabeb;=b,=h; con-

sidered in our simulations, ;5‘
~siL b -2
(e(s) - e(0)y =€, Lp=—", (16) 10 F
kgT
whereL, is the persistence length.
] 3
IV. SIMULATIONS 0 0
Following Kats et al. [24], we replace the differential
equationg8) by the difference equations FIG. 1. ProbabilityP(n) that a helical polymer with radius,
=0.3. pitchpg=0.3, and persistence lendth=8000 in a cylindrical

ti(s+ds) = >, Ojjtik(s) (17) pore does not intersect the pore wall in the finssteps of the

i algorithm. The solid circleé®) correspond to a pore with a circular
cross section with diamet&=1 and the triangles/\) to a square
cross section with edge lengih=1. Fitting the data to Eq19) for
large n yields \y=6.57x10% and 6.01x 10°%, respectively. The
solid line corresponds to the exact exponential dexay’.

in our simulations. Heré¢, denotes thé&th component of;
with respect to a fixed Cartesian coordinate systens the
orthogonal matrix,

1 1 1
o= <1 +§A ds)(l _EA ds) ’ (18) To obtain the free energy of confinement of the helical

_ ) _ ) ) polymer, we proceeded as discussed below(Ey.generat-
and A is the antisymmetric matrix with elementd;  ing many polymer configurations and computing the prob-
=2yewk. The difference equations are consistent with thegpility P(n) that the polymer has not yet intersected the pore
Frenet equationg) to first order inds, and the orthogonality || [26] aftern steps of the algorithm. The determination of
of the matrixO preserves the orthonormality of thein the  p(n) was based on 50 000 independent helices. For large

simulations. _ an exponential decay
For simplicity we seb=b;=b,=Db,, corresponding to Eqg.
(16). In accordance with Eq10), the dwj(s) are chosen ran- P(n) ~ o, (19

domly from a Gaussian distribution with zero mean and stan-. . o . i
dard deviation(ksT/bds /2 whereds< L,=b/keT. similar to the result(3) for semiflexible polymers, is ex

pected. According to Eq1), the free energy of confinement
per unit length along the axis of the helix is given by

V. HELICAL POLYMER IN A CYLINDRICAL PORE Af No Po
We have determined the confinement free energy of a he- keT  &ds’ ¢= [p3 + (2771 o) 2]M?’

lical polymer fluctuating in a narrow cylindrical pore from Lo
simulations. Cylinders with both circular and square crossHere we use the relatiof=£s between the contour length

sections were considered, and we use the same syEnfml and the corresponding lengthalong the axis of the helix.

the diameter and edge, respectively. The symmetry axis q-gl'e t?]er:IsSti?] ncEe l??g)ubéggf'{]he: \(/:vcl’trr;er;asgﬁg;[nto thgrg?sr:(t;lire
the cylinder defines theaxis of our fixed coordinate system. 9 g2, P gp

The helical polymer was generated step by step usiné?ngth P, defined with respect to length along the axis of the

the numerical procedure described in the preceding sectio elix, also satisfyP=¢Lp.

) ) . " A helical polymer with persistence length, in a pore
The radiusr, and pitchp, were set to desired values by with diameterD <L, has the same confinement free energy

choosing wg;, wg3 in Eq. (13) appropriately, withwgy,=0. I . . .
The stagrtinoé p(;)izt wag f:h())ser?prar?domlg// apartof2r0m ihes @ semiflexible polymer with persistence lenBthél, in a

requirements that the stress-free helix fit inside the cylinderg\%? WV'JQ :ﬁjgtg?hgli:zzteeazﬁr. izc; ((j)?flcnoen?riﬁe qua?g';]ag
with its axis parallel to the axis. This is the case for the Y. q 9 neh

initial vectors t(0)=(wgga/ wg,0,wo1/ wp), t2(0)=(0,1,0, (20), obtaining

(20)

and t(0)=(-woy/ o, 0 ol o), Which were used. The Ao @ A (€ 21)
other simulation parameters werds=10", D=1, and 23 d 0 237 9eqg O
Deff g S Def‘f g S

Lp=Db1/kgT=b,/kgT=b3/kgT=8000. Clearly ds<D<L,,

The pore is narrow in comparison with the persistence The probabilityP(n) for ro=py=0.3, with the other simu-
length, andds is small in order to approximate the con- lation parameters noted above, is shown in Fig. 1. The data
tinuum model(7). are in good agreement with the exponential de@#8), and
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the values ol are given in the figure caption. As in the case
of a semiflexible polymef21], the curvesP(n) for the cir-

cular and square cylinders practically coincide when plotted

versus\gn instead ofn.

For the exponential deca{9), the mean number of steps
of the algorithm at which the polymer intersects the wall
equals)\gl, corresponding tdN; = &ds/ (pgho) turns of the he-
lix. The values of\q in the caption of Fig. 1 yield\;=8.0

and 8.7 for the circular and square cross sections. Since the

number of turns before intersecting the wall is fairly large,

the helix should be equivalent to a wormlike chain in a pore

of width Deg=D—2ro. To check the equivalence quantita-
tively, we use Eq(21) with D.4=D —2r, and the values aof,

in the caption of Fig. 1 to predict the amplitudés,, Aq.
This yields

An=2.45+£0.05, Ap=1.12+0.04, (22

in good agreement with the resu(® for semiflexible poly-
mers[27].

We have also studied the dependenc®gf on the poly-
mer pitchpy, keeping the radiugy and the persistence length
L, constant. For smalp, the polymer makes many turns
before intersecting the wall and is equivalent to a semiflex
ible polymer in a pore of diametdd-2r,, as discussed in
the preceding paragraph. In the limiy— oo, the helical

polymer does not make any turns before intersecting the wa

and corresponds to a semiflexible polymer in a pore of di
ameterD. As p, increases from 0 tee, Dy is expected to
vary monotonically between these two limiting values.

For various values gpy we have computed the probabil-
ity P(n) that a helical polymer with radiug,=0.3, persis-
tence lengti ;,=8000, and contour lengthdsin a cylindri-
cal pore with a circular cross section of diamelder 1 does
not intersect the wall. The correspondiihg was obtained
from an exponential fif(19) for large n. Finally Dt was
calculated using Eq21) and the best estimai®) for Ao.

The results are shown in Fig. 2. The data do indeed interpo

late between the expected limiting valuBs-2r,=0.4 and
D=1 for small and large,, respectively.

The crossover region in Fig. 2, whek.; varies most
rapidly with py, is aroundpy=40, Dg4=0.7. According to
Egs.(3), (4), and(20), these values gi, andDgs correspond
to N;=(£Lp) D3 (Aopo) = 0.2 turns of the helix before in-
tersecting the wall.

VI. HELICAL POLYMER ENCIRCLING
A CYLINDRICAL ROD

In this section we consider a helical polymer wound
around a long cylindrical rod with a circular cross section
and diameteD <L . We study the possibility that the poly-
mer generated in the simulation escapes from the rod as
increases and wanders away.

In the simulations the parameteds=10* and by/kgT
=b,/kgT=b3/kgT=L,=8000 were the same as in the preced-
ing section. The diameter of the rod w&s=0.2, and the
radius of the helix wagy=0.3. For these parameteds
<D <2ry<L,. The starting point of the polymer was chosen
randomly, apart from the requirements that the stress-fre

PHYSICAL REVIEW E70, 051804(2004)
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FIG. 2. The effective diametdd 4 as a function of the pitcip,
for a helical polymer with radiusy=0.3 and persistence length
L,=8000 in a cylindrical pore with a circular cross section with
diameterD=1. The data interpolate between the limiting values
D-2ry=0.4 andD=1 for small and large,, respectively.

helix wind around the cylindrical rod without touching it,
with the axis of the helix parallel to the rod.

From the simulation data we computed the probability
E’(n) that aftem steps the polymer has not yet intersected the
rod [26]. Each curveP(n) is based on 10 000 independent
helices. The results for three different values of the pjigh
are shown in Fig. 3. Unlike the case of a polymer in a cylin-
drical pore, shown in Fig. 12(n) does not decay to zero as
n increases. Instead, above a characteristic value which de-
pends on the pitch, the curve flattens and approaches a non-
zero limiting value. This is because the polymer generated in
the simulation sometimes escapes from the rod, due to a
sufficiently large fluctuation, and wanders away rasn-
creases, without ever returning to intersect the rod.

“veag
%R0
o 550
0.9 . AAZOOQOOOOOOooooooooooooooooooao
0.8 b Abp,
AAAMANAAAAALLAAAALAAAAA
0.7 *
.
0.6 *
- .
5 L)
Q,
0.5 .-.
.'.
0.4 .......’..........Il.'
0.3 ' ' ' '
0 1000 2000 3000 4000 5000

n/102

FIG. 3. ProbabilityP(n) that a helical polymer with radius,
=0.3 and persistence length,=8000, wound at the fixed end
around a cylindrical rod of diamet&=0.2, does not intersect the
rod in the firstn steps of the algorithm. The pitch of the helix is
=10, (®) 30 (A), and 100(O).
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- rations which escape and in&L0P steps of the algorithm
102 still have not intersected the rod.
“. O For po=<1 the probability of the polymer escaping from

the rod is so small thaXi}- could not be determined reliably
o with configurations of 5 1P steps. For largep,, the data

for NI and N2 practically coincide, indicating that the poly-

mer rarely returns to intersect the cylinder once it has es-
caped. The data are in excellent agreement W, N,
~pot for large py and N;~ p;% for small p,. These power
laws may be understood as follows.

The transverse fluctuations of the endpoint of the axis of
an unconfinedhelical polymer of length¢ and persistence
length P about the corresponding endpoint of the unstressed
R 2 3 helix are readily calculated from E@L6) and given by{28]

203
(ri)= 3ap
FIG. 4. Average numbers of turmé. (A), NZ (@) at which the

helix escapes from the rod and the average number of tr(®) for ¢<P. Here both¢=&s and P=¢L, are measured along
at which the helix intersects the rod as afunctiorp@fHereNé is the axis of the helix. as discussed tgelow E20). Equation
based on all the configurations which escape, independent qb 4 4154 applies to the wormlike chain. Apart from the factor
whether they return to intersect the rod or nif; is based on the 2/3, Eq. (24 follows from simple scaling or dimensional
configurations which escape and inka0° steps of the algorithm grgdmgﬁts[lS 20. The powersF:)f P) ar?dP in Eq. (24)

- . L, 3y .

do not return to intersect the rod. The dashed lines on the left an re al nsistent Withf ~ 1 andr . ~D in E 3) and
right have slopes -2/3 and -1, respectively, and the solid Iinea4e aiso consiste 0 andr_ gs-(3) a

hows the predictio25). ).
shows the prediction2s) Replacingr |, in Eq.(24) by rq+D/2=0.4, as in the simu-

lations, and solving foN.=¢/pg yields the estimate

(24)

A simple theory of the escape, which suggeBts)=A
+BeC", in qualitative consistency with Fig. 3, is given in the _ 12
Appendix. _ Ne = p2(p2 + 3.6/

We determined the average number of turns at which the
helix escapes from the rod or intersects it by making twofor the number of turns of the helix at which the typical
checks after each step of the growth algorithii: If the  transverse displacement equals the value needed for escape
distance of the end poim{(s) from the axis of the rod is less from the rod. Roughly speaking, the polymer wrapped
than D/2, the polymer has intersected the rai) If the  around the rod escapes M turns, as given by Eq25) for
distance of the endpoint,,ds) of the axis of the helix is Ne=1—i.e., pp=12. For smallem,, the typical transverse
greater thamry+D/2, the circular cross section of the helix fluctuations in a single turn of the helix are too small for
no longer encircles the rod; i.e., the helix has escaped. Ge&scape from the rod, and the helix is more likely to intersect
metrically r (S is determined as follows: Since the unit the rod than to escape. Equati¢®5), which ignores this
vectorst,(s) and e(s) are tangent to the helix and directed POsSibility, no longer applies. As noted above, jgr<1 the
along its axis, respectively(s) X ts(s) is directed perpen- €Scape probability is too small for a reliable determination of
dicularly from the point (s) on the helix contour toward the Ne'~ With configurations of 5 10° steps.

: ; ; ; In the regionN.<1—i.e.,pp= 12, Eq.(25), which corre-
corresponding point,{s) on the axis of the helix. Thus, e o= A L
P g POiMtayq(s) sponds to the solid curve in Fig. 4, is in good quantitative

o agreement with the simulation data b2 For large po,
0 =r(s) +t1(s)—°22 —ty(9—, N.=12/py. The coefficient 12 is an order-of-magnitude es-
le(s) X ty(9)| wp wo timate that happens to give a good fit to the simulation data,
(23 whereas the power law,~ pgl for large py is exact. An
argument based on E4) similar to the one folN, predicts
where we have used Egd.2) and(13). N, ~p,* for large py, in excellent agreement with Fig. 4.
In Fig. 4 the average numbers of tumd§ Ng at which the  Note that the data points fdué'2 andN; practically coincide.
helix escapes from the rod and the average number of turns Since the possibility of escape is negligible for smzjl
N; at which the helix intersects the rod are shown as functhe helical polymer is equivalent to a wormlike chain in a
tions of pg. For each value oy, 10 000 independent con- pore with diameterD=2ro—D. To estimate the average
figurations were generated. Each configuration was continraumber of turnsN;, at which the polymer intersects the rod,
ued until it intersected the rd@6] or the number of steps of we replaceD by Dy in Egs.(3) and (4) and solve for the
the algorithm exceeded>610°, whichever came first. The typical intersection lengtli = E;*. This yields¢ ~ P3. Sub-
averageN! is based on all configurations which escape, in-stitutingr , ~ D in Eq. (24) and solving for¢ leads to the
dependent of whether they return to intersect the rod or nosame result. According to the discussion below &%), P
The quantityNi is the average value for only those configu- =éL,~ L(po/ 27 o) for py<ro. Keeping track of the powers

(25

e(s) X ta(s) @o1

Faxis(S) =1 (S) +1
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formation mentioned in the Introduction, the attraction is an
e © 29 o essential ingredient.
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0.25 © APPENDIX: SIMPLE THEORY OF ESCAPE
L R © o o OF A POLYMER
obe & aa ¢ Let us definePy’ as the probability that the polymer has
[ . ! ! ! neither intersected the cylindrical surface of the rod nor es-
10" 4 10 102 10° caped in the firsN turns of the helix andPg, as the probabil-
Py ity that it has not yet intersected the cylindrical surface but

o 5 that it has escaped. Treating each turn of the helix as statis-
FIG. 5. Fractiond, (A), f; (@), andf; (O) of the 10 000 con-  tically independent, we denote the probability that a polymer
f!gurations which contribute t8g, Ng, andN; in Fig. 4, as a func-  \yhich has not yet escaped does escape in the next tugn by
tion of po. and the probability that it neither escapes nor intersects the
rod in the next turn byp. (The third possibility—that it in-
of po, We obtain the power law;=¢/py~ py?” for smallp,,  tersects the rod in the next turn—has probabilityqt—p.) In
in excellent agreement with the simulation data in Fig. 4. addition we assume that once the polymer escapes, it never
In Fig. 5 the fractiond?, f2, andf; of the 10 000 configu- intersects the rod.

e e
rations which contribute td\lé, Ng, and N; in Fig. 4 are These assumptions imply the recurrence relations
shown as functions gfy. Forpy=<1, f>?~0 andf;~1; i.e., e .
almost all the configurations intersect the cylinder and never PR = PR (A1)
escape. Aroung,= 10 the curves cross, and for larggrthe . e o
polymer is more likely to escape than to intersect the rod. Ne1=APN+ PR, (A2)
with initial conditionsPy°=1, P5=0. Writing down the first
VIl. CONCLUDING REMARKS few iterates, it is easy to see that

We have studied some statistical properties of a helical Pr=p", (A3)
polymer in cylindrical restrictive geometries of diamef2y
in the limit that the persistence lengthalong the axis of the 1-pN

e _
helix is large in comparison witD and the radius, of the N=d 1-p° (A4)
helix. In this limit the helical polymer has much in common
with the wormlike chain. We interpret the simulation data for The probability Py=Py*+Pj, that the polymer has not yet
the free energy of confinement in a cylindrical pore using théntersected the rod aftét steps is analogous #@(n) in Sec.
scaling form(4) for a wormlike chain in a pore, with an V. From Eqgs.(A3) and(A4),
effective diameteDg4 that is renormalized by the helical

- - 1-p-
structure. As the pitclp, of the helix increases from 0 te, Py= L I N, (A5)
D increases monotonically from-2r, to D, as shown in 1-p 1-p
Fig. 2. Thus, asN increasesPy decays exponentially froR,=1 to

in connection with the escape of the helical polymer encir-gccyrs is given by

cling a cylindrical rod. In the limitP>r the transverse fluc-

tuations of the axis of the helix are given by the same result - e o

(24) as for the wormlike chain. Agg increases, the typical > N[PY = Px-4]

transverse displacement in one turn of the helix also in- Ne= Nj = . (AB)
creases, resulting in a greater probability per turn of escape. 6 e 1-

We have used Eq.24) to estimate the average number of NE—:L[PN_ Pr-1]

turns at which the helix escapes from the rod or intersects it.

The simulation data in Fig. 4 are in excellent agreement withAn analogous calculation for the mean number of tuxpat

the predicted asymptotic formis,, N;~pyY, Nj~pg2® for  which the polymer insects the rod yielts=N,.

large and smalp,, respectively. This theory is obviously an oversimplification, but the
It would be interesting to include an attractive interactionform (A5) of the decayPy=A+Be N, is qualitatively con-

between the rod and polymer wound around it. In the fibrilsistent with Fig. 3.
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larger than in the result§6) for a semiflexible polymer or
wormlike chain, obtained in Ref21]. Instead of a wormlike
chain, the authors of Ref21] simulate a Newtonian particle
which is randomly accelerated in two dimensions. In the nar-
row pore limit the two systems have equivalent statistical
properties. The simulation algorithm of Rg21] makes use of
exact analytical results for the random acceleration problem
and permits precision simulations for very long times—i.e.,
very long polymer chains. The earlier, less precise results of
Ref. [19] for the wormlike chain, given just below E@6),
were obtained by simulating a polymer with bending energy in
accordance with Boltzmann statistics, using a Metropolis algo-
rithm.

[28] Equation (24) is obtained by writing r (5)=[l

-e(0)e(0)]- f5e(s')é&ds', wherel is the unit dyadic, calculating
the second momenilri(s)} with the help of Eq.(16), and
making use ofP=¢L, €=¢s, as discussed below E(RO).



