001     41804
005     20200423203927.0
024 7 _ |a 10.1007/s00200-004-0156-6
|2 DOI
024 7 _ |a WOS:000224435700002
|2 WOS
024 7 _ |a 2128/12067
|2 Handle
024 7 _ |a altmetric:3620571
|2 altmetric
037 _ _ |a PreJuSER-41804
041 _ _ |a eng
082 _ _ |a 510
084 _ _ |2 WoS
|a Computer Science, Interdisciplinary Applications
084 _ _ |2 WoS
|a Computer Science, Theory & Methods
084 _ _ |2 WoS
|a Mathematics, Applied
100 1 _ |a Scott, T. C.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Exchange Energy for Two-Active-Electron Diatomic Systems Within the Surface Integral Method
260 _ _ |a Berlin
|b Springer
|c 2004
300 _ _ |a 101 - 128
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applicable Algebra in Engineering, Communication and Computing
|x 0938-1279
|0 12901
|v 15
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We have analyzed and reduced a general (quantum-mechanical) expression for the atom-atom exchange energy formulated as a five-dimensional surface integral, which arises in studying the charge exchange processes in diatomic molecules. It is shown that this five-dimensional surface integral can be decoupled into a three-dimensional integral and a two-dimensional angular integral which can be solved analytically using a special decomposition. Exact solutions of the two-dimensional angular integrals are presented and generalized. Algebraic aspects, invariance properties and exact solutions of integrals involving Legendre and Chebyshev polynomials are also discussed.
536 _ _ |a Betrieb und Weiterentwicklung des Höchstleistungsrechners
|c I03
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK254
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a symbolic integration
653 2 0 |2 Author
|a numerical integration
653 2 0 |2 Author
|a molecular physics
653 2 0 |2 Author
|a special functions and sums
653 2 0 |2 Author
|a asymptotic series
700 1 _ |a Aubert-Frécon, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Andrae, D.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Grotendorst, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)132118
700 1 _ |a Morgan III, J. D.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Glasser, M. L.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1007/s00200-004-0156-6
|g Vol. 15, p. 101 - 128
|p 101 - 128
|q 15<101 - 128
|0 PERI:(DE-600)1458434-7
|t Applicable algebra in engineering, communication and computing
|v 15
|y 2004
|x 0938-1279
856 7 _ |u http://dx.doi.org/10.1007/s00200-004-0156-6
856 4 _ |u https://juser.fz-juelich.de/record/41804/files/ib-2004-02.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41804/files/ib-2004-02.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41804/files/ib-2004-02.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41804/files/ib-2004-02.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41804/files/ib-2004-02.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:41804
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k I03
|v Betrieb und Weiterentwicklung des Höchstleistungsrechners
|l Wissenschaftliches Rechnen
|b Information
|0 G:(DE-Juel1)FUEK254
|x 0
914 1 _ |y 2004
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k ZAM
|l Zentralinstitut für Angewandte Mathematik
|d 31.12.2007
|g ZAM
|0 I:(DE-Juel1)VDB62
|x 0
970 _ _ |a VDB:(DE-Juel1)57968
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21