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1. INTRODUCTION 1

Abstract

We have analyzed and reduced a general (quantum-mechanical) expression for the atom-atom ex-
change energy formulated as a five-dimensional surface integral, which arises in studying the charge
exchange processes in diatomic molecules. It is shown that this five-dimensional surface integral
can be decoupled into a three-dimensional integral and a two-dimensional angular integral which
can be solved analytically using a special decomposition. Exact solutions of the two-dimensional
angular integrals are presented and generalized. Algebraic aspects, invariance properties and exact
solutions of integrals involving Legendre and Chebyshev polynomials are also discussed.

1 Introduction

In [1–3], we presented a method for obtaining the exchange energy splitting∆E based on the
Holstein-Herring method [1] for diatomic molecular systems. We started from the electronic Schrödinger
wave equation in atomic units for theone-activeelectron diatomic system:

(
−1

2
∇2 + V

)
ψ± = E± ψ± (1)

for the wave functions which are symmetric(+) or anti-symmetric(−) under exchange of the
nucleiA andB. HereV is the electron-nuclear Coulomb potential energy functionandE is the
(electronic) energy of a given quantum mechanical state (eigenstate), with the electronic state func-
tion ψ = ψ(r) depending on the spatial coordinates of the electron.

In previous work [3], it was shown that by multiplying the wave equation ofψ+ on the left by
ψ− and the corresponding equation ofψ− on the left byψ+, exploitation of symmetry and the
divergence theorem, we could obtain the following result [3–6]:

∆E = − 2

∫
M φA∇φA · dS

1 − 2
∫
right φ

2
A dV

(2)

wheredS is a differential surface element and
∫
right represents volume integration over the space

on the right of the surfaceM . The quantityφA = (ψ+ + ψ−)/
√

2 is a wave functionlocalized
about atomA. Eq. (2) is known as the Herring-Holstein formula.

In the previous work [2,3], we solved the one-active-electron system applicable to a diatomic atom-
ion molecule wheredS in (2) is a surface element on the mid-plane between the nuclei A and
B. The exchange energy∆E vanishes exponentially with increasing internuclear distanceR and
therefore becomes very difficult to calculate by conventional ab initio methods.

Exchange effects are of prominent importance in theories ofmolecular binding relevant to mag-
netism, atmospheric physics and astrophysics. Thus, though these exchange effects are physically
interesting, they are small and elusive and consequently and very difficult to calculate accurately by
conventional variational methods [1, c].

In this work, we present an extension of our method to atom-atom systems. This is far more difficult
as it involvestwo-active electrondiatomic molecules. Two active electrons entailelectronic corre-
lation, which often requires delicate handling for precise calculations. The atom-atom problem is
important because it has direct applications to the calculation of exchange effects in molecules such
as the hydrogen molecule H2, Li2 and all alkali dimers M2 isovalent to H2.
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Furthermore, since exchange operates pair-wise, a generalformula for the two-active-electron case
can be readily extended to the four-active electron case andallow us to calculate the exchange
energies of diatomic calcium, Ca2, which is of great importance in Bose-Einstein condensation. A
combination of the formula for the one-active electron casein previous work and those presented
in [2] and here provides the means to handle a wide class of diatomic systems.

We emphasize that we do not want to resort toN -dimensional integration codes or Monte-Carlo
methods carelessly: from our previous experience with the one-active electron problem in comput-
ing such an elusive quantity as the exchange energy∆E at large internuclear distances [3], we need
reliable and accurate computations. In view of the difficulty of the problem and, from our previous
experience, the need for precise results, we emphasize numerical as well as an algebraic analysis.
In general, the results are to be calculated using a FORTRAN program generated through a link
from a computer algebra program.

As shown by Herring and Flicker [1, (e)] and in this work, the surface integral for the two-electron
case is five-dimensional. This can be decoupled into a three-dimensional integral and a two-dimen-
sional angular integral, but there is the issue of decoupling the correlation terms involving the
distance between the two electronsr12.

This work focuses on the mathematical treatment for handling the correlation terms and should be
viewed as an extension of the formula for the one-active electron case [3]. The results are tested on
the ground state of H2. The work concludes with some general observations.

2 General Formula for a Diatomic Two-Active Electron System

The electronic Schrödinger wave equation for the simplestdiatomic system, the hydrogen molecule
H2 (composed of two fixed nuclear centers, labeledA andB, and two electrons), can be written as:

(
− ~

2

2me

∇2
1 − ~

2

2me

∇2
2 + V

)
ψ = E ψ (3)

with V =
e2

4πε0

(
1

r12
− 1

rA1
− 1

rA2
− 1

rB1
− 1

rB2

)
.

where the electronic state functionψ = ψ(r1, r2) depends on the spatial coordinates of the elec-
trons. An additive term1/R, which is constant for fixed internuclear distanceR, has been omitted
in the potentialV , since it merely shifts all the eigenvalues. The distances between the nucleiA
andB and the electronk are denoted respectively byrAk andrBk. In atomic units~ = me = e =
4πε0 = 1.

The term1/r12 represents the Coulomb repulsion between the two electronsand gives rise toelec-
tronic correlation. Its presence is what prevents the partial differential equation in (3) from being
exactly separable, thus making the many-body problem intractable. In general, correlation terms
are problematic and necessitate special treatment (and considerable “machinery”) in quantum chem-
istry.

For sufficiently large internuclear distancesR, the volume integration over the space to the right
of M in the Holstein-Herring formula eq. (2) is exponentially sub-dominant and can therefore be
neglected. Consequently, the denominator in (2) can be taken as unity; deviations from unity can
be and should be calculated by the standard methods of e.g. quantum chemistry. Thus, we need
only consider the surface integral in the numerator of the Holstein-Herring formula:

∫

M
φA∇φA · dS (4)
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The extension to the two-active electron case is relativelystraightforward. Since the two active
electrons have exactly the same mass, we can formally combine the two electrons into one “object”
with six rather than three spatial coordinates. Thus the Laplacians in the kinetic energy term of
the Schrödinger wave equation in (3) can be combined into a single six-dimensional Laplacian. In
retracing the steps from eq.(3) to eq.(13) of ref. ( [3]), this requires generalizing the formula in
(4) to six dimensions. Formally, this involves introducinga six-dimensional coordinate space. The
resulting hypersurface as defined by Herring and Flicker [1,(e)] results from letting:

r2A1 + r2B2 = r2B1 + r2A2

or equivalently:
z1 = z2

The end result is a five-dimensional hypersurface. As derived in the work of [7], the surface integral
as expressed in (4) can be written as [8, (1)]:

I =

∫ 1

−1
dζ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2 dy1 dy2 (5)

[
Ψ′

II
∗
(2, 1)

∂ΨI (1, 2)

∂z′
− Ψ∗

I(1, 2)
∂Ψ′

II(2, 1)

∂z′

]

z′=0

where{xi, yi, zi}, i = 1 and2, are the electronic Cartesian coordinates and:

z =
1

2
(z1 + z2) = ζ

R

2
and z′ = (z1 − z2) (6)

The quantityζ is a dimensionless variable whose usefulness will become clearer when we need to
differentiate the resulting integral with respect toR. The integration over the(xi, yi) coordinates is
over all space as shown by Herring and Flicker [1, V,(e)] and the integration over the final coordinate
z = z1 = z2 is only over the region−R

2 < z < R
2 ( or equivalently−1 < ζ < 1), since

integration outside this region contributes only exponentially sub-dominant terms.

In the general case oftwo-active-electronsystems, such as diatomic alkali dimers M2, isovalent to
H2, the wave functions are constructed as linear combinationsof Slater-type functionsφ in complete
analogy to the atom-ion case [2]. They are corrected by a polarization termχ(r1, r2).

ΨI(1, 2) =
∑

A B

φA(1)φB(2) χI(1, 2) (7)

PmA

ℓA
(cos θ1)P

mB

ℓB
(cos θ2) exp(i(mA φ1 +mB φ2)) ,

Ψ′
II(2, 1) =

∑

A′ B′

φ′A′(2) φ′B′(1) χ′
II(2, 1)

P
m′

B′

ℓ′B′

(cos θ′1)P
m′

A′

ℓ′A′

(cos θ′2) exp(i(m′
A′ φ′2 +m′

B′ φ′1)) .

where{ℓA,mA}, {ℓB ,mB} and their primed counterparts are atomic angular quantum numbers,
and

φA(1) = AA r
γA

1 exp(−αA r1)

φB(2) = BB r
δB
2 exp(−βB r2) (8)

φ′A′(2) = A′
A′ r′

γ′

A′

2 exp(−α′
A′ r′2)

φ′B′(1) = B′
B′ r′

δ′B′

1 exp(−β′B′ r′1)

where{AA,BB , γA, δB , αA, βB} and their primed counterparts are known parameters character-
izing the radial part of the atomic wave functions. They can be deduced from the solution of the
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one-active-electronSchrödinger wave equation for the atom under consideration. Just as in the one-
active electron case [3], these parameters are identified from atomic wave functions and physical-
chemical considerations. The polarization functionsχ are given by Smirnov and Chibisov [10]. In
the case whenz1 = z2 = z, these functions are, forz > 0

χI(1, 2) =

(
1

2

)1/βB

(βB)−βB/αAµAB (µAB)1/αA(ρ12)
1/µAB

×(ζ + 1)−1/βB exp

[
− 1

2βB
(1 − ζ)

]
(9)

×
{[
µ2

AB(R
2 (1 − ζ))2 + (βBρ12)

2
]1/2

+ µAB(R
2 (1 − ζ))

}−1/µAB

χII(2, 1) = χI(1, 2)

and forz < 0

χI(1, 2) =

(
1

2

)1/αA

(αA)−αA/βBµAB (µAB)1/βB (ρ12)
1/µAB

×(1 − ζ)−1/αA exp

[
− 1

2αB
(1 + ζ)

]
(10)

×
{[
µ2

AB(R
2 (1 + ζ))2 + (αAρ12)

2
]1/2

+ µAB(R
2 (1 + ζ))

}−1/µAB

χII(2, 1) = χI(1, 2)

where

µAB = αA + βB (11)

ρ2
12 = (x1 − x2)

2 + (y1 − y2)
2

Note that the expression forχI(1, 2) for z < 0 can be obtained from that forz > 0 simply by
replacingz with −z and by exchanging these parameters:

αA ↔ βB

By inserting the wave functions of (7) with the polarizationcorrections of (9) and (10) into the
surface integral of (5), we finally get:

I =
∑

A B A′ B′

AA BB A′
A′ B′

B′ (12)

× {
∑

ki=0

P(ℓA,mA)
k1

P(ℓB ,mB)
k2

P(ℓ′B′ ,m′

B′ )
k3

P(ℓ′A′ ,m′

A′ )
k4

}

×
{∫ 1

−1
dζ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx1 dx2 dy1 dy2

∂Q(ζ,R)

∂R

}

whereP(ℓ,m)
k are coefficients in the decomposition of the associated Legendre functions [13] ac-

cording to:

Pm
ℓ (cos θ) =

ℓ−m∑

k

P(ℓ,m)
k coskθ sinmθ (13)
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and

Q(ζ,R) =
(

R
2

)k1+k2+k3+k4+1
(ζ + 1)k1+k4 (ζ − 1)k2+k3 ρ2 M1

1 ρ2 M2

2

× χI(1, 2)χ
′
II(2, 1)

×
(
ρ2
1 + (R

2 (ζ + 1))2
)τ1/2 (

ρ2
2 + (R

2 (ζ − 1))2
)τ2/2

(14)

×
(
ρ2
2 + (R

2 (ζ + 1))2
)τ4/2 (

ρ2
1 + (R

2 (ζ − 1))2
)τ3/2

× cos[(mA −m′
B′) (φ1 − φ2)]

× exp
[
−αA (ρ2

1 + (R
2 (ζ + 1))2)1/2 − β′B′ (ρ2

1 + (R
2 (ζ − 1))2)1/2

]

× exp
[
−α′

A′ (ρ2
2 + (R

2 (ζ + 1))2)1/2 − βB (ρ2
2 + (R

2 (ζ − 1))2)1/2
]

and
τ1 = γA − k1 −mA τ2 = δB − k2 −mB

τ4 = γ′A′ − k4 −m′
A′ τ3 = δ′B′ − k3 −m′

B′

2M1 = mA +m′
B′ 2M2 = m′

A′ +mB .
(15)

Note thatmA + m′
B′ andm′

A′ + mB are even integers, which ensures thatM1 andM2 defined
above are integers.

3 Method of Solution

In either the general case of eq. (12), or when all angular quantum numbersℓ andm are zero, one
has to deal with a very challenging five-dimensional surfaceintegral.

3.1 Symbolic and Numerical Analysis

It is well known that integration over the Cartesian coordinates(xi, yi) wherei = 1, 2 can be readily
transformed into integrals over cylindrical coordinates as follows:

∫ ∞

−∞

∫ ∞

−∞
dxi dyi →

∫ ∞

0
dρiρi

∫ 2π

0
dφi

We note that most terms in the surface integral (12) depend onthe (scalar) radial coordinatesρ1 and
ρ2. The termcos[(mA−m′

B′) (φ1−φ2)] reduces to unity ifmA = m′
B′ (a large number of cases),

is multiplicative and consequently separable from the radial integrals. We also note that theP(ℓ,m)
k

are coefficients of the associated Legendre functions according to eq. (13). Thus the five-dimen-
sional integral could be exactly decoupled if it were not forthe correlation termρ12 which appears
in the polarization corrections of eqs. (9) and (10).

For the sake of accuracy and economy of computation (both symbolic and numeric), it is highly
desirable to deal with functions of the correlation termρ12. This becomes acute when we apply
numerical analysis to the integrals. Consider an integral of the form:

∫ ∞

0
dρi fi(ρi) exp

(
−c1

√
ρ2

i + (R
2 (ζ + 1))2 − c2

√
ρ2

i + (R
2 (ζ − 1))2

)
(16)

wherefi is an algebraic function andi = 1, 2 corresponds to one of the integrations overρ1 or ρ2 .
We make the variable transformations:

X2
i =

(
R
2 (ζ + 1)

)2
+ ρ2

i . (17)
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For0 ≤ z ≤ R
2 (or equivalently0 ≤ ζ ≤ 1), we obtain an integral of the form:

∫ ∞

z+
R
2

dXi gi(Xi) exp

(
− c1 Xi − c2

√
X2

i − ζR2

)
(18)

wheregi is an algebraic function. If we let:

ui = − c1Xi − c2

√
X2

i − ζR2 , (19)

this imposes the quadratic condition:

− 2 ui c2Xi + (u2
i + ζ c22R

2) = 0 . (20)

For simplicity, we consider the case whenc = c1 = c2, and thus

Xi =
ui

2 c
+

ζ R2 c

2ui
(c = c1 = c2) . (21)

The lower endpointuo is given by:

uo = cR
2 (ζ + 1))

[
1 +

√
1 − 4ζ

(ζ + 1)2

]
= cR , 0 ≤ ζ ≤ 1

Although the analysis was done for the simple casec1 = c2, for c1 6= c2, one can always return to
the roots of (19). Thus the twice transformed integral of (18) has the simple and recognizable form:

∫ ∞

c R
dui e

−ui hi(ui) (22)

wherehi is algebraic. This result is very instructive. From our experience and in analogy to the one-
active electron case [2, 4], we can see that the numerical integrations overρi wherei = 1, 2 can be
performed accurately by normalized (scaled) Gauss-Laguerre quadrature, namely [13, 25.4.45]. We
can also see that final integration overz of the surface integral in (12) can also be readily obtained
from Gauss-Legendre quadrature using [13, 25.4.29]. Everything can be reduced to a three-dimen-
sional integral which can be accurately calculated via three nested quadratures provided, of course,
that the remaining angular integrations overφ1 andφ2 are addressed.

The functionQ(ζ,R) in the surface integral (12) involves the productU = χI(1, 2)χ
′
II(2, 1).

Smirnov and Chibisov have considered the case whereρ12 is negligible compared toR. We can
consider formal expansions of this product, and its derivatives with respect toR, which are required
in (12), with respect toY = R

2 (1 ± ζ). Thus we can consider three regimes and their associated
functional forms:

ρ12 < Y → U ≈ U0 ρ
p
12 + U1

ρp+2
12

Y 2
+ U2

ρp+4
12

Y 4
. . . (23)

ρ12 > Y → U ≈ Q0 ρ
q
12 + Q1 Y

2 ρq−2
12 + Q2 Y

4 ρq−4
12 . . . (24)

ρ12 ≈ Y → U ≈ ρw
12

(
W0 + W1 (ρ12 − Y ) + W2 (ρ12 − Y )2 . . .

)

The expansions can be worked out to high order using a computer algebra system and the resulting
coefficients stored for computation in FORTRAN using Macrofort [14]. In each of these regimes,
we have to deal with an angular average of the form:

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ρ

ν
12 (25)

whereν is a real number.



3. METHOD OF SOLUTION 7

3.2 Decomposition of Correlation terms

Correlation terms of the formρn
12 can be expanded as follows (see [11, eq. (19)] and [12, 5.17.5]):

ρn
12 = |ρ1 − ρ2|n =

∑

k

an
k(ρ<, ρ>) Pk(cosω) (26)

whereω is the angle between the two vectorsρ1 andρ2 andρ< = min(ρ1, ρ2) andρ> = max(ρ1, ρ2).
In the two-dimensional plane considered here(z1 = z2 = 0), the magnitude of this angle is simply
ω = φ1 − φ2. The coefficientsan

k of this decomposition are given by:

an
k(ρ<, ρ>) =

(
−n

2

)
k(

1
2

)
k

ρn
>

(
ρ<

ρ>

)k

2F1

(
k − n

2
,−1

2
− n

2
; k +

3

2
;
ρ2

<

ρ2
>

)
,

where2F1(a, b; c; z) is the Gauss hypergeometric function [13]. The above is [12,5.17.5]. There
are also equivalent formulae symmetric inρ1 andρ2 such as [11, eq. (27b)] and [12, eq. (32)]:

an
k(ρ<, ρ>) =

(
−n

2

)
k(

1
2

)
k

(ρ1ρ2)
k

(ρ1 + ρ2)2k−n 2F1

(
k − n

2
, k + 1; 2k + 2;

4ρ1ρ2

(ρ1 + ρ2)2

)
.

Varshalovichet al. assume thatn is an integer. However, it is found that this decomposition holds
not only for integern but more generally for anyn = ν real! This can be verified by examining the
details of the derivation of these formulae. At any rate, this can be readily demonstrated by plugging
in specific values and verifying the numbers with a computer algebra system. The realization that
n = ν can have any real value is vital to this analysis.

3.3 Angular Integration

It appears that we are faced with evaluating the integral:

∫ 2π

0

∫ 2π

0
dφ2 dφ1 Pk(cos ω) cos(mω) (27)

whereω = φ1 − φ2 and for which there is no expression in the literature.

Special casem = 0

We use the explicit expansion of the Legendre polynomials ineq. (57) of the appendix. Thus, one
has to consider integrals of the form:

∫ 2π

0
dφ1 cosiω (28)

Exact solutions divide into even and oddi cases and can be obtained from(1.5.3.3) and(1.5.3.5)
of Prudnikovet al. [18]:

∫
dt cos2jt =

1

22j

(
2j
j

)
t +

1

22j−1

j−1∑

k=0

(
2j
k

)
sin(2j − 2k)t

2j − 2k

∫
dt cos2j+1t =

1

22j

j∑

k=0

(
2j + 1
k

)
sin(2j − 2k + 1)t

2j − 2k + 1
(29)
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wherej = 0, 1, 2 . . . It is worthwhile examining these in detail: when the endpoints are plugged in,
everything except for the very first term on the right of(1.5.3.3) cancels out. Thus, only the even
termsi = 2j contribute: ∫ 2π

0
dφ1 cos2jω =

2π

22j

(
2j
j

)
(30)

whereω = φ1 − φ2. Here the variableφ2 does not appear on the right side of (30). Thus, the inner
integral (28) isindependentof φ2. Because of this invariance, the outer integration trivially reduces
to simple multiplication of the right side by2π. By combining (30) and (57) and after a series of
manipulations and simplifications, it is found that:

∫ 2π

0

∫ 2π

0
dφ2 dφ1 P2j(cosω) = fj

∫ 2π

0

∫ 2π

0
dφ2 dφ1 P2j+1(cosω) = 0 . (31)

wherej = 0, 1, 2, . . . and

fj = 4π2

[
(2j − 1)!!

(2j)!!

]2

which is equivalently defined by the recursion formula:

f0 = 4π2 (32)

fj =

(
2j − 1

2j

)2

fj−1 j > 0 j = 1, 2, . . .

which is very amenable to computation and wheren!! denotes the double factorial ofn (see ap-
pendix). The results above have been verified numerically using computer algebra.

Armed with the realization that these particular integralsare invariant with respect toφ2, we can
now obtain the solution by settingφ2 = 0, since the value ofφ2 does not affect the final result:

∫ 2π

0
dφ1 P2j(cosφ1) = 2

∫ 1

−1
dy

P2j(y)√
1 − y2

= 2π

[
(2j − 1)!!

(2j)!!

]2

(33)

which is a well known result in view of [20, 7.226.1] and(21 : 10 : 5) of [22, p.169].

General Case

The invariance property is clearly valid, not only for the general class of integrals in (27), but also
for the more general class:

∫ 2π

0

∫ 2π

0
dφ2 dφ1 Pk(cosω) cos(mω)f i(ω) (34)

wheref = cos or sin (or a product of trigonometric functions), as shown in the appendix. This
invariance allows us to decouple the angular integrations and reduces the complexity of the com-
putations by an order of magnitude. The expressions for all the angular integrals have closed forms
in terms of fractions. These can obtained directly or from recursion formulae as shown in the
appendix.

The inclusion of a factorcosi ω into the integral (27) is important because it allows us to exploit the
following recursion procedure:

ρn+2
12 = ρn

12 ρ
2
12

= ρn
12

(
ρ2
1 + ρ2

2 − 2 ρ1 ρ2 cosω
)
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and thus the double angular integration denoted< >ω yields:

< ρn+2
12 >ω = (ρ2

1 + ρ2
2) < ρn

12 >ω − 2 ρ1 ρ2 < ρn
12 cosω >ω . (35)

Thus for a given< ρn
12 >ω, we can readily calculate< ρn+2

12 >ω, < ρn+4
12 >ω, etc. in the series

expansion for smallρ12 in (23). This is important for the following reasons. The hypergeometric
coefficients in the expansion forρn

12 can be readily calculated from Robert Forrey’s program [23],
but this is more “expensive” than by using the rational expressions for the double integrated angular
components.

Thus for the same effort in computing the hypergeometric coefficients for any given< ρn
12 >ω

, we can also compute< ρn
12 >ω cosi(ω) to obtain< ρn+i

12 >ω where i = 1, 2, . . . for the
series expansion in smallρn

12 of the polarization terms. This is made all the more feasibleby
using the optimizer for finding common sub-expressions in computer algebra. In the case of large
ρ12, it is found that the resulting series requires only integerinverse powers ofρ12, namelyρ−i

12

wherei = 1, 2, . . ., allowing the possibility of more rapid computation by simplification of the
hypergeometric coefficients.

Moreover, since the invariance property holds for any< ρn
12 >ω, wheren is a real number, it

follows that the same property should hold for the productU = χI(1, 2)χ
′
II(2, 1) beforeany

series expansions. This has been checked numerically. Thisallows one to setφ2 = 0 in the direct
numerical integration of this product overφ1 using a Gauss-Legendre procedure and multiply the
result by2π to obtain the final integrated result overφ2. This is a feasible alternative for the mid-
range whenρ12 is neither very large nor very small in relation toY = R

2 (1 ± ζ) and provides a
numerical check for the double angular integration of the series expansions in (23) and (24).

4 Results

4.1 Herring and Flicker (revisited)

The hydrogen molecule H2 provides a good test because we know closed-form eigensolutions for
the hydrogen atom. Also it is illustrative for other atom-atom systems. We consider the ground
state whereℓi = mi = 0 and thus a special case of (12) is applicable. Taking eq.(18) for
J = 1

2 (E+ − E−) from Herring and Flicker [1, (e)]1

J ≈ 8R3

π2
e−1−2R

∫ 1

−1
dζ

∫ ∫ ∫ ∫
dx1 dy1 dx2 dy2

× exp

[
−2 (ρ2

1 + ρ2
2)

R (1 − ζ2)
+ |ζ|

]

× ρ12

R3 (1 + |ζ|)2 (1 − |ζ|) (36)

which has been written in terms of the dimensionless variable ζ, wherez = R
2 ζ and where it is

understood that integration over the Cartesian coordinates (xi, yi) is exactly as in our own formula
(12). After decoupling the correlation termρ12 in terms ofρi wherei = 1, 2 and transforming
to cylindrical coordinates (as discussed in section 3), we find that the resulting integrals inρi are
exactly solvable [19] and implemented in various computer algebra systems.

1To account for eq.(19) of their work [1, (e)], we must assume there is a mistake in sign in front of the term2|z|/R
in eq.(18).
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For the integration inz, we make the transformationq = 1− (2|z|/R) (or equivalentlyq = 1−|ζ|)
to obtain:

J = C R5/2e−2R

∫ 1

0
dq e−qq3/2(2 − q)1/2 (37)

An exact expression for the integral in (37) can be obtained from (3.385) of [20] (with parameters:
λ = 1 , β = 1

2 , ρ = −1
2 , µ = 1 , ν = 5

2 ). Thus,

∫ 1

0
dq e−qq3/2(2 − q)1/2 =

√
2 B

(
5

2
, 1

)
Φ1

(
5

2
,−1

2
,
7

2
;
1

2
,−1

)
(38)

whereB(a, b) is Euler’s beta function andΦ1 is a degenerate hypergeometric function [20] (con-
fluent function of two variables). Eq. (38) can be further reduced to the much simpler expression

∫ 1

0
dq e−qq3/2(2 − q)1/2 = (39)

π

4e
[4I1(1) + 4L1(1) − I0(1) − I2(1) − L0(1) − L2(1)] −

1

6e
,

whereIn(z) is the modified Bessel function andLn(z) is the Struve function which are available
in most symbolic computer packages and standard references(e.g. see [13]). According to eq.(19)
of Herring and Flicker [1, (e)], the constantC = CHF is given by:

CHF = − 2π1/2 ⇒ J = − 0.818R5/2e−2R. (40)

This result has been verified by very accurateab initio calculations and found to be valid down to
R = 6 a.u. [21].

We also get the result in (37), but the value ofC varies depending on how many terms we use in
the series expansion in (26) for the radial separationρ12. To this end, we multiplied the coefficient
an

k in (26) byλk, whereλ acts as an ordering parameter, and we computed the ratioCλ/CHF as a
series in powers ofλ:

Cλ

CHF
=

5

3

√
2 − 4

3
+

(
13

21
− 19

42

√
2

)
λ +

(
225

616

√
2 − 639

1232

)
λ2

+

(
307

704
− 163

528

√
2

)
λ3 +

(
1981

7296

√
2 − 29897

77824

)
λ4 (41)

+

(
2479869

7159808
− 27405

111872

√
2

)
λ5 + . . .

If the decomposition in (26) converges, we expect this infinite series to converge to unity atλ = 1.
This convergence is demonstrated in table 1. Upon examination of this table, what is striking is that
the first term(N = 0) already provides about98% of the result and by the next term,99.8%. The
sum of the first terms converges rapidly but afterN = 2, the convergence becomes slower.

The convergence can be accelerated by using the Levin transformations as in the previous work [3].
(e.g. see [15–17] for more details). The result from the Levin-u transformation atN = 20 gives
unity within 18 digits. Thus, we can be confident that (41) is indeed unity atλ = 1.

What is instructive about this exercise is that it shows thatonly the leading term of the expansion
of ρ12 in (26) is sufficient to get the correct asymptotic behavior of the exchange energy. More-
over, only a few terms of the decomposition in (26) are neededto obtain a sufficiently accurate
calculation.
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N Partial sum Partial sum (float) Levin u

0 5
3

√
2 − 4

3 1.0236892706218250813361479 1.0236892706218250813361479

1 17
14

√
2 − 5

7 1.0029736114530439878306220 1.0037794141748116112912448

2 139
88

√
2 − 217

176 1.0008600587484114975390311 1.0002574346444371999261134

3 61
48

√
2 − 51

64 1.0003547355158082911854794 1.0000076148632118924726109

4 3751
2432

√
2 − 91913

77824 1.0001783809463320427858283 1.0000003402760015043278677

5 7639
5888

√
2 − 314533

376832 1.0001017795462080634843920 0.9999999733035426459251712

...
...

...
...

9 1.0000212508770144578012961 1.0000000000630044695406100

10 1.0000158826508702787415879 1.0000000000064516415368403

11 1.0000121789747699379219631 0.9999999999991189486771618

...
...

...
...

18 1.0000030097896301749543801 0.9999999999999999891042844

19 1.0000025760575289647006875 0.9999999999999999993359865

20 1.0000022217902822103715321 1.0000000000000000002397473

Table 1: Convergence of Series Expansion (41) (HF calculation)

4.2 General Asymptotic Expansions

We follow the methods of Umanskii and Voronin [9] and consider expansions of the exponential
terms inQ(ζ,R) in eqs. (14) of the form:

exp
[
−αA (ρ2

1 + (R
2 (ζ + 1))2)1/2

]
= exp

[
−αA

R
2 (ζ + 1) − αA ρ

2
1

R(ζ + 1)

]
(42)

exp
[
−β′B′ (ρ2

1 + (R
2 (ζ − 1))2)1/2

]
= exp

[
−β′B′

R
2 (1 − ζ) − β′B′ ρ2

1

R(1 − ζ)

]

exp
[
−βB (ρ2

2 + (R
2 (ζ − 1))2)1/2

]
= exp

[
−βB

R
2 (1 − ζ) − βB ρ

2
2

R(1 − ζ)

]

exp
[
−α′

A′ (ρ2
2 + (R

2 (ζ + 1))2)1/2
]

= exp

[
−α′

A′
R
2 (ζ + 1) − α′

A′ ρ2
2

R(ζ + 1)

]

and similarly for the other terms in the surface integrals ofeq. (14). Note that the expansions of
Umanskii and Voronin [9] implyρi < (R/2± z) for i = 1, 2. Also note that these expansions yield
integrals for (12) of the form already encountered in Herring and Flicker, namely (37).

We must also note that these expansions, though yielding theleading asymptotic behavior, become
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uncertain beyond the first term. Moreover, we will limit ourselves only to this term because polar-
ization corrections, as for the Herring function [1, (c)], the function of Chibisov ( see [2,3] ) in the
one-active electron case, and the polarization functions of (9) and (10) can only yield the correct
physicalleading term. In other words, the higher-order terms, though mathematically instructive,
are not physically meaningful. Thus, we can neglect them fornow; having obtained a counterpart of
the Herring and Flicker formula for excited states of the hydrogen molecule is itself a considerable
achievement.

Returning to the H2 case, the wavefunctions in eqs. (7) can be written in the generic form:

φn,ℓ,m =

kf∑

k=1

Ak r
γk e−αk r (43)

It is well known that the Slater basis set expansions truncate to simple closed form solutions in the
case of hydrogen; consequentlykf is a small number. The ground state1s of the hydrogen atom
has the quantum numbersn = 1, ℓ = 0,m = 0 and the eigensolution is

φ1,0,0 = 2e−r (44)

In matching this to eq. (43), the parameters here are obviously kf = 1 and:

ℓA = mA = 0 AA = 2 , γA = 0 , αA = 1
ℓB = mB = 0 BB = 2 , δB = 0 , βB = 1
ℓ′A′ = m′

A′ = 0 A′
A′ = 2 , γ′A′ = 0 , α′

A′ = 1
ℓ′B′ = m′

B′ = 0 B′
B′ = 2 , δ′B′ = 0 , β′B′ = 1

When we input these values, we obtain exactly the ground state result of H2 shown previously.
Obtaining this result required making use of a relatively small computer algebra program similar to
that used for the Herring-Flicker surface integral in (37).

In the same way, we can use our general formula to yield the correct leading asymptotic behavior
for the exchange energies forexcitedstates of hydrogen as reported elsewhere, and also for the
ground and excited states of other systems.

5 Conclusions and Comments

We have developed and analyzed a general (quantum-mechanical) formula for the exchange energy
in diatomic systems which is suitable for obtaining analytic results and for numerical calculations.
Analytically, the methods presented in this work allow us toget the leading asymptotic terms for
any pair of symmetric and anti-symmetric states inanygiven diatomic molecular system.

An important dividend of this work is found when using cylindrical coordinates in integrating over
the five-dimensional hypersurface arising in the Herring-Flicker theory. Here one has an invariance
property which greatly simplifies the successive angular integrations. This invariance not only
allows us to eliminate one level of integration; it also allows us to evaluate exactly the general class
of double angular integrals associated with correlation terms of the formρν

12 whereν is any real
number. The solutions are in terms of simple fractions obtainable directly or by recursion relations.
Our simple results for this five-dimensional hypersurface integration may be instructive in dealing
with similar problems in quantum chemistry.

In the one-active electron case [2], we were able to get an explicit form for the leading term of the
asymptotic expansions. In principle, this should apply to the two-active electron as well. In practice,
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however, obtaining these terms for the two-active electroncase requires extensive computer algebra
for any set of symmetric and anti-symmetric states. We anticipate that these programs can be
generalized to larger sets of quantum states.

The leading asymptotic behavior has been obtained for the ground state of the hydrogen molecule,
reproducing the Herring and Flicker result [1, (e)]. Moreover, as reported elsewhere [7], the same
methods have been used to obtain the leading terms for a few excited states.

Just as in the previous one-active electron case, we have avoided “brute-force” techniques and
presented solutions which are “natural” in that they come out of the mathematical properties of the
quantities we analyzed. In view of the elusive nature of the quantities to be calculated, i.e. that
the exchange energy is an exponentially vanishing functionof R, this is even more essential in the
two-active electron case which requires the solution of a five-dimensional integral.

The computer algebra and FORTRAN codes developed here can beused with confidence within a
variety of physical/chemical calculations. In particular, we are now equipped with the necessary
means by which to calculate the exchange energies for 2-active electron systems and eventually
4-active electron systems, such as diatomic calcium Ca2.

Appendix

A Double integrals over azimuth angles

In this appendix, we consider double integrals of functionsf(φ1, φ2) over the full range of both
angles, i.e.0 ≤ φi ≤ 2π (i = 1, 2). We do this first without further specification of the integrand.
Subsequently, special cases, where the integrand involvesa Legendre polynomialPl(cosω), with
ω = φ1 − φ2, will be discussed in more detail.

A.1 General considerations

For later reference, we summarize a few results for the general case of a double integralI of a
functionf(x, y) over a region with0 ≤ x ≤ a, 0 ≤ y ≤ a (i.e. a square-shaped region with sides
of lengtha, see Fig. 1):

I =

∫ a

0
dx

∫ a

0
dy f(x, y) =

∫ a/2

−a/2
ds

∫ a/2

−a/2
dt f(s, t) (45)

=
1

2

∫ a

−a
du

∫ 2a−|u|

|u|
dv g(u, v) =

1

2

∫ a

−a
dp

∫ a−|p|

−a+|p|
dq g(p, q) (46)

Various sets of Cartesian coordinates have been used here (see Fig. 1), and the corresponding inte-
grands are connected to the initialf(x, y) through the relations:

f(s, t) = f (s+ 1

2
a, t+ 1

2
a) , (47)

g(u, v) = f ( 1

2
(u+ v),− 1

2
(u− v)) , (48)

g(p, q) = f ( 1

2
(p + q + a),− 1

2
(p − q − a)) . (49)

In Fig. 1, the origin of the(x, y)- and (u, v)-coordinates is at the lower left edge of the square
(marked by a circle), whereas the(s, t)- and(p, q)-coordinates have their origin at the center of the
square (marked by a filled box).
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Relations between the different
coordinates:

(a) x = s+ 1

2
a = 1

2
(u+ v),

y = t+ 1

2
a = − 1

2
(u− v)

(b) s = x− 1

2
a = 1

2
(p+ q),

t = y − 1

2
a = − 1

2
(p− q)

(c) u = x− y = s− t,
v = x+ y = s+ t+ a

(d) p = u = x− y,
q = v − a = x+ y − a

Figure 1: Coordinate systems (a)-(d) used for double integrals over asquare. See text for further details.

Of particular importance for the following is the case, where the integrand is a function ofp = u =
x− y only. In this case we obtain, from eq. (45):

I =

∫ a

0
dy

∫ a

0
dx f(x− y) =

∫ a

0
dy

∫ a−y

−y
du f(u) (50)

If the function f is periodic with perioda, f(u + a) = f(u), the integral reduces to a one-
dimensional integral, since integration of a periodic integrand over a full period is invariant with
respect to the offset:

I =

(∫ a

0
dy

)(∫ a

0
du f(u)

)
= a

∫ a

0
du f(u) (f is a-periodic) (51)

Starting, on the other hand, from eq. (46) leads to:

I =

∫ a

−a
du g(u) (a − |u|) =





2

∫ a

0
du g(u) (a − u) g even

0 g odd

(52)

whereg(u) = g(u, v). Again, a one-dimensional integral results, but with a linear factor in the
integrand. The substitutionw = a−u, together with the assumptiong(a−w) = g(w−a) = ε g(w),
leads to

I = 2 ε

∫ a

0
dww g(w) (g even) (53)

We rename the integration variable asu, and add this latter result to the expression in eq. (52), to
obtain

2 I = 2

∫ a

0
du (a− u+ ε u) g(u) (g even) (54)

This leads, for periodic functionsg, g(u− a) = g(u), whereε = +1, to

I = a

∫ a

0
du g(u) (g even anda-periodic) (55)

which is almost equivalent to eq. (51), sincef(x − y) = f(u) = g(u) [ see eq. (48) ], with the
only difference that eq. (55), as a part of eq. (52), also takes advantage of the parity property of the
functiong.
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A.2 Double integrals with Legendre polynomials

The results from the previous section will now be applied to the special case, wherea = 2π,
x = φ1, y = φ2, u = x − y = φ1 − φ2 = ω, and where the integrand involves a Legendre
polynomialPl(ξ), with ξ = cosω. The Legendre polynomials may be defined through Rodrigues’
formula [13, 8.6.18],

Pl(ξ) =
1

(2l)!!

(
d

dξ

)l

(ξ2 − 1)l , (56)

wherek!! denotes the double factorial ofk, defined recursively byk!! = k · (k − 2)!!, (−1)!! =
0!! = 1. An explicit expression for the Legendre polynomials is [13, 22.3.8]

Pl(ξ) =

[l/2]∑

k=0

p
(l)
l−2k ξ

l−2k , p
(l)
l−2k =

(−1)k

2l

(
l

k

)(
2l − 2k

l

)
, (57)

where we used[x] to denote the largest integer less than or equal tox. For the special caseξ =
cosω, an expansion in terms ofcos kω (k integer) is known, see e. g. [13, 22.3.13]:

Pl(cosω) =
l∑

k=0

C
(l)
l−2k cos (l − 2k)ω , C

(l)
l−2k =

1

4l

(
2k

k

)(
2l − 2k

l − k

)
, (58)

or, equivalently, but now with restriction tonon-negativemultiples ofω as arguments of the cosines,

Pl(cos ω) =

[l/2]∑

k=0

(2 − δ0,l−2k)C
(l)
l−2k cos (l − 2k)ω . (59)

We will now consider the following types of integrals (i, j, l,m, n are non-negative integers):

Il =

∫ 2π

0

∫ 2π

0
Pl(cosω) dφ1 dφ2 (60)

Jc
l,m =

∫ 2π

0

∫ 2π

0
Pl(cosω) cosmω dφ1 dφ2 (61)

Js
l,m =

∫ 2π

0

∫ 2π

0
Pl(cosω) sinmω dφ1 dφ2 (62)

Kl,i,j =

∫ 2π

0

∫ 2π

0
Pl(cosω) cosi ω sinj ω dφ1 dφ2 (63)

Ll,m,i,j =

∫ 2π

0

∫ 2π

0
Pl(cosω) cosmω cosi ω sinj ω dφ1 dφ2 (64)

Some relations, which follow immediately from these definitions, are:

Il = Jc
l,0 = Kl,0,0 = Ll,0,0,0 ; (65)

Jc
l,m = Ll,m,0,0 ; Kl,i,j = Ll,0,i,j ; Kl,i+1,j = Ll,1,i,j ; (66)

Js
l,0 = 0 ; Jc

l,1 = Kl,1,0 ; Js
l,1 = Kl,0,1 . (67)

Thus an explicit discussion of the integralsIl, J
c
l,m, andKl,i,j is unnecessary, since they are all

included as special cases ofLl,m,i,j. We will, however, keep the integralsJc
l,m as a simple interme-

diate case in the following. Application of eqs. (52) and (55) leads then to the following results for
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the remaining types of integrals:

Jc
l,m = 2π

∫ 2π

0
dω Pl(cosω) cosmω (68)

Js
l,m =

∫ 2π

−2π
dω (2π − |ω|)Pl(cos ω) sinmω = 0 (69)

Ll,m,i,j =
1

2

[
1 + (−1)j

]
2π

∫ 2π

0
dω Pl(cosω) cosmω cosi ω sinj ω (70)

Thus all the integralsJs
l,m are zero, due to the factorsinmω in the integrand (this factor in the

integrand leads, in general, to vanishing integrals over a symmetric integration range). In the case
of Ll,m,i,j a parity factor has been introduced, which makes the integral vanish for oddj (‘odd
integrand’), but gives one for evenj (‘even integrand’).

The two remaining types of non-vanishing integrals,Jc
l,m andLl,m,i,j, are discussed in more detail

in the remaining part of this section.

The integralsJc
l,m

These integrals can be rewritten as

Jc
l,m = 2π

∫ 2π

0
dω Pl(cosω)Tm(cosω) , (71)

whereTm(cosω) = cosmω denotes the Chebyshev polynomial of the first kind of degreem in
the variablecosω [13, 22.3.15]. An explicit expression for the Chebyshev polynomials is known
(from [13, 22.3.6], modified to give correctlyt(0)0 = 1),

Tm(ξ) =

[m/2]∑

q=0

t
(m)
m−2q ξ

m−2q , t
(m)
m−2q = (−1)q(1 + δ0,m)

m

2

(m− q − 1)!

q!(m− 2q)!
2m−2q . (72)

In eq. (71), we now substituteω = π+τ (cosω = − cos τ ) to reduce the range of integration finally
to 0 ≤ τ ≤ π:

Jc
l,m = 2π

∫ π

−π
dτ Pl(− cos τ)Tm(− cos τ) (73)

= 4π (−1)l+m

∫ π

0
dτ Pl(cos τ)Tm(cos τ) (74)

The parity relationsPl(−x) = (−1)l Pl(x) andTm(−x) = (−1)m Tm(x) [13, Table 22.4], as well
as the fact that the integrand is an even function ofτ have been used here. The substitutioncos τ = t
leads then to the result

Jc
l,m = 4π (−1)l+m

∫ 1

−1
dt
Pl(t)Tm(t)√

1 − t2
(75)

= 4π (−1)l+m 1

2

[
1 + (−1)l+m

] ∫ 1

−1
dt
Pl(t)Tm(t)√

1 − t2
(76)

The factor introduced in the last step makes the integral vanish, if the integrand is of odd symmetry
(the prefactor(−1)l+m is ineffective and could be omitted, but is kept for completeness).

With eq. (59), a closed form forJc
l,m is accessible, either by direct use of that expansion with eq. (71)

and by taking advantage of the formula
∫ 2π
0 cosmx cosnxdx = π (1+ δ0,m) δm,n [22, 32:10:26],
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or by first rewriting that expansion in terms of the Chebyshevpolynomials and subsequent applica-
tion of the orthogonality relation

∫ 1
−1 (1−t2)−1/2 Tm(t)Tn(t) dt = π

2 (1+δ0,m) δm,n [22, 22:10:4].
Both ways lead to

Jc
l,m = π2 (−1)l+m

[
1 + (−1)l+m

]
(1 + δ0,m)

[l/2]∑

k=0

(2 − δ0,l−2k) δl−2k,m C
(l)
l−2k , (77)

so that the integralJc
l,m, firstly, gives zero wheneverl + m is odd orl < m (see Fig. 2), and,

secondly, reduces to one of the coefficientsC
(l)
l−2k, times a multiple ofπ2, in all other cases. We

briefly discuss some special cases of eq. (77):
(a) m = 0: The integralJc

l,0 = Il is zero for oddl, while for evenl the sum reduces to the term
with l − 2k = 0, thus

Jc
l,0 = 2π

∫ 2π

0
dω Pl(cosω)

= 2π (−1)l
[
1 + (−1)l

] ∫ 1

−1
dt

Pl(t)√
1 − t2

= 2π2
[
1 + (−1)l

]
C

(l)
0 =





4π2

42k

(
2k

k

)2

l = 2k

0 l = 2k + 1

(78)

which is consistent with results from the literature, e.g. [13, 22.13.6], [22, 21:10:5], [20,
7.221.3 & 7.226.1]:

∫ π

0
P2n(cos ϑ) dϑ =

π

16n

(
2n

n

)2

∫ 2π

0
P2n(cosϕ) dϕ = 2π

[(
2n

n

)
2−2n

]2

∫ 1

−1

Pn(t)√
1 − t2

dt =





π

[
(n− 1)!!

n!!

]2

n = 0, 2, 4, . . .

0 n = 1, 3, 5, . . .
∫ 1

−1
(1 − t2)−1/2 P2m(t) dt =

[
1

m!
Γ

(
1

2
+m

)]2

(b) m = 1: The integralJc
l,1 is zero for evenl, while for oddl the sum reduces to the term with

l − 2k = 1, thus

Jc
l,1 = 2π

∫ 2π

0
dω Pl(cosω) cosω

= 2π (−1)l+1
[
1 + (−1)l+1

] ∫ 1

−1
dt

t Pl(t)√
1 − t2

= 2π2
[
1 + (−1)l+1

]
C

(l)
1 =





0 l = 2k

4π2

42k+1

(
2k

k

)(
2k + 2

k + 1

)
l = 2k + 1

(79)

in accordance with results from the literature, e.g. [13, 22.13.7], [20, 7.245.1 & 7.226.2]:
∫ π

0
P2n+1(cos ϑ) cosϑ dϑ =

π

42n+1

(
2n

n

)(
2n+ 2

n+ 1

)

∫ 2π

0
P2m+1(cosϕ) cosϕdϕ =

π

24m+1

(
2m

m

)(
2m+ 2

m+ 1

)

∫ 1

−1
t (1 − t2)−1/2 P2m+1(t) dt =

1

m!(m+ 1)!
Γ

(
1

2
+m

)
Γ

(
3

2
+m

)
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(c) m = l: The integralJc
l,l is always non-zero, only the term withk = 0 contributes to the sum,

thus

Jc
l,l = 2π

∫ 2π

0
dω Pl(cos ω)Tl(cosω) = 4π

∫ 1

−1
dt
Pl(t)Tl(t)√

1 − t2

= 2π2 (1 + δ0,l) (2 − δ0,l)C
(l)
l = 4π2 C

(l)
l =

4π2

4l

(
2l

l

)
(80)

-

l
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Figure 2: Graphical representation of a part of the array of integralsJc
l,m (open circle:Jc

l,m = 0, filled
circle: Jc

l,m 6= 0). Points representing integrals related through the recurrence relation eq. (81) are
connected by dashed lines. See text for further details.

We include also a recurrence relation forJc
l,m,

Jc
l,m =

2l + 2

2l + 1
Jc

l+1,m−1 +
2l

2l + 1
Jc

l−1,m−1 − Jc
l,m−2 , (81)

which is obtainable e.g. from eq. (71) and the well known recurrence relations for the polynomials
[13, Table 22.7],

Tn(ξ) − 2 ξ Tn−1(ξ) + Tn−2(ξ) = 0 (n = 2, 3, . . .) , (82)

(l + 1)Pl+1(ξ) − (2l + 1) ξ Pl(ξ) + l Pl−1(ξ) = 0 (l = 1, 2, . . .) , (83)

replacing firstTm(ξ) by use of the first of these equations, and removing then theξ Pl(ξ) with the
help of the second equation (ξ = cosω). A graphical representation for the integrals related through
eq. (81) is given in Fig. 2. All integralsJc

l,m can be calculated easily from eq. (78) and eq. (81). For
this purpose, we setJc

l,m = 0 wheneverm > l (formally used even for negativel), and rewrite the
recurrence relation as

Jc
l,m =

2l − 1

2l

{
Jc

l−1,m+1 + Jc
l−1,m−1

}
− 2l − 2

2l
Jc

l−2,m (84)

If we consider the ratioJc
l,m/J

c
0,0 (Jc

0,0 = 4π2), instead ofJc
l,m, eq. (81) gives a recurrence relation

for pure rational numbers. Even a recursion for integers is possible, if we rescale the polynomials
Pl(ξ), and equivalentlyJc

l,m, to give:

J̃c
l,m =

1

4

2l + 2

2l + 1
J̃c

l+1,m−1 + 4
2l

2l + 1
J̃c

l−1,m−1 − J̃c
l,m−2 , (85)

whereJ̃c
l,m = 4l Jc

l,m/J
c
0,0 is an integer. A disadvantage of eq. (85) is thatJ̃c

l,m → ∞ asl → ∞,
whereas for eq. (81)Jc

l,m → 0 asl → ∞ (these limits hold for anym).
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The integralsLl,m,i,j

The expression given by eq. (70) can be rewritten as

Ll,m,i,j = π
[
1 + (−1)j

] ∫ 2π

0
dω Pl(cos ω)Tm(cosω) cosi ω sinj ω (86)

We proceed by substituting firstω = π + τ , and then, in a second step,cos τ = t, so that the
following equivalent expressions are obtained:

Ll,m,i,j = π
[
1 + (−1)j

]2
(−1)l+m+i+j

×
∫ π

0
dτ Pl(cos τ)Tm(cos τ) cosi τ sinj τ (87)

= π
[
1 + (−1)j

]2
(−1)l+m+i+j 1

2

[
1 + (−1)l+m+i+j

]

×
∫ 1

−1
dt Pl(t)Tm(t) ti (1 − t2)(j−1)/2 (88)

To obtain an explicit expression forLl,m,i,j, we return to eq. (86), and use the expansions eq. (57)
and eq. (72) for the polynomials (withξ = cosω), together with the formula [24]

∫ 2π

0
cosk x sinl xdx =

1

2

[
1 + (−1)k

] [
1 + (−1)l

]
B

(
k + 1

2
,
l + 1

2

)
(89)

whereB(a, b) = Γ(a)Γ(b)/Γ(a+ b) denotes the Euler beta function (this formula is easily obtain-
able from the integral representation of the beta function,[13, 6.2.1], and general rules for reducing
the integration range of definite integrals of the type

∫ 2π
0 f(cosx, sinx) dx [18, 2.1.2.83]). This

givesLl,m,i,j as a finite sum of values of the beta function, which can be written as:

Ll,m,i,j = π
[
1 + (−1)j

] max (u)∑

u=0

al+m−2u

∫ 2π

0
dω cosl+m+i−2u ω sinj ω (90)

=
π

2

[
1 + (−1)j

]2
[
1 + (−1)l+m+i

]
Γ

(
j + 1

2

)

×
max (u)∑

u=0

al+m−2u

Γ
(

l+m+i+1
2 − u

)

Γ
(

l+m+i+j+2
2 − u

) (91)

wheremax (u) = [l/2] + [m/2], and whereal+m−2u denotes the coefficient ofξl+m−2u in the
product of the Legendre polynomialPl(ξ) and the Chebyshev polynomialTm(ξ). Our result also
shows, that the integralsLl,m,i,j are necessarily zero, ifl +m+ i is an odd integer.

It is instructive to outline another route to an explicit expression forLl,m,i,j. We consider the
following expansions (from [22, 32:5:17 & 32:5:18])

cosi x =

i∑

p=0

c
(i)
i−2p cos [(i− 2p)x] =

[i/2]∑

p=0

(2 − δ0,i−2p) c
(i)
i−2p Ti−2p(cos x) (92)

sinj x =

j∑

q=0

s
(j)
j−2q cos [(j − 2q)x] =

[j/2]∑

q=0

(2 − δ0,j−2q) s
(j)
j−2q Tj−2q(cos x) (93)

c
(i)
i−2p =

1

2i

(
i

p

)
, s

(j)
j−2q =

(−1)q+j/2

2j

(
j

q

)
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Then it follows from these two expansions, and eq. (59), in connection with the relation2Tm(x)Tn(x) =
Tm+n(x) + T|m−n|(x) [13, 22.7.24], that we can write

Pl(cosω) cosi ω sinj ω =

l+i+j∑

v=0

bv Tv(cos ω) , (94)

where the coefficientsbv are essentially sums of products of the coefficientsC
(l)
l−2k, c(i)i−2p, ands(j)j−2q.

We combine eq. (94) with eq. (86), to obtain

Ll,m,i,j = π
[
1 + (−1)j

] l+i+j∑

v=0

bv

∫ 2π

0
dω Tm(cosω)Tv(cosω)

= π2 (1 + δ0,m)
[
1 + (−1)j

] l+i+j∑

v=0

δm,v bv (95)

Hence it follows that the integralsLl,m,i,j also vanish ifm > l+i+j (see Fig. 3). In all other cases,
the integral is essentially given by a single coefficientbv, which might itself be zero, e.g. ifm and
l + i + j have different parity. We note that there occur also ‘accidental zeros’, e.g.L1,2,1,2 = 0,
which should be non-zero according to the rules given above.

Various recurrence relations forLl,m,i,j exist. Application of the relationsin2 x+ cos2 x = 1 leads
to

Ll,m,i,j = Ll,m,i−2,j − Ll,m,i−2,j+2 = Ll,m,i,j−2 − Ll,m,i+2,j−2 , (96)

where bothl andm remain constant. The recurrence relations for the polynomials, eq. (82) and eq.
(83), may be used either separately, to yield

Ll,m,i,j = 2Ll,m−1,i+1,j − Ll,m−2,i,j (97)

=
2l − 1

l
Ll−1,m,i+1,j −

l − 1

l
Ll−2,m,i,j , (98)

so that eitherl orm can be kept constant, or in a combined manner, as forJc
l,m above, to give

Ll,m,i,j =
2l + 2

2l + 1
Ll+1,m−1,i,j +

2l

2l + 1
Ll−1,m−1,i,j − Ll,m−2,i,j , (99)

which is the equivalent of eq. (81) above, and leaves bothi andj unchanged. We briefly discuss
a few simple cases of the integralsLl,m,i,j (wherej is always assumed to be even), based on eqs.
(86), (57), (72), and (89):

(a) m = 0: The integralsLl,0,i,j = Kl,i,j are

Ll,0,i,j = 2π

∫ 2π

0
dω Pl(cosω) cosi ω sinj ω

= 2π
[
1 + (−1)l+i

] [l/2]∑

k=0

p
(l)
l−2kB

(
l + i+ 1 − 2k

2
,
j + 1

2

)
(100)

(b) m = 1: The integralsLl,1,i,j = Kl,i+1,j are

Ll,1,i,j = 2π

∫ 2π

0
dω Pl(cosω) cosi+1 ω sinj ω

= 2π
[
1 + (−1)l+i+1

] [l/2]∑

k=0

p
(l)
l−2kB

(
l + i+ 2 − 2k

2
,
j + 1

2

)
(101)
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i even
j even
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Figure 3: Graphical representation of a part of the array of integralsLl,m,i,j (j always even, open circle:
Ll,m,i,j = 0, filled circle:Ll,m,i,j 6= 0). Top: i even, bottom:i odd. Points representing integrals
related through the recurrence relation eq. (99) are connected by dashed lines. See text for further
details.

(c) l = 0: The integralsL0,m,i,j are

L0,m,i,j = 2π

∫ 2π

0
dω Tm(cosω) cosi ω sinj ω

= 2π
[
1 + (−1)m+i

] [m/2]∑

q=0

t
(m)
m−2q B

(
m+ i+ 1 − 2q

2
,
j + 1

2

)
(102)
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(d) l = 1: The integralsL1,m,i,j are

L1,m,i,j = 2π

∫ 2π

0
dω Tm(cos ω) cosi+1 ω sinj ω

= 2π
[
1 + (−1)m+i+1

] [m/2]∑

q=0

t
(m)
m−2q B

(
m+ i+ 2 − 2q

2
,
j + 1

2

)
(103)

Special cases included here are the integrals

L0,0,i,j = 2π

∫ 2π

0
dω cosi ω sinj ω = 2π

[
1 + (−1)i

]
B

(
i+ 1

2
,
j + 1

2

)

=





4π2 (2k − 1)!!(2l − 1)!!

2k+l(k + l)!
i = 2k , j = 2l

0 otherwise
(104)

L0,1,i,j = L1,0,i,j

= 2π

∫ 2π

0
dω cosi+1 ω sinj ω = 2π

[
1 + (−1)i+1

]
B

(
i+ 2

2
,
j + 1

2

)

=





4π2 (2k + 1)!!(2l − 1)!!

2k+l+1(k + l + 1)!
i = 2k + 1 , j = 2l

0 otherwise
(105)

L1,1,i,j = 2π

∫ 2π

0
dω cosi+2 ω sinj ω = 2π

[
1 + (−1)i

]
B

(
i+ 3

2
,
j + 1

2

)

=





4π2 (2k + 1)!!(2l − 1)!!

2k+l+1(k + l + 1)!
i = 2k , j = 2l

0 otherwise
(106)

With these results, which can be considered also as special cases of eq. (91), and with the previ-
ously given recurrence relations, all integralsLl,m,i,j can be evaluated recursively. If, in particular,
i andj are given, then the evaluation can be based on eq. (99), just in the same way as demon-
strated previously for the integralsJc

l,m. The recurrence relations may be rescaled to the quantities
Ll,m,i,j/L0,0,0,0 (L0,0,0,0 = 4π2), to involve only rational numbers.
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