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1. INTRODUCTION 1
Abstract

We have analyzed and reduced a general (quantum-mechampaéssion for the atom-atom ex-
change energy formulated as a five-dimensional surfacgradtevhich arises in studying the charge
exchange processes in diatomic molecules. It is shown higfive-dimensional surface integral
can be decoupled into a three-dimensional integral and adtmensional angular integral which
can be solved analytically using a special decompositioracEsolutions of the two-dimensional
angular integrals are presented and generalized. Algeaspiects, invariance properties and exact
solutions of integrals involving Legendre and Chebyshdyrmmials are also discussed.

1 Introduction

In [1-3], we presented a method for obtaining the exchangeggnsplitting AE based on the
Holstein-Herring method [1] for diatomic molecular systeriVe started from the electronic Schrodinger
wave equation in atomic units for tteme-activeelectron diatomic system:

(-39 +7) s = Bavs @

for the wave functions which are symmetii¢-) or anti-symmetric(—) under exchange of the
nuclei A and B. HereV is the electron-nuclear Coulomb potential energy functod E is the
(electronic) energy of a given quantum mechanical stage(sitate), with the electronic state func-
tion ¢ = ¢ (r) depending on the spatial coordinates of the electron.

In previous work [3], it was shown that by multiplying the veaequation of),. on the left by
1_ and the corresponding equation f on the left by, exploitation of symmetry and the
divergence theorem, we could obtain the following resug]3

fM ¢AV¢A -dS

AE = -2
1 - 2fm’ght ¢?4 dv

(2)

wheredsS is a differential surface element aﬁ”glght represents volume integration over the space

on the right of the surfacé/. The quantityp, = (¢, + v_)/v/2 is a wave functiorlocalized
about atomA. Eq. (2) is known as the Herring-Holstein formula.

In the previous work [2, 3], we solved the one-active-elmtisystem applicable to a diatomic atom-
ion molecule wherelS in (2) is a surface element on the mid-plane between the nuclend
B. The exchange energ& F vanishes exponentially with increasing internuclearasise R and
therefore becomes very difficult to calculate by convergiab initio methods.

Exchange effects are of prominent importance in theoriesi@gcular binding relevant to mag-
netism, atmospheric physics and astrophysics. Thus, ththase exchange effects are physically
interesting, they are small and elusive and consequendyary difficult to calculate accurately by
conventional variational methods [1, c].

In this work, we present an extension of our method to atamatystems. This is far more difficult
as it involvestwo-active electroriatomic molecules. Two active electrons en&édctronic corre-
lation, which often requires delicate handling for precise catahs. The atom-atom problem is
important because it has direct applications to the caionlaf exchange effects in molecules such
as the hydrogen molecule;H.i» and all alkali dimers M isovalent to H.



2

Furthermore, since exchange operates pair-wise, a gdnaraila for the two-active-electron case
can be readily extended to the four-active electron caseallodh us to calculate the exchange
energies of diatomic calcium, gawhich is of great importance in Bose-Einstein condensati
combination of the formula for the one-active electron dagerevious work and those presented
in [2] and here provides the means to handle a wide class tfrdia systems.

We emphasize that we do not want to resoriMedimensional integration codes or Monte-Carlo
methods carelessly: from our previous experience with tieeactive electron problem in comput-
ing such an elusive quantity as the exchange en&rfyat large internuclear distances [3], we need
reliable and accurate computations. In view of the difficalt the problem and, from our previous
experience, the need for precise results, we emphasizerivaias well as an algebraic analysis.
In general, the results are to be calculated using a FORTRram generated through a link
from a computer algebra program.

As shown by Herring and Flicker [1, (e)] and in this work, theface integral for the two-electron
case is five-dimensional. This can be decoupled into a tireensional integral and a two-dimen-
sional angular integral, but there is the issue of decogpiire correlation terms involving the
distance between the two electrans.

This work focuses on the mathematical treatment for hagdtie correlation terms and should be
viewed as an extension of the formula for the one-activetr@ecase [3]. The results are tested on
the ground state of H The work concludes with some general observations.

2 General Formula for a Diatomic Two-Active Electron System

The electronic Schrodinger wave equation for the simpligbmic system, the hydrogen molecule
H> (composed of two fixed nuclear centers, labelednd B, and two electrons), can be written as:

2 2
(—hv%—hv§+v>¢:mp (3)

2m, 2m,

2
with v = -© (L_L_L_L_L)
4me,

where the electronic state functi@n= v (r;,r2) depends on the spatial coordinates of the elec-
trons. An additive termi /R, which is constant for fixed internuclear distarigehas been omitted

in the potentialV/, since it merely shifts all the eigenvalues. The distaneage/éen the nucled
and B and the electror are denoted respectively by, andrpg;. In atomic unitsh = m, = e =
dmey = 1.

The terml/r15 represents the Coulomb repulsion between the two elecanomgives rise telec-
tronic correlation Its presence is what prevents the partial differentialagign in (3) from being
exactly separable, thus making the many-body problemdtabde. In general, correlation terms
are problematic and necessitate special treatment (asitesable “machinery”) in quantum chem-
istry.

For sufficiently large internuclear distanc&s the volume integration over the space to the right
of M in the Holstein-Herring formula eq. (2) is exponentiallybsdominant and can therefore be
neglected. Consequently, the denominator in (2) can batakeunity; deviations from unity can
be and should be calculated by the standard methods of e.gntuqn chemistry. Thus, we need
only consider the surface integral in the numerator of thistdm-Herring formula:

/ GV, - dS 4)
M
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The extension to the two-active electron case is relatigélgightforward. Since the two active
electrons have exactly the same mass, we can formally centiintwo electrons into one “object”
with six rather than three spatial coordinates. Thus thddcms in the kinetic energy term of
the Schrodinger wave equation in (3) can be combined intogdessix-dimensional Laplacian. In
retracing the steps from e() to eq.(13) of ref. ( [3]), this requires generalizing the formula in
(4) to six dimensions. Formally, this involves introduciagix-dimensional coordinate space. The
resulting hypersurface as defined by Herring and Flicke¢d)],results from letting:

2 2 2 2
A1+ T2 = Th1 t+ Taz
or equivalently:
Z1 = %29

The end result is a five-dimensional hypersurface. As detiivéhe work of [7], the surface integral
as expressed in (4) can be written as [8, (1)]:

1 o) o] o'} o]
1= [ac| [ anandnan ©)
—1 —00 J—00 J—00 J—00

/
|:\II,II*(27 1)8\111(172) ov 11(27 1)

- ¥5(1,2)
0z 0z 21=0

where{x;,y;, z;}, i« = 1 and2, are the electronic Cartesian coordinates and:

z = %(z1+z2) = Cg and 2/ = (2 — 29) (6)

The quantity( is a dimensionless variable whose usefulness will becossal when we need to
differentiate the resulting integral with respectifo The integration over thér;, y;) coordinates is
over all space as shown by Herring and Flicker [1, V,(e)] dredntegration over the final coordinate
z = 21 = zo is only over the regior%% < z < % (‘or equivalently—1 < ¢ < 1), since
integration outside this region contributes only exporadgtsub-dominant terms.

In the general case dfvo-active-electrorsystems, such as diatomic alkali dimersg,Nsovalent to
H-, the wave functions are constructed as linear combinatb8tater-type functions in complete
analogy to the atom-ion case [2]. They are corrected by aipat@on termy(ry, rs).

W12 = 3 0a)8n(2) u(l.2) )

PE 4 (cos 01) PP (cos O2) exp(i(my ¢1 +mp ¢2))
Ur(2,1) = Z ¢ a(2) ¢ (1) X' 1(2,1)
A’ B
PP (cos 01) Py # (cos 0'3) exp(i(m’ar ¢/ +m'p ¢))
where{¢,,m ,}, {{5,mg} and their primed counterparts are atomic angular quantumbats,
and

pa(l) = Aar]* exp(—aar)

¢5(2) = Bpry® exp(—fp r2) ®)
a2 = Aur'3H expl—aa r's)

Op(1) = Bpr'|” exp(—Fp 1)

where{A,,Bg,74,05, 04,0z} and their primed counterparts are known parameters clearact
izing the radial part of the atomic wave functions. They cardeduced from the solution of the
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one-active-electroschrodinger wave equation for the atom under considerafiost as in the one-
active electron case [3], these parameters are identifoed &tomic wave functions and physical-
chemical considerations. The polarization functignare given by Smirnov and Chibisov [10]. In
the case when; = 29 = z, these functions are, far> 0

1/8B
xr(1,2) = <§> (53)—63/%#,43 (MAB)l/O‘A(p12)1/NAB
X(C+1)"17% exp [—ﬁ(l - c)] (©)
—1/paB
A s EA - O + o] +uanEa -} "
xrr(2,1) = xir(1,2)
and forz < 0
1 1/aa
xr(1,2) = <§> (aA)—aA/ﬁBuAB (MAB)l/ﬁB(p12)1/HAB
“(1= OV exp |~ (140) (10)
—1/paB
A2 EQ+O7 + (@)’ +papEa+ )"
xrr(2,1) = xir(1,2)
where
paB = aa+ 0B (11)
P%Q = (v1—22)+ (y1 — 12)°

Note that the expression for7(1,2) for z < 0 can be obtained from that far > 0 simply by
replacingz with —z and by exchanging these parameters:

oy < PBB

By inserting the wave functions of (7) with the polarizatioarrections of (9) and (10) into the
surface integral of (5), we finally get:

I = Y AaBgAuBp (12)
A BA B
% {Z 73 (a,ma4) eB,mB) 73(3 B/ B’)P]gilA/,m’A’)}
X

{/ d¢ / / / / dzy dze dys dy2 8Q{.§§é )}

whereP,g’m) are coefficients in the decomposition of the associated hagefunctions [13] ac-
cording to:

{—m
(cosf) Z P(Z ™ osk sin™0 (13)
k
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and
QR = (BT eyl (ke g}
X XI(LQ)X,H(Q; 1)
x (P4 EC+)) " (+ (B -1)Y)™? (14)
(03 + B¢+ 1)) (2 + (B¢ - 1))
cos[(ma —m'pr) (91 — $2)]
X exp [—aa ( + (B (C+ 1)) = 8 (o + (5~ 1))
X exp [—a’ar (03 + (B (C+ 1)) = B (3 + (B (C - 1))
and
1T = ya—ki—ma Ty = 0B —ky—mp
T4 = ’y’A/—k4—m’A/ T3 = 5'Bf—k3—m’B/ (15)
2M, = ’I?’LA—l-m,B/ 2My = m’A/—i-mB.

Note thatm 4 + m’p andm’ 4, + mp are even integers, which ensures théat and M, defined
above are integers.

3 Method of Solution

In either the general case of eq. (12), or when all angulantgua numberg andm are zero, one
has to deal with a very challenging five-dimensional surfategral.

3.1 Symbolic and Numerical Analysis

It is well known that integration over the Cartesian cooad#s(z;, y;) wherei = 1, 2 can be readily
transformed into integrals over cylindrical coordinatedalows:

e ) 0o 0o 21
| anan — [ dpn [ as
—00 J —o0 0 0

We note that most terms in the surface integral (12) depernbeo(scalar) radial coordinates and
p2. The termeos[(ma —m/pr) (¢p1 — ¢2)] reduces to unity ifn4 = m/ (a large number of cases),
is multiplicative and consequently separable from thealadiegrals. We also note that tﬁ?{é’m)
are coefficients of the associated Legendre functions deapto eq. (13). Thus the five-dimen-
sional integral could be exactly decoupled if it were nottfa correlation ternp,5 which appears
in the polarization corrections of egs. (9) and (10).

For the sake of accuracy and economy of computation (bothbslienand numeric), it is highly
desirable to deal with functions of the correlation tesfa. This becomes acute when we apply
numerical analysis to the integrals. Consider an integrdieform:

/0 " o £ipi) exp (—Wp% +ECH+D)? a2+ (B - 1))2) (16)

where f; is an algebraic function and= 1, 2 corresponds to one of the integrations oweor p, .
We make the variable transformations:

x? = (Be+1)® + o (17)
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For0 <z < % (or equivalently0 < ¢ < 1), we obtain an integral of the form:

/Z r 4Xi gi(X;) exp ( —cy Xi — eo\/X? — CR2> (18)

T2
whereg; is an algebraic function. If we let:
u = — a1 X; — o/ X? — (R?, (19)
this imposes the quadratic condition:
—2u;eX; 4+ (u? + CAR?) = 0. (20)

For simplicity, we consider the case when= ¢; = c¢o, and thus

U; CR2 C o o
Xi = % + QUZ (C =C = 62) . (21)
The lower endpoint:, is given by:
wp = B4 |14, ]1- —% | —¢R 0<(¢<1
o (C+1)? ’ -0

Although the analysis was done for the simple case- ¢, for ¢; # ¢2, One can always return to
the roots of (19). Thus the twice transformed integral of) (i85 the simple and recognizable form:

o0
/ dui €_ui hz(u,) (22)
cR

whereh; is algebraic. This result is very instructive. From our exgece and in analogy to the one-
active electron case [2, 4], we can see that the numeriarations ovep; wherei = 1,2 can be
performed accurately by normalized (scaled) Gauss-Lagugradrature, namely [13, 25.4.45]. We
can also see that final integration oweof the surface integral in (12) can also be readily obtained
from Gauss-Legendre quadrature using [13, 25.4.29]. Hviewy can be reduced to a three-dimen-
sional integral which can be accurately calculated viaghrested quadratures provided, of course,
that the remaining angular integrations oggrand¢. are addressed.

The functionQ(¢, R) in the surface integral (12) involves the proddct = x;(1,2)x';7(2,1).
Smirnov and Chibisov have considered the case wherés negligible compared t&. We can
consider formal expansions of this product, and its devigatwith respect td?, which are required

in (12), with respect ta&” = %(1 + ¢). Thus we can consider three regimes and their associated
functional forms:

D+2 p+4
P2 <Y — UzUop}f2+U1p§1/22 +U2”§1/24 (23)
p2 >Y = U= Qply + QY " + QYo (24)
p2 Y — U= ph(Wo + Wi(pi2—Y) + Walpra—Y)%...)

The expansions can be worked out to high order using a comglggebra system and the resulting
coefficients stored for computation in FORTRAN using Maorb{14]. In each of these regimes,
we have to deal with an angular average of the form:

/ K / " aon don oty (25)

wherev is a real number.
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3.2 Decomposition of Correlation terms

Correlation terms of the forrpf, can be expanded as follows (see [11, eq. (19)] and [12, §)17.5

pla = lpr—pa® = D af(p<,ps) Pr(cosw) (26)
k

wherew is the angle between the two vectpisandp, andp. = min(p1, p2) andp=. = max(p1, p2).
In the two-dimensional plane considered here= z, = 0), the magnitude of this angle is simply
w = ¢1 — ¢2. The coefficients:}? of this decomposition are given by:

n (%) n (p<\" n 1 n 3 p2
ak(p<7p>) - 1 ,0> — 2F1 k—§,————'k—|——'p—2 ,

(§)k >

wherey F (a, b; c; z) is the Gauss hypergeometric function [13]. The above is$1P7.5]. There
are also equivalent formulae symmetricdpandp» such as [11, eq. (27b)] and [12, eq. (32)]:

n (_%)k (,01/)2)k < n 4p1,02 >
a , = Filk—=k+1;2k+2;, ———— | .
k(P< p>) (%)k (p1 +p2)2k—n 2141 5 (o +p2)2

Varshalovichet al. assume that is an integer. However, it is found that this decompositiolds
not only for integem but more generally for any = v real! This can be verified by examining the
details of the derivation of these formulae. At any rates tiain be readily demonstrated by plugging
in specific values and verifying the numbers with a compulgelara system. The realization that
n = v can have any real value is vital to this analysis.

3.3 Angular Integration
It appears that we are faced with evaluating the integral:

2 2
/ / depo dopy Py(cosw) cos(mw) (27)
o Jo

wherew = ¢1 — ¢ and for which there is no expression in the literature.

Special casen =0

We use the explicit expansion of the Legendre polynomiakxin(57) of the appendix. Thus, one
has to consider integrals of the form:

2
/ do cos'w (28)
0

Exact solutions divide into even and odldases and can be obtained frgin5.3.3) and(1.5.3.5)
of Prudnikovet al.[18]:

i—1
. 1 [ 2j 1 3 27\ sin(2j — 2k)t
27 — J J J
/dtcos t —2j< ; >t+—22j_1 k§_0< . )72]’—%

. 1 G~ (2541 )\ sin(2j — 2k + 1)t
2j+1;  _ Z J J
/ dt cos t 5%) 2 < i > 2 — 2kt 1 (29)
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wherej = 0,1,2... Itis worthwhile examining these in detail: when the endpoere plugged in,
everything except for the very first term on the right(®f5.3.3) cancels out. Thus, only the even

termsi = 25 contribute:
2 oj 2w (2] 30
; d¢ cosVw = 2\ (30)

wherew = ¢1 — ¢o. Here the variablé, does not appear on the right side of (30). Thus, the inner
integral (28) isndependenbf ¢». Because of this invariance, the outer integration triyisdduces

to simple multiplication of the right side . By combining (30) and (57) and after a series of
manipulations and simplifications, it is found that:

2w 2w
/ / dppdgy Pyj(cosw) = f
0 0

2w 27
/ / d¢2d¢1 P2j+1(COSW) = 0. (31)
o Jo
wherej =0,1,2,... and
_ 2 [i-Du?
=t (B
which is equivalently defined by the recursion formula:
fo = d4n? (32)
2j —1\? . .
fi = <=72j ) fion >0 j=1,2...

which is very amenable to computation and whetedenotes the double factorial of (see ap-
pendix). The results above have been verified numericalhgusomputer algebra.

Armed with the realization that these particular integiais invariant with respect tg., we can
now obtain the solution by setting, = 0, since the value ap, does not affect the final result:

T . ) — 2
/02 dey Poj(cos ) = 2 T 11C) B [M] (33)

Yy—F/—= = -
-1 V1—1y? (25)!

which is a well known result in view of [20, 7.226.1] afll : 10 : 5) of [22, p.169].

General Case

The invariance property is clearly valid, not only for thengeal class of integrals in (27), but also
for the more general class:

2 27 )
/ / deo dgpy Py(cosw) cos(mw) f*(w) (34)
0o Jo

where f = cos or sin (or a product of trigonometric functions), as shown in theepmlix. This
invariance allows us to decouple the angular integrationsraduces the complexity of the com-
putations by an order of magnitude. The expressions fohalahgular integrals have closed forms
in terms of fractions. These can obtained directly or fromursion formulae as shown in the
appendix.

The inclusion of a factotos’ w into the integral (27) is important because it allows us tol@xkthe
following recursion procedure:

n+2 _ n 2
P12 = P12P12

= iy (P + 3 — 2p1p2cosw)
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and thus the double angular integration deneted> , yields:

n+2

<Pyt e = (p1 + p3) <pla>u — 2p1pa < placosw >, . (35)

Thus for a giver< pf, >,, we can readily calculate: p7? >, < pli* >, etc. in the series
expansion for smalp,, in (23). This is important for the following reasons. The &ggeometric
coefficients in the expansion fgf', can be readily calculated from Robert Forrey’s program,[23]
but this is more “expensive” than by using the rational egpi@ns for the double integrated angular
components.

Thus for the same effort in computing the hypergeometridfimoents for any given< pf, >,

, we can also compute: pf, >, cos’(w) to obtain< piy* >, wherei = 1,2,... for the
series expansion in smaif, of the polarization terms. This is made all the more feaskle
using the optimizer for finding common sub-expressions mpmater algebra. In the case of large
P19, it is found that the resulting series requires only inteigeerse powers op,, namelypl‘;'
wherei = 1,2,..., allowing the possibility of more rapid computation by siifipation of the
hypergeometric coefficients.

Moreover, since the invariance property holds for anyp?, >,, wheren is a real number, it
follows that the same property should hold for the prodiict=x;(1,2)x’;;(2,1) beforeany
series expansions. This has been checked numerically.allbvgs one to sep, = 0 in the direct
numerical integration of this product ovef using a Gauss-Legendre procedure and multiply the
result by2z to obtain the final integrated result owgs. This is a feasible alternative for the mid-
range wherp;, is neither very large nor very small in relation Yo = %(1 + ¢) and provides a
numerical check for the double angular integration of threeseexpansions in (23) and (24).

4 Results

4.1 Herring and Flicker (revisited)

The hydrogen molecule Horovides a good test because we know closed-form eigermadufior
the hydrogen atom. Also it is illustrative for other atonorat systems. We consider the ground
state wher¢; = m; = 0 and thus a special case of (12) is applicable. Taking(&). for

J = 3(E4+ — E_) from Herring and Flicker [1, (ef]

3 1
J =~ 87%6—1—2’%/ dC////dﬂcldyld;rgdyg
—1

2 (p? + p3)
el
% P12

R (1 + [¢D* (1 — <)

X exp [—

(36)

which has been written in terms of the dimensionless vagiablvherez = %C and where it is
understood that integration over the Cartesian coordiriatey;) is exactly as in our own formula
(12). After decoupling the correlation terms in terms ofp; wherei = 1,2 and transforming
to cylindrical coordinates (as discussed in section 3), we finat the resulting integrals s are
exactly solvable [19] and implemented in various compukgelara systems.

1To account for eq(19) of their work [1, ()], we must assume there is a mistake in sigront of the tern2|z|/R
in eq.(18).



For the integration irr, we make the transformation= 1 — (2|z|/R) (or equivalentlyg = 1 — |()
to obtain:

1
J = C RP2e2R / dg e_qq3/2(2 - q)l/2 (37)
0

An exact expression for the integral in (37) can be obtainexh{3.385) of [20] (with parameters:
A=1, ﬁ:%,p:—%,,uzl, I/:%).Thus,

/ldq 1P (2 -2 = V2B <g,1> g <§ R —1) (38)

0

whereB(a, b) is Euler’s beta function ané; is a degenerate hypergeometric function [20] (con-
fluent function of two variables). Eq. (38) can be furtherugetl to the much simpler expression

1
/ dq e~1gY2(2 — )12 = (39)
0

T 1
10401 + 4L (1) = Io(1) = I>(1) = Lo(1) — L2 (1)] ~ e’
wherel, (z) is the modified Bessel function ard,(z) is the Struve function which are available

in most symbolic computer packages and standard referé@gesee [13]). According to e@l9)
of Herring and Flicker [1, (e)], the constafit = Cpr is given by:

Cuyr = —27'7 = J = —0818RY2% 21 (40)

This result has been verified by very accuraleinitio calculations and found to be valid down to
R = 6a.u.[21].

We also get the result in (37), but the value(divaries depending on how many terms we use in
the series expansion in (26) for the radial separatign To this end, we multiplied the coefficient
a? in (26) by \*, where\ acts as an ordering parameter, and we computed the(ai6'y  as a
series in powers ok:

C 5 4 (13 19 225 639\ o
I Vs Py . V62 DY SOV ) A
Chr 3\[ 3+<21 42 > * (616f 1232)

307 163 1981 29897
S VIR Vo Pl PY 41
(704 528 > AT (7296 77824> A (41)

2479869 27405 s
(7159808 111872 \/§> AT

If the decomposition in (26) converges, we expect this itdiseries to converge to unity at= 1.
This convergence is demonstrated in table 1. Upon exaramafithis table, what is striking is that
the first term(N = 0) already provides abo@B8% of the result and by the next ter99.8%. The
sum of the first terms converges rapidly but aftée= 2, the convergence becomes slower.

The convergence can be accelerated by using the Levinoramsfions as in the previous work [3].
(e.g. see [15-17] for more details). The result from the heviransformation atv = 20 gives
unity within 18 digits. Thus, we can be confident that (41nidded unity ai = 1.

What is instructive about this exercise is that it shows tmy the leading term of the expansion
of p12 in (26) is sufficient to get the correct asymptotic behavibthe exchange energy. More-
over, only a few terms of the decomposition in (26) are neddegbtain a sufficiently accurate
calculation.
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Partial sum (float)

Levinu

4, RESULTS

N Partial sum
0 V2 -3
1 ov2-2
3| &mV2-@
4 || 2BV - 20
5 | v - e
9

10

11

18

19

20

1.0236892706218250813361479

1.0029736114530439878306220

1.0008600587484114975390311

1.0003547355158082911854794

1.0001783809463320427858283

1.0001017795462080634843920

1.0000212508770144578012961

1.0000158826508702787415879

1.0000121789747699379219631

1.0000030097896301749543801

1.0000025760575289647006875

1.0000022217902822103715321

1.0236892706218250813361479

1.0037794141748116112912448

1.0002574346444371999261134

1.0000076148632118924726109

1.0000003402760015043278677

0.9999999733035426459251712

1.0000000000630044695406100

1.0000000000064516415368403

0.9999999999991189486771618

0.999999999999999989104 2844

0.9999999999999999993359865

1.0000000000000000002397473

Table 1: Convergence of Series Expansion (41) (HF calculation)

4.2 General Asymptotic Expansions

We follow the methods of Umanskii and Voronin [9] and considgpansions of the exponential

terms inQ(¢, R) in egs. (14) of the form:

exp |~ (o} + (
exp | =8 (o} + (
exp [—53 (p3 + (

exp |—aw (3 + (B(C+ 1M =

and similarly for the other terms in the surface integrale@f (14). Note that the expansions of
Umanskii and Voronin [9] imply; < (R/2+ z) for i = 1, 2. Also note that these expansions yield

] [ 2
FEHDN2] = e —m%(ﬂl)‘%} (42)
E(C_l))2)l/2_ = exp -—ﬁ’ ,E(l_g)_M]

i : | R(1-)

] [ 2

FE-UM| = e —63%1—0—%]
- s
exXp —a’A%(HU—%}

integrals for (12) of the form already encountered in Heyiamd Flicker, namely (37).

We must also note that these expansions, though yieldinig#iaéng asymptotic behavior, become



uncertain beyond the first term. Moreover, we will limit ogikses only to this term because polar-
ization corrections, as for the Herring function [1, (c}letfunction of Chibisov ( see [2,3] ) in the
one-active electron case, and the polarization functidr(8)oand (10) can only yield the correct
physicalleading term. In other words, the higher-order terms, thougthematically instructive,
are not physically meaningful. Thus, we can neglect themdar; having obtained a counterpart of
the Herring and Flicker formula for excited states of therogén molecule is itself a considerable
achievement.

Returning to the bl case, the wavefunctions in egs. (7) can be written in thergefoem:

ky
(bn,f,m = Z Ak Tk ek (43)
k=1

It is well known that the Slater basis set expansions trenasimple closed form solutions in the
case of hydrogen; consequently is a small number. The ground state of the hydrogen atom
has the quantum numbets= 1, ¢/ = 0, m = 0 and the eigensolution is

$100 = 2¢" (44)
In matching this to eq. (43), the parameters here are ohyidys = 1 and:

by =ma=0 Ax =2, qy4=0, aa=
g =mp=0 Bg=2, =0, g
f’A/ = ’ITL/A/ =0 .A,A/ = 2, ’}/A/ = 0, CYIA/ =
K/B/ = m’B/ =0 B,B/ = 2, (5’3/ = 0, B/B’ =

Il
— = =

When we input these values, we obtain exactly the grouné se&sult of B shown previously.
Obtaining this result required making use of a relativeabrwomputer algebra program similar to
that used for the Herring-Flicker surface integral in (37).

In the same way, we can use our general formula to yield thecbleading asymptotic behavior
for the exchange energies fekcitedstates of hydrogen as reported elsewhere, and also for the
ground and excited states of other systems.

5 Conclusions and Comments

We have developed and analyzed a general (quantum-meahdnitnula for the exchange energy
in diatomic systems which is suitable for obtaining analyésults and for numerical calculations.
Analytically, the methods presented in this work allow ugéb the leading asymptotic terms for
any pair of symmetric and anti-symmetric stateatiry given diatomic molecular system.

An important dividend of this work is found when using cylii@l coordinates in integrating over
the five-dimensional hypersurface arising in the Herritigker theory. Here one has an invariance
property which greatly simplifies the successive anguléegrations. This invariance not only
allows us to eliminate one level of integration; it also alous to evaluate exactly the general class
of double angular integrals associated with correlatiomseof the formp?, wherewv is any real
number. The solutions are in terms of simple fractions olatale directly or by recursion relations.
Our simple results for this five-dimensional hypersurfagedration may be instructive in dealing
with similar problems in quantum chemistry.

In the one-active electron case [2], we were able to get alicexdorm for the leading term of the
asymptotic expansions. In principle, this should apphwotivo-active electron as well. In practice,
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however, obtaining these terms for the two-active eleatase requires extensive computer algebra
for any set of symmetric and anti-symmetric states. We iatie that these programs can be
generalized to larger sets of quantum states.

The leading asymptotic behavior has been obtained for thienglr state of the hydrogen molecule,
reproducing the Herring and Flicker result [1, (e)]. Moregwas reported elsewhere [7], the same
methods have been used to obtain the leading terms for a feite@states.

Just as in the previous one-active electron case, we havdeavtbrute-force” techniques and
presented solutions which are “natural” in that they comeobthe mathematical properties of the
gquantities we analyzed. In view of the elusive nature of thangties to be calculated, i.e. that
the exchange energy is an exponentially vanishing funafoR, this is even more essential in the
two-active electron case which requires the solution ofe@diimensional integral.

The computer algebra and FORTRAN codes developed here aaseldewith confidence within a
variety of physical/chemical calculations. In particulase are now equipped with the necessary
means by which to calculate the exchange energies for 2eaelectron systems and eventually
4-active electron systems, such as diatomic calcium Ca

Appendix

A Double integrals over azimuth angles

In this appendix, we consider double integrals of functigiig;, ¢2) over the full range of both
angles, i.e0 < ¢; < 27 (i = 1,2). We do this first without further specification of the integd.
Subsequently, special cases, where the integrand invaliegendre polynomiak, (cosw), with
w = ¢1 — ¢, Will be discussed in more detalil.

A.1 General considerations

For later reference, we summarize a few results for the gémase of a double integrdl of a
function f(z,y) over a region with) < x < a,0 < y < a (i.e. a square-shaped region with sides
of lengtha, see Fig. 1):

= /a dz /a dy f(z,y) = /_C;/; ds /_Z//Z dt f(s,t) (45)
/_adu/Qa " g ) = /_ /_Hl]:dqu, (46)

Various sets of Cartesian coordinates have been used leer€i¢s 1), and the corresponding inte-
grands are connected to the initilz, y) through the relations:

fls,t)=f(s+3iat+1la), (47)
g(u,v) = f ($(u+v), =1 (u—w)), (48)
apq)=fGp+qgta),—-i(p—qg—a)) . (49)

In Fig. 1, the origin of the(z, y)- and (u, v)-coordinates is at the lower left edge of the square
(marked by a circle), whereas the t)- and(p, ¢)-coordinates have their origin at the center of the
square (marked by a filled box).



I t )
\ ; Relations between the different
a coordinates:
@z=s+ia=3(u+w),
y=t+sa=—3(u—v)
(b) s=z—ja=3(p+q),
1g s t=y—Lta=-L(p—q)
Cu=z—y=s—1t,
v=x+y=8+t+a
(dp=u=z-—y,
0 T g=v—a=x+y—a
0o u la a P

Figure 1: Coordinate systems (a)-(d) used for double integrals ogguare. See text for further details.

Of particular importance for the following is the case, whtre integrand is a function pf= u =
x — y only. In this case we obtain, from eq. (45):

Iz/oady/oadxﬂx—y):/Oady/_z_yduf<u> (50)

If the function f is periodic with perioda, f(u + a) = f(u), the integral reduces to a one-
dimensional integral, since integration of a periodic gnéad over a full period is invariant with
respect to the offset:

I= (/Oa dy) </Oa du f(u)> =a /Oa du f(u) (f is a-periodic) (51)

Starting, on the other hand, from eq. (46) leads to:

a 2 adu (u) (@ —u) even
I= / dug(u) (a — |u|) = /0 ! ! (52)

- 0 g odd

whereg(u) = g(u,v). Again, a one-dimensional integral results, but with adinfactor in the
integrand. The substitutiom = a—u, together with the assumptiatta—w) = g(w—a) = € g(w),
leads to

I=2¢ /a dw w g(w) (g even) (53)
0

We rename the integration variable@sand add this latter result to the expression in eq. (52), to
obtain

21 =2 /Oadu (a —u+eu)g(u) (g even) (54)
This leads, for periodic functiong g(u — a) = g(u), wheres = +1, to

I=a /Oa dug(u) (g even andz-periodic) (55)
which is almost equivalent to eq. (51), sinfér — y) = f(u) = g(u) [ see eq. (48) ], with the

only difference that eq. (55), as a part of eq. (52), alsogakivantage of the parity property of the
functiong.
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A.2 Double integrals with Legendre polynomials

The results from the previous section will now be appliedhte special case, where = 2,

T = ¢,y = ¢, u =x—y = ¢ — ¢p2 = w, and where the integrand involves a Legendre
polynomial P, (), with £ = cosw. The Legendre polynomials may be defined through Rodrigues’
formula [13, 8.6.18],

l
RO = g (3¢) €~ 1" (56)

wherek!! denotes the double factorial éf defined recursively by!! = &k - (kK — 2)!l, (=1)!! =
0! = 1. An explicit expression for the Legendre polynomials is,[23.3.8]

[1/2]

) ! (—=D)k /1 /20 — 2k
=2t = SEG) (H) &7

where we usedz] to denote the largest integer less than or equal. té-or the special casg¢ =
cosw, an expansion in terms obs kw (k integer) is known, see e. g. [13, 22.3.13]:

l
1 /(2k\ (21 — 2k
P(cosw) = ZCZU_)% cos (I — 2k)w, C’l(l_)% =1 ( k:) < Ik > ; (58)
k=0

or, equivalently, but now with restriction twn-negativenultiples ofw as arguments of the cosines,

(/2]

Py(cosw) = 2(2 — S0.0-2k) Cl(l_)zk cos (I — 2k)w . (59)
k=0

We will now consider the following types of integrals {, [, m, n are non-negative integers):

I, = /:W 027r P, (cosw) dgy depa (60)

Jim = /:W 027r P,(cosw) cos mw d¢y degg (61)
Som = /027r 027T P,(cosw) sinmw d¢q deg (62)

K ;= /027r 027T Pj(cosw) cos’ w sin’ w dey do (63)
Lyyij= /027r 027T Pj(cosw) cosmw cos’ w sin’ w de; dey (64)

Some relations, which follow immediately from these deiomis, are:

Iy =Jio =K 0= Ligo0; (65)
ch,m = Ll7m70,0; Kl,i,j = Ll70,i,j ) Kl7i+l7j = Ll,l7i7j ) (66)
Joo=0: JHh=K,0 J1=K,,- (67)

Thus an explicit discussion of the integrdls J;’,,, and K, ; is unnecessary, since they are all
included as special casesblf . We will, however, keep the mtegra.lgcm as a simple interme-
diate case in the following. Appllcatlon of egs. (52) and)(E&ds then to the following results for



the remaining types of integrals:

2

Jim =27 / dw P;(cosw) cos mw (68)
0
27

Jl“jm = / dw (27 — |w]) P;(cos w) sinmw = 0 (69)
—27

1 . 21 . .
L = 3 [1 + (—1)]] s /0 dw Pj(cosw) cosmw cos’ w sin’ w (70)

Thus all the integralg/?, are zero, due to the factein mw in the integrand (this factor in the
integrand leads, in general, to vanishing integrals ovemansetric integration range). In the case
of L, mij @ parity factor has been introduced, which makes the integwash for odd; (‘odd

integrand’), but gives one for even(‘even integrand’).

., are discussed in more detail

l7m7i7] !

The two remaining types of non-vanishing integra?llsm andL
in the remaining part of this section.

The integrals J;,,
These integrals can be rewritten as

S =21 /027r dw Py(cosw) T, (cosw) , (71)
whereT, (cosw) = cos mw denotes the Chebyshev polynomial of the first kind of degrem

the variablecos w [13, 22.3.15]. An explicit expression for the Chebyshewpomials is known
(from [13, 22.3.6], modified to give correcttﬁo) =1),

[m/2]
T. (&) = ; th_)Qq gm—2a th_)Qq = (=D)L + do,m) % % om—2q (72)
In eq. (71), we now substitute = 7+ 7 (cosw = — cos 7) to reduce the range of integration finally
o0 <7<
S =21 /7r dr P(—cosT)T,,(—cosT) (73)
= 47 (—1)HHm /07r dr Py(cosT)T,,(cosT) (74)

The parity relations? (—z) = (—1)! P(z) andT,,(—z) = (—1)™ T,,(z) [13, Table 22.4], as well
as the fact that the integrand is an even function lsfive been used here. The substitutiofir = ¢
leads then to the result

L OPWOT,
ch7m24ﬂ_(_1)l+m dt l(t) m(t)

By (75)
1
= an (1) 3 14 (-1] /_ldtﬂif;ff—"lgw (76)

The factor introduced in the last step makes the integrakhaif the integrand is of odd symmetry
(the prefactor—1)*+™ is ineffective and could be omitted, but is kept for compietss).

With eq. (59), a closed form fofl‘jm is accessible, either by direct use of that expansion wit(i/dg
and by taking advantage of the forij[é” cosmz cosnzdzr =7 (148 ,,) 0y, ,, [22, 32:10:26],



A. DOUBLE INTEGRALS OVER AZIMUTH ANGLES 17

or by first rewriting that expansion in terms of the Chebyspelynomials and subsequent applica-
tion of the orthogonality relatiofi ', (1—2)"Y/2T,,,(¢) T, (t) dt = & (1+00,1,) Oy [22, 22:10:4].
Both ways lead to
(/2] "
T =72 (1) 1 ()] (14 80,) D02 = G121) St O s (77)
k=0
so that the integrali;’, , firstly, gives zero whenever+ m is odd orl < m (see Fig. 2), and,

secondly, reduces to one of the coefficieﬁfé_)%, times a multiple ofr?, in all other cases. We
briefly discuss some special cases of eq. (77):
(@) m = 0: The integralJ;, = I, is zero for odd, while for even/ the sum reduces to the term
with [ — 2k = 0, thus

2
Jio = 27r/0 dw P(cosw)

10!
_ Y Y 1
= 27 (~1) [1+( 1)} e
am? 2K\ 2
— o2 [1+(—1)l] ) = 47<k:> [=2k (78)
0 =2k +1

which is consistent with results from the literature, e13,[22.13.6], [22, 21:10:5], [20,
7.221.3 & 7.226.1]:

T T [2n)>
Py, (cos9) di) = ——
/0‘ 2H(COS ) 16n<n>

2 2n 2
/ P,, (cosp)dp = 27 [ ( > 2_2"}
0 n

(n—1)!

2
/l Pn(t) dt = 7T|:T:| TL:O,2,4,
V1 — {2 -
-1 V1=t 0 n=1,3,5,...

/_11 (1—t3)"Y2p, (t)dt = [% r (% + m> ]2

(b) m =1: The integraIJlf1 is zero for everi, while for odd/ the sum reduces to the term with
l —2k =1, thus

2m
Jiy =2m / dw Py(cosw) cosw
0

_ I+1 ] [F,, B

—or (—1) [1+(—1) ] e
0 [ =2k

= 2r? [1+(—1)l+1} oV =3 ax? fok\ [2k 42 (79)
@m3<k><k+1> =kl

in accordance with results from the literature, e.g. [13127], [20, 7.245.1 & 7.226.2]:

T T 2n\ (2n + 2
/0P2n+1(cosz9)cosz9dz9:W<n><n+1>
2
T 2m\ (2m + 2
/0 Py y1(cos ) COS<Pd80:24m—+1<m><m+1>

! 1 1 3
— 212 - r(=z 2
/_lt(l %) Py iq(t)dt I +1)!F<2+m>P<2+m>



(c) m=1:The integraIJlfl is always non-zero, only the term with= 0 contributes to the sum,

thus
o O T®)
Ji; =2 dw P, T, =4 dtil
1 7r/0 w Py(cosw) Tj(cosw) = 4w e
o (14 dy,) (2= d0) €O = am2 0 = AT (! 80
=271 (1 +6py) (2 = 0g,) O} = 4n= C}7 = — ! (80)

5 —4

4 —4

3 —A

2 —A

1 —4

SR S
1 3 4 5}

l

Figure 2: Graphical representation of a part of the array of integ#ls (open circle: J;,, = 0, filled
circle: J;,, # 0). Points representing integrals related through the reage relation eq. (81) are
connected by dashed lines. See text for further details.

We include also a recurrence relation &t ,

20 + 2 21
Im = A1 St me + A1 Jtme1 = Jm—2s (81)

which is obtainable e.g. from eq. (71) and the well known remce relations for the polynomials
[13, Table 22.7],

(5) _25 1(5)+Tn—2(£) =0 (TL:2,3,...), (82)
(+D) P -@A+1DERE +IR () =0 (=12, (83)

replacing firstT,,, (&) by use of the first of these equations, and removing theq fh¢€) with the
help of the second equatiof € cos w). A graphical representation for the integrals relatedugh

ed. (81) is given in Fig. 2. All integralg;’, can be calculated easily from eq. (78) and eq. (81). For
this purpose, we sef’,, = 0 whenevermn > | (formally used even for negativg, and rewrite the
recurrence relation as

A1, . 22
Jim = o {Ifimm I am ) — o Ji—om (84)

If we consider the ratioy, ./ Jg o (J5o = 47?), instead otf,,, ed. (81) gives a recurrence relation
for pure rational numbers. Even a recursion for integerossible, if we rescale the polynomials
P,(§), and equivalently/;’, , to give:

~ 120+2 ~ 21

C

lm — 42l+1Jl+1m 1+42l+1Jl 1,m—1 Jlm 2> (85)

whereflfm =4 Jim /JG is an integer. A disadvantage of eq. (85) is tﬂg;l — oo asl — oo,
whereas for eq. (81);,, — 0 asl — oo (these limits hold for anyn).
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The integrals L

l7m7i7j

The expression given by eq. (70) can be rewritten as
27
Lipi;j =T [1+ (=1)7] / dw Py(cosw) T,,,(cos w) cos' w sin’ w (86)
0

We proceed by substituting first = = + 7, and then, in a second stefs T = ¢, so that the
following equivalent expressions are obtained:

. [1 + (_1)3']2 (—1)Hmtiti

Lmaij —
X / dr Py(cos ) T}, (cos T) cos’ T sin’ T (87)

0
1

_q)Hmei 2
(~1)rtm

2

— [1 + (_1)j] 1+ (_1)l+m+i+j

1
< [ atROT, 08 1@ (89)
—1

To obtain an explicit expression fdr, ,,, ;.j» We return to eq. (86), and use the expansions eq. (57)
and eq. (72) for the polynomials (Wlﬂ’l— cos w), together with the formula [24]

kE+1 l—|—1> (89)

/027r cos® z sin' z dx = % [1 + (—1)k} [1 + (—1)@ B <?, 5

whereB(a,b) = I'(a)I'(b)/I'(a + b) denotes the Euler beta function (this formula is easily iobta
able from the integral representation of the beta func{ibd, 6.2.1], and general rules for reducing
the integration range of definite integrals of the tyffé’ f(cosz,sinz)dx [18, 2.1.2.83]). This

givesL,, , ; as afinite sum of values of the beta function, which can betewrias:
max u
Ll,m,i,j - Z Ao — 2u/ dw Cosl+m+z—2uw sin’ w (90)
0

_ g [1+ (-1)7]? [1 + (—1)l+m+2} r (%)
T (l+m;ri+1 B u)

X Al+m—2u
I+m4i4j542
2 e i)

(91)

wheremax (u) = [I/2] + [m/2], and whereal+m_2u denotes the coefficient gf*™~2* in the
product of the Legendre polynomi#}(¢) and the Chebyshev polynomi@],, (). Our result also
shows, that the integrals, are necessarily zero, if+ m + i is an odd integer.

,m,i,j

It is instructive to outline another route to an explicit eegsion forL We consider the

following expansions (from [22, 32:5:17 & 32:5:18])

l7m7i7j '

i [i/2] ,
cos' x = Z cgl_)zp cos[(i —2p)x] = Z(Z — 0p,i—2p) cgl_)zp T;_o,(cos x) (92)
p=0 p=0
‘ J ) /2] )
sin’ x = Z sjj_2q cos|[(j —2q)x] = 2(2 — 0y, j—24) Sj]—2q T;_o,(cos ) (93)
q=0 q=0

S L RO GVl €
=2 9i\p)’ J=2q — 27 q



Then it follows from these two expansions, and eg. (59), meation with the relatiod T, (z) T, (z) =
Toin(x) + 1, (z) [13, 22.7.24], that we can write

I+i+j
Py(cosw) cos’ w sin’ w = Z b, T, (cosw), (94)
v=0

where the coefficients, are essentially sums of products of the coefﬁci@)({_gk, cgi_)zp, andsg.j_gq.
We combine eg. (94) with eq. (86), to obtain

ity o
Lipmij=m [1—i— (—1)3] Z bv/o dwT,,(cosw) T, (cosw)
v=0
ity
=17 (14 80,) [L+ (=1)7] D 6,0, (95)
v=0

Hence it follows that the integrall’shm,i,j also vanish itn > [+i+j (see Fig. 3). In all other cases,
the integral is essentially given by a single coefficigntwhich might itself be zero, e.g. i and

l +i+ j have different parity. We note that there occur also ‘acuiglezeros’, €.9.L; 51 5 = 0,
which should be non-zero according to the rules given above.

Various recurrence relations fdr, , ; . exist. Application of the relationin® z + cos? z = 1 leads
to

Ll,m,z’,j = Ll,m,z’—2,j - Ll,m,z‘—2,j+2 = Ll,m,z’,j—z - Ll,m,z‘+2,j—2 ) (96)

where bothl andm remain constant. The recurrence relations for the polyatsneq. (82) and eq.
(83), may be used either separately, to yield

Livnii=2L1m—1i41; — Lim—2,; (97)
20—-1 -1

= I Ll—l7m7i+l7j T Ll—2,m,i,j ) (98)
so that eithet or m can be kept constant, or in a combined manner, ag;fgrabove, to give

20+ 2 21

lmyi,j — —2l 1 1+1,m—1,i,j + —2l 1 Ll—l7m—l7i7j - Ll,m—2,i,j> (99)

which is the equivalent of eq. (81) above, and leaves bathd j unchanged. We briefly discuss
a few simple cases of the integrd@m’i’j (wherej is always assumed to be even), based on egs.
(86), (57), (72), and (89):

(@) m = 0: TheintegralsL, ,, , = K, ; are

2
Lo, =2m / dw Py(cosw) cos' w sin? w
0

1/2] . .
. i (1) l+i+1-2k 74+1
—or [14+ (-] Y py B < —. (100)
k=0
(b) m =1: The integraIsLl,MJ = Kl,z‘+1,j are

2T
Liy,;=2m / dw Py(cosw) cos"™ w sin? w
0

(/2] . .
i l+i+2-2k 7+1
— o [1 + (=) +1} E pl(l_)%B ( 5 S > (101)
k=0
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m m=1+i+j

1+J+3 —4 [ @)
1+5+2 —4 o) [
i+j+1—4 s O
i+ o e
i+j—1—© " e O
: . . . . . . i even
1 —9 ) O [ ) e} ° .
jeven
"
l
m
1+j+3 —4
1+j+2 —4
t+7+1 —4
1+
t+7j—1—0
: . . . . . . i odd
1 —e O [ ) O [ e} ° .
jeven
0 N N
SRR ERERER
4 5 6

Figure 3: Graphical representation of a part of the array of integfalg, ; i (; always even, open circle:
Ly ;= 0, filled circle: L, ,,, ; » # 0). Top:i even, bottomi odd Points representing integrals
related through the recurrence relation eq. (99) are cdadday dashed lines. See text for further
details.

(c) I = 0: The integralsL ,, , ; are

2m
Lom,i; =27 / dwT,,(cosw) cos'w sin/ w
0

[m/2] i X
_ _ymAi (m) m+i1+1—-—2q j+1
=2 [1+ (-] D tm_2q3< 5 " (102)

q=0



(d) [ =1: TheintegralsL, ,,, ; ; are

2T
Ly i =27 / dw T}, (cosw) cos™ w sin w
0

=27 [1 4 (~1)™+H] [Wi/f]t(’") p(ntitz-2 ] (103)
= 4T qzo m 2q 2 ) 2

Special cases included here are the integrals

27 ) )
i j ; 1 1
Lyo;j=2m /0 dw cos’ w sin w = 27 [1 + (_1)1] B (“; ’J ;r >
2k — D20 — )N ,
4 2 ( —9 _ 9
o UEAHGER] ok = (104)
0 otherwise
LOvl,i,j = LlOz’ j
. 4 19 i
=27 dw cos' ™ w sind w = 27 [1+(_1)z+1] B<Z42‘ 7]';‘ >
(2k+1 ”(21—1) . -
otherwise
. . ) 1
Pt /o v cost st = 2x [1+ (1)) B (212
9 2k + D20 — D! o L
0 otherwise

With these results, which can be considered also as spedak®f eq. (91), and with the previ-
ously given recurrence relations, all integrﬂll7sm7l.7 ;can be evaluated recursively. If, in particular,

¢ andj are given, then the evaluation can be based on eq. (99)njukeisame way as demon-
strated previously for the integralgfm. The recurrence relations may be rescaled to the quantities
/Lo.0.0.0 (Lo 00 = 47?), to involve only rational numbers.

l7m7i7j
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