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Preface

Over the last three decades the methods of quantum chemistryhave shown an impressive
development: a large number of reliable and efficient approximations to the solution of
the non-relativistic Schrödinger and the relativistic Dirac equation, respectively, are avail-
able. This is complemented by the availability of a number ofwell-developed computer
programs which allow of the treatment of chemical problems as a matter of routine. This
progress has been acknowledged by the Nobel prize in chemistry 1998 to John Pople and
Walter Kohn for the development of quantum chemical methods.

Nowadays, Theoretical Chemistry is widely accepted as an essential ingredient to research
in a wide field of applications ranging from chemistry over biochemistry/biophysics to dif-
ferent flavors of material science: quantum chemical methods are indeed one standard tool
at universities and research centres as well as in industrial research. The progress in ex-
perimental techniques is invariably complemented by an increasing demand for accurate
quantum mechanical models as a means to analyze and interpret experimental data as well
as to provide a deeper understanding of the results. On its own, the prediction of struc-
tures and properties of materials and individual chemical compounds or complexes is of
great importance - either because the targets are experimentally inaccessible at sufficient
accuracy or experiments are too expensive or impractical.

Currently quantum chemical methods are on the verge of beingapplied to realistic prob-
lems. Many research topics of considerable economical interest have quite demanding
constraints: they require to model large numbers of particles (because the interesting prop-
erties require a certain minimum size of the model to be of use), the requested level of
accuracy is achievable only within the realm of electronic structure methods or requires
the time-resolved dynamics of the process in question. Additionally, it is observed that
neighboring disciplines such as chemistry, biochemistry,biophysics, solid state physics
and material science are gradually merging and in fact are sharing similar challenges and
closely related methodologies. In view of today’s complexity of software engineering and
computer hardware these disciplines depend heavily on the support of computer science
and applied mathematics. Thus, in the field of computationalscience an increasing amount
of multidisciplinarity is not only beneficial but essentialfor solving complex problems.

Finally, we have to anticipate the tremendous development in the area of information tech-
nology both from the side of software as well as hardware development. In particular the
emerging parallel computer and cluster systems open the road to tackle challenges of un-
precedented complexity. However, method development mustnot only respond to the need
of ever better and computationally less expensive (linear scaling) models but as well to
the requirements of the underlying computer system in termsof parallel scalability and
efficient usage of the (ever-changing) hardware.



Having in mind the wishes and requirements of the researchers in the NIC community and
in the German chemical industry the most promising methodologies and quantum chem-
istry codes were chosen in order to push forward the development. The selected program
packages TURBOMOLE, QUICKSTEP, and MOLPRO cover complementary models and
aspects of the whole range of quantum chemical methods. Within the project High Per-
formance Computing in Chemistry (HPC-Chem) the functionality of these codes was ex-
tended, several important methods with linear scaling behavior with respect to the molec-
ular size were developed and implemented, and last but not least the parallel scalability on
modern supercomputers and cluster systems was substantially improved. In addition, for
the treatment of solute-solvent interactions in quantum mechanical calculations the con-
tinuum model COSMO has been integrated into the aforementioned programs. This is of
great relevance for the range of use since most practical problems are dealing with liquid
phase chemistry.

I thank the HPC-Chem project partners and the industrial collaborators for their coop-
erativeness and the authors from the different research groups for their contributions to
this book. Special thanks are due to Monika Marx, who invested time and effort defining
the layout, correcting the figures, and designing the cover.The beauty of this volume is
entirely her merit.

Jülich, October 2004

Johannes Grotendorst



Contents

Goals of the Project 1

DFT Functionality in TURBOMOLE . . . . . . . . . . . . . . . . . . . . . . . 2

QUICKSTEP: Make the Atoms Dance . . . . . . . . . . . . . . . . . . . . . . 3

Local Electron Correlation Methods with Density Fitting inMOLPRO . . . . . 3

Parallel DFT in TURBOMOLE, Linear Algebra, and CFMM . . . . . . .. . . 4

Conductor-like Screening Model . . . . . . . . . . . . . . . . . . . . . . .. . 5

I DFT Functionality in TURBOMOLE
Reinhart Ahlrichs, Klaus May 7

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 About TURBOMOLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Theoretical background: HF, DFT, and the RI technique . . . .. . . . . . 9

3.1 HF and DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 RI technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 The MARI-� (Multipole Assisted RI-� ) procedure . . . . . . . . . . . . 13

4.1 Demonstrative tests . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 MARI-� Gradient evaluation . . . . . . . . . . . . . . . . . . . . 20

5 DFT second analytical derivatives . . . . . . . . . . . . . . . . . . . .. 20

5.1 Implementation of RI-� for second derivatives . . . . . . . . . . 23

5.2 Demonstrative tests . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



CONTENTS

II QUICKSTEP: Make the Atoms Dance
Matthias Krack, Michele Parrinello 29

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Gaussian and plane waves method . . . . . . . . . . . . . . . . . . . . . 30

3 Pseudo potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Wavefunction optimization . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Traditional diagonalization (TD) . . . . . . . . . . . . . . . . . . 35

5.2 Pseudo diagonalization (PD) . . . . . . . . . . . . . . . . . . . . 36

5.3 Orbital transformations (OT) . . . . . . . . . . . . . . . . . . . . 38

6 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1 Liquid water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Molecular and crystalline systems . . . . . . . . . . . . . . . . . 45

8 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III Local Electron Correlation Methods with Density Fittin g in MOLPRO
Hans-Joachim Werner, Martin Schütz, Andreas Nicklaß 53
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Goals of the Project

Further development of quantum chemistry codes still involves both methodological devel-
opment and issues of parallelization in order to make these highly advanced techniques ap-
plicable to problems of so far unprecedented size. In particular the more closely hardware
related parallelization and optimization benefits largelyfrom the contributing disciplines
computer science and applied mathematics. It is not possible to simply scale up existing
methods or numerical procedures to arbitrary problem sizesincluding parallelization. The
aim is to reduce the complexity of the algorithms and to enhance the parallel scalability.
We need to understand that moving to ever larger system sizesor applying even more ac-
curate methods we will find ourselves confronted with not yetanticipated problems. On
the one hand it is important to decouple hardware and software development on the other
hand it is essential to exploit modern parallel computer architectures.

The goal of the reported joint research project between Research Centre Jülich (Paralleliza-
tion, Linear Algebra, CFMM), University of Karlsruhe (TURBOMOLE), ETH Zürich
(QUICKSTEP), University of Stuttgart (MOLPRO) and COSMOlogic (COSMO)was to
join forces and to focus on the improvement of the most promising methodologies and ap-
plication codes that will have substantial impact on futureresearch capabilities in academia
and industry in Germany. The selected programs and methodologies present diverse though
complementary aspects of quantum chemistry and their combination was aimed at syner-
getic effects among the different development groups. Thiswas a distinct feature of the
multidisciplinary HPC-Chem project. The ultimate target of all development efforts was
to increase the range of applicability of some of the most important electronic structure
methods to system sizes which arise naturally from many application areas in the natural
sciences.

Methods and programs developed within this project have been evaluated by the industrial
collaborators BASF AG and Infracor GmbH, and are being tested in NIC projects on the
Jülich supercomputer.

A brief overview covering the selected methodologies and quantum chemistry codes is
given in the following sections. Detailed discussions of the work carried out by the project
partners are found in the corresponding subsequent chapters.

1



Goals of the Project

DFT Functionality in TURBOMOLE
University of Karlsruhe

Density functional theory (DFT) based methods employing non-hybrid exchange-corre-
lation functionals are not only more accurate than standardHartree-Fock (HF) methods
and applicable to a much wider class of chemical compounds, they are also faster by orders
of magnitudes compared to HF implementations. This remarkable feature arises from the
separate treatment of the Coulomb and exchange contributions to the Kohn-Sham matrix,
which allows to exploit more efficient techniques for their evaluation. With DFT employing
hybrid exchange-correlation functionals this advantage is lost and only the (slower) tradi-
tional direct HF procedures are applicable. Thus, non-hybrid DFT is the natural choice for
electronic structure calculations on very extended systems, which are otherwise intractable
by quantum mechanical methods. However, as the exchange-correlation functional is un-
known, DFT suffers from the distinct disadvantage that, in contrast to more traditional
quantum chemistry methods, there is no systematic way to improve and to assess the accu-
racy of a calculation. Fortunately, extensive experience shows which classes of chemical
compounds can be modeled with good success.

TURBOMOLE’s competitiveness is primarily due to (i) the exploitation of molecular sym-
metry for all point groups in most modules, giving rise to savings roughly by the order of
the symmetry group, (ii) the resolution of identity (RI) technique which typically offers
savings of about a factor of hundred, and finally (iii) very efficient implementations of
integral evaluation and quadrature algorithms.

Within this project a multipole approximation to the RI technique has been implemented
for the energy as well as gradients with respect to a displacement of the coordinates of
the nuclei named Multipole Assisted RI-� procedure (MARI-� ). This method decreases
the effective scaling of the evaluation of the Coulomb term to approximately� ��� , where� is a measure of the system size, resulting in substantially reduced effort for structure
optimizations. Another important aspect of DFT calculations is the implementation of
(analytical) second derivatives with respect to the nuclear coordinates carried out in this
project. Infrared and Raman spectra are experimentally fairly readily accessible and con-
tain a great deal of information about the structure of the compound in question. The
actual assignment of the spectrum is often difficult and requires its simulation. The CPU
time consumption mostly stems from the evaluation of the Coulomb contribution to the
coupled perturbed Kohn-Sham equations. The RI-� approximation has been implemented
for the second derivatives with respect to the nuclear coordinates reducing the computation
time by roughly a factor of 2.5.

2



Goals of the Project

QUICKSTEP: Make the Atoms Dance
ETH Z ürich

The general statements regarding DFT given in the previous section apply to QUICKSTEP

as well. QUICKSTEP is a complete re-implementation of the Gaussian plane waves(GPW)
method as it is defined in the framework of Kohn-Sham density functional theory. Due to
the usage of plane waves, QUICKSTEP enforces periodic boundary conditions and is thus
somewhat complementary to the molecular TURBOMOLE code. Assuch, QUICKSTEP

does not make use of point group symmetry, but on the other hand it offers substantial ad-
vantages for the modeling of solids or liquids. QUICKSTEP exploits like plane wave codes
the simplicity by which the time-consuming Coulomb term canbe evaluated using the ef-
ficient Fast Fourier Transform (FFT) algorithm, which showsa linear scaling behavior. In
that way, the Kohn-Sham matrix is calculated by QUICKSTEP with a computational cost
that scales linearly with the system size. However, the expansion of Gaussian-type func-
tions in terms of plane waves also suffers from disadvantages, as strong spatial variations
of the density would lead to extremely long and uneconomic expansion lengths. This prob-
lem is alleviated like in plane wave methods by the use of atomic pseudo potentials for the
inner shells.

A new, fully modular and efficiently parallelized implementation of the GPW method in-
cluding gradients has been carried out. Gaussian basis setshave been specifically optimized
for the pseudo potentials of Goedecker, Teter, and Hutter (GTH). Since the traditional
wavefunction optimization step, which involves the diagonalization of the full Kohn-Sham
matrix, constitutes a substantial bottleneck for large calculations because of its cubic scal-
ing, two alternative schemes, pseudo diagonalization and orbital transformation, have been
investigated. The resulting performance data measured on the Jülich supercomputer Jump
are impressive. Turn-around times of approximately 100 seconds per molecular dynamics
(MD) step for a liquid water simulation of a unit cell with 256water molecules on 128
CPUs suggest substantial future potential. Also geometry optimizations for molecular or
crystalline systems up to approximately 300 atoms have beendemonstrated to be feasible
within a few minutes per geometry optimization cycle on 8 to 16 CPUs.

QUICKSTEP is part of the open source project CP2K which ensures continuation of the
development in the future.

Local Electron Correlation Methods with Density Fitting in MOLPRO
University of Stuttgart

Local electron correlation methods recognize that electron correlation, i.e. the difference
between the exact solution to the Schrödinger equation andits Hartree-Fock (mean-field)
approximation, is a short-range effect (in insulators) which decreases approximately with
the sixth power of the distance between two local charge distributions. The prohibitive

3
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costs of electron correlation techniques mainly originatefrom the use of the orthonormal,
canonical and delocalized HF molecular orbitals. Thus, central to the local electron cor-
relation techniques is the localization of the molecular orbitals and the decomposition of
the localized orbitals into spatially close subsets (orbital domains and pair domains) whose
size is independent of the extent of the molecule. Configuration spaces are constructed
by excitations within these domains thus reducing their number to O(� �). Introducing a
hierarchical treatment depending upon the distance of the orbital domains linear scaling
can be achieved. This strategy offers the possibility to enormously reduce the costs of
electron correlation techniques while maintaining the well-established hierarchy of wave-
function basedab initio methods. This approach succeeded in the development of local
MP2 and CCSD(T) methods with approximately linear scaling of the computational cost,
thus dramatically extending the range of applicability of such high-level methods. Still all
electron correlation methods suffer from the slow convergence of the electron correlation
energy with respect to the basis set size, thus somewhat offsetting the gain obtained by the
local treatment. This aspect has also been considered by implementing local� �� methods
which substantially improve the convergence behavior. It is remarkable, that for local MP2
the preliminary HF calculation, i.e. a conceptionally muchsimpler procedure, is the most
time-consuming step.

Within the HPC-Chem project these new local correlation methods have been parallelized,
density fitting approximations to speed up the integral evaluation have been incorporated
and the method has been extended by an open-shell formalism.In addition, local� ��
methods have been implemented. The bottleneck of evaluating the Hartree-Fock exchange
contribution has been much reduced by local density fitting approximations as well, lead-
ing to speedups by 1-2 orders of magnitude. All these so far unique and unprecedented
methods are part of the MOLPRO package ofab initio programs.

Parallel DFT in TURBOMOLE, Linear Algebra, and CFMM
Research Centre J̈ulich

The (re-)parallelization of the DFT code in TURBOMOLE aims specifically at further ex-
tending its range of applicability to very large systems by means of parallelization. In
fact, the implementation of the MARI-� method by the Karlsruhe group already allows for
very large clusters in serial operation provided sufficientmemory is available and rather
long turn-around times are acceptable while still being very small compared to standard
DFT or RI-� DFT. The master-slave concept is no longer adequate, memoryrequire-
ments have to be reduced substantially by use of distributeddata, and parallelization of
a much larger number of computational steps is required. In view of the fast methodologi-
cal development, serial and parallel code differ marginally in the actual quantum chemical
code while a specialized set of library routines supports maintenance, parallelization or
re-parallelization of existing code with little effort. The short hardware life cycle prohibits
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highly machine or architecture dependent implementations. The efficient exploitation of
point group symmetry by the TURBOMOLE code is fully supported in the parallel imple-
mentation.

Serial linear algebra routines have to be replaced in many cases by parallel versions, ei-
ther because the size of the matrices enforces distributed data or due to the cubic scaling
with the problem size. In some cases, the replacement by alternative algorithms is more
advantageous either due to better parallel scalability or more favorable cache usage.

The evaluation of a pairwise potential over a large number ofparticles is a rather widespread
problem in the natural sciences. One way to avoid the quadratic scaling with the number of
particles is the Fast Multipole Method (FMM) which treats a collection of distant charges
as a single charge by expanding this collection of charges ina single multipole expansion.
The FMM is a scheme to group the particles into a hierarchy of boxes and to manage the
necessary manipulation of the associated expansions such that linear scaling is achieved.

An improved version of the FMM employing more stable recurrence relations for the
Wigner rotation matrices and an improved error estimate hasbeen implemented. The im-
plementation is essentially parameter free: for a given requested accuracy the FMM spe-
cific parameters are determined automatically such that thecomputation time is minimized.
The achieved accuracy is remarkable and competitive.

In addition, the Continuous Fast Multipole Method (CFMM), ageneralization of the FMM
for continuous charge distributions, has been implementedand incorporated into the DSCF

module of the TURBOMOLE quantum chemistry package.

Conductor-like Screening Model
COSMOlogic

The treatment of solute-solvent interactions in quantum chemical calculations is an im-
portant field of application, since most practical problemsare dealing with liquid phase
chemistry. The explicit treatment of the solvent by placinga large number of solvent
molecules around the solute requires apart from electronicalso geometric relaxation of
the complete solvent-solute system yielding this approachrather impractical. Continuum
solvation models replace the solvent by a continuum which describes the electrostatic be-
havior of the solvent. The response of the solvent upon the polarization by the solute is
represented by screening charges appearing on the boundarysurface between continuum
and solute. They, however, cannot describe orientation dependent interactions between
solute and solvent. The particular advantage of the COSMO (Conductor-like Screening
Model) formalism over other continuum models are the simplified boundary conditions.

Within the HPC-Chem project COSMO has been implemented for the HF and DFT meth-
ods (including energies, gradients and numerical second derivatives) as well as for the MP2
energies.

5





DFT Functionality in TURBOMOLE

Reinhart Ahlrichs and Klaus May

Institute for Physical Chemistry
University of Karlsruhe

Kaiserstr. 12, 76128 Kalrsruhe, Germany
E-mail: Reinhart.Ahlrichs@chemie.uni-karlsruhe.de

1 Introduction

The remarkable success of quantum chemistry, which could not have been anticipated 30
or 40 years ago, is a good example for the growing importance of scientific computing.
This progress is clearly connected with the availability ofcomputers with ever increas-
ing performance at ever decreasing prices. Hardware is onlyone aspect, however, equally
important for the impressive achievements of quantum chemistry have been software de-
velopments aiming at novel modeling methods and improved algorithms, which together
resulted in great gains in efficiency. We thus have presentlyat our disposal an arsenal
of computational procedures which covers very accurate calculations for small molecules
(10 to 20 atoms) up to more approximate methods applicable toclusters with 1000 atoms.

Larger clusters are typically treated with DFT (density functional theory) methods employ-
ing functionals of GGA type (generalized gradient approximation), which have become
available only in the late eighties [1, 2, 3]. DFT-GGA calculations are more accurate than
HF (Hartree-Fock) and are applicable to a much wider class ofchemical compounds, such
as transition metal complexes for which HF very often fails;they are further 10 to 100
times faster than present-day HF routines and 100 to 1000 times faster than HF implemen-
tations of the 60s, i.e. before the invention of direct HF procedures (DSCF = Direct Self
Consistent Field) [4], efficient integral prescreening [5]and evaluation procedures.

The just given example demonstrates the benefits of softwaredevelopments but it also indi-
cates a problem: computational procedures often become obsolete after 5 to 10 years. This
then does not leave sufficient time for proper software engineering (to convert ’academic
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code’ to a product) required e.g. for parallelization. A second important aim of HPC-Chem
was, therefore, to better implement the parallelization ofTURBOMOLE to facilitate main-
taining the code and to increase efficiency, of course. The corresponding work was carried
out by project partners from Jülich and is described in the chapter IV.

The main goal of TURBOMOLE work packages within HPC-Chem wasto further increase
efficiency and functionality of the program as specified in the proposal. The work plan was
focused on the development of procedures especially tailored to the treatment of large
molecules. The results will be reported in this article. Thepresentation of results will be
preceded by a short description of TURBOMOLE and a brief account of the theoretical
background to prepare for the method developments described thereafter.

2 About TURBOMOLE

The Theoretical Chemistry group of Karlsruhe was (among) the first to seriously test and
exploit the use of workstations for molecular electronic structure calculations when the new
hardware became available in the late eighties. In a series of diploma and PhD theses an
available HF code was adapted to UNIX workstations with the aim to do large molecules
on small computers. Thanks to the algorithmic developmentsof the excellent students M.
Bär, M. Häser, H. Horn and C. Kölmel the ambitious projectwas completed successfully
and TURBOMOLE was announced in 1989 [6].

In the time to follow we have continuously added new featuresif they appeared promising
for the treatment of large molecules. The present program version 5.7 covers HF, DFT
[7], MP2 [8, 9] and CC2 [10] treatments of (electronic) ground state properties such as
energies, optimization of structure constants, chemical shifts of NMR, and nuclear vibra-
tions. Electronic excitations and time-dependent properties are covered by linear response
procedures for DFT (usually called TD-DFT) [11], HF (RPA-HF) [12, 13] and CC2 [14].
The implementations include optimizations of molecular structure for excited states on the
basis of analytical gradients. For more details the reader is referred to the user’s manual
(http://www.turbomole.com).

Let us finally mention the two essential features of TURBOMOLE which are the basis of
its competitiveness and strength - in the not unbiased view of the authors. The codes ex-
ploit molecular symmetry for all point groups in most modules (exceptions are groups with
complex irreps for NMR). This reduces CPU times by roughly the order of the symmetry
group, i.e. by a factor of about 12 for D�	 or D�
 , and a factor of 48 for O	. Most other
programs take only advantage of Abelian groups, i.e. D�	 and subgroups. The other spe-
cialty concerns the RI technique [15], for resolution of theidentity, which will be discussed
in the following section.
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3 Theoretical background: HF, DFT, and the RI
technique

3.1 HF and DFT

As a preparation for the subsequent sections it is appropriate to briefly sketch relevant
features of HF and DFT. These methods are of single referencetype and are fully specified
by the MOs�� and their occupation numbers
�. For the sake of simplicity we consider
only closed shell cases with
� = 2 for occupied MOs�� (and
� = 0 for virtual MOs��).
The total electronic energy of HF and DFT then includes the one-electron term� ���, the
Coulomb interaction of electrons� , the HF exchange� and the exchange-correlation term�� � of DFT �HF � � ��� � � � � (1)�DFT � � ��� � � � �� � � (2)

The DFT expression applies for non-hybrid functionals only, hybrid functionals include
part of the HF exchange, i.e. a term -�� � with � � �� � �. The evaluation of� ��� is
straightforward and fast.�� � is defined as a three-dimensional integral�� � � � ��  � � !" #� $ % &'" #� $ &� % ���( (3)" #� $ � ) *� &�� #� $ &� (4)

where
 � � specifies the actual functional employed. Eq. (3) is evaluated by numerical

integration (quadrature) and the procedure implemented inTURBOMOLE is efficient and
numerically stable [7], the CPU time increases linearly with molecular size for large cases,
i.e. an+ (N) procedure, as demonstrated below.

For DFT it remains to consider� , which is defined as� � �) � �� " #� �$" #�� $ &� � � �� &,� � (5)

The evaluation of� is typically the most demanding part of DFT treatments. Withthe
usual expansion of�� in a set of basis functions

 - #� $�� #� $ � *-  - #� $�- � (6)
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one gets the density" and the density matrix." #� $ � *-/ 0-/  - #� $ / #� $ (7)0-/ � ) *� �-��/� (8)

and� � �) *-/12 0 -/012 #34 &56$ (9)� � �7 *-/12 0 -10/2 #34 &56$ (10)#34 &56$ � �  - #� �$ / #� �$ 2 #�� $ 1 #�� $ &� � � �� &,��� (11)

where� is given for completeness. The MOs are now specified by the coefficients�-� and
the chosen basis set, of course. Optimization of8 within the variation principle yields the
HF and Kohn-Sham (KS) equations to be solved9-/ � :�:0-/

(12)*/ 9-/�/� � ;� */ <-/�/� (13)

where= denotes the overlap matrix.

In HF one evaluates� and� together, it is a great advantage of DFT that� does not occur
in (2). Since only� has to be treated other procedures - than (9) - can be considered, and
this has been done from the very beginning of DFT or X> theory.

3.2 RI technique

One of the successful procedures [16, 17] was to approximate" in terms of an auxiliary or
fitting basis P " #� $ ? @" #� $ � *A �A B #� $ � (14)

The free parameters�A are obtained from a least squares requirement� " � @" &" � @" C� D E
 (15)

which yields *A � F &B C �A �� F &" C � (16)
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It remains to specify the scalar product occurring in the last two equations. A careful
analysis by Almlöf et al. has identified the best choice [18]�  &G C� �  #� �$G #�� $ &� � � �� &,��� � (17)

Straightforward algebra then yields� � �) � " &" C? @� � �) *A HI � " &B C� B &F C,�� F &" C (18)

where� B &F C,� denotes matrix elements of the inverse of� B &F C , and all scalar
products are understood to be as in (17). The form of (18) has lead to the label RI (for
resolution of the identity) for this technique.

With the basis set expansion for", Eq. (7), it then remains to compute as the essential term� " &B C� *-/ 0-/ �  -  / &B C � (19)

The formal+ (NJ) behavior of (9) is thus replaced by a formal+ (N�) scaling in (19) lead-
ing to considerable savings in CPU time [15]. With the usual choice of Gaussian basis
functions one can neglect

 -  /
if the corresponding centers are sufficiently far apart; the

number of significant products
 -  /

thus increases for large molecules only as+ (N). This
results in an asymptotic+ (N�) scaling for RI and conventional treatments - with a much
smaller prefactor for the RI technique.

Although the RI procedure had been implemented in various DFT programs, its accuracy
had not been systematically tested since the programs couldonly compute @� and not the
rigorous expression (9) for� . It was also unsatisfactory that the important auxiliary func-
tionsB had not been carefully optimized.

We therefore started a major effort to carefully optimize auxiliary basis sets for atoms
across the periodic table and to document the errors caused by the RI technique [15, 19].
This firmly established reliability, it also increased efficiency since optimized sets do not
only guarantee more accurate results, they can often be chosen smaller than ’guessed’
bases. The Karlsruhe auxiliary basis set are now available for different accuracy require-
ments for RI-DFT and also for RI-� [20], RI-MP2 and RI-CC2 calculations [21, 22, 23],
which will not be discussed here - but these bases are made available for other projects
within HPC-Chem. There appear to be no other auxiliary basissets which are comparable
in accuracy and efficiency.

3.3 Gradients

Until now we have considered so called ’single point’ calculations which yield the molec-
ular electronic structure (occupied MOs��) and the electronic energy for given nuclear
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coordinates. It is not possible, however, to determine the most important molecular proper-
ties efficiently on the basis of single point calculations. As an example consider molecular
equilibrium geometries, i.e. structures of one (or more) isomers of a molecule defined as� K � ���L � � (20)

where
L

denotes structure constants, e.g. coordinates of nuclei. An attempt to locate struc-
tures by single point calculations would hardly be feasibleeven for small molecules with
ten degrees of freedom,

 
=10.

A solution to this problem was achieved by analytical gradient methods, which evaluate� K simultaneously for all degrees of freedom [24]. The computation of � K is surprisingly
simple in principle, if one recalls that E depends explicitly only on

L
(location of nuclei

including the centers of basis functions) and on the densitymatrix, i.e. � � � #L % . $,
where. depends implicitly on

L
. Thus���L � :�:L � :�:. M :.:L � (21)

The first term can be straightforwardly treated since its structure is similar to the evaluation
of � in a single HF or DFT iteration, only the effort is about threetimes larger. The second
term can be transformed since one has solved a HF or KS equation before, i.e. one exploits
that MOs�� have been optimized and are orthonormal:�:. M �.�L � �N�O =K (22)

where=K denotes the derivative of the overlap matrix andO the ’energy weighted’ density
matrix P-/ � ) *� ;� Q- � Q/� � (23)

With the capability to compute� K it is a standard task to locate in an iterative procedure
structures that fulfill (20):

1. starting from a reasonable guess
LR

for
L

2. solve the HF or DFT equations to get optimized MOs

3. compute� K
4. relax the structure

LR S L
, e.g. by conjugate gradient methods

5. repeat until convergence.

The development of efficient gradient procedures together with reliable and stable relax-
ation methods was decisive for the success of quantum chemistry. Since convergence of the
relaxation procedure is typically reached within

 
/2 cycles (often less, rarely more), and

since the computation of� K is (often much) faster than a DFT or HF calculation, structure
determinations, which are the bread and butter of quantum chemistry, have become routine.
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4 The MARI- U (Multipole Assisted RI-U ) procedure

It has already been mentioned that the RI-� method is an+ (N�) procedure for large
molecules, e.g. more than 100 atoms, whereas the other demanding computational task,
the evaluation of�� � , scales as+ (N). It was the aim of this project to increase efficiency
of the RI-� procedure by exploiting the multipole expansion for the Coulomb interaction
of (non-overlapping) charge distributions. Since detailsof the rather technical derivations
have been documented in a publication [25] we will only sketch our approach.

The multipole expansion deals with the Coulomb interactionof two charge distributions" �
and"� , provided they do not overlap. Let" � be centered around A and"� around B. We
then compute the moments of" � asVAWX � � " � #� $+ WX #� � A $�� (24)+WX #Y $ � &Y &W#Z � &D &$ [B WX #\]^ _ $`,�X a

(25)

whereBWX denote associated Legendre polynomials, and similarly for
VBWX referring to"� .

One then gets � "� &"� C � *Wb cX VAWX d Web HXec #f $VBb c (26)dWX #f $ � #Z � &D &$ [&f &We � B WX #\]^ _ $`�Xa
(27)

wheref denotes the vector pointing from A to B:f � B-A, and the angles_ and� of
respective vectors are defined in an arbitrary fixed coordinate system. Eq. (26) effects a
separation of Coulomb interactions between" � and"� if they do not overlap.

The computation of� " &B C, Eq. (19), is the only demanding task within RI-� , and we
apply the multipole expansion to accelerate the evaluation. For this purpose we decompose" into contributions associated with nuclei N, which are additionally characterized by an
extensioǹ " � *g Hh "g Hh � (28)

We then compute the moments
Vg HhWX from (24), where we have put" � = "g H� and have

chosen for A the position of nucleus N. The auxiliary functions B are by construction
atom-centered and are further chosen with angular behavioras spherical harmonics; the
evaluation of the corresponding moment

VB i Hhb Hc is thus trivial.

The crucial point of this procedure is the decomposition (28), which is based on a detailed
consideration of products of basis functions

 -  /
. Depending on the actual case the product
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is associated with the nuclei N at which the steeper functionis centered, and an appropriate
extension established. One then has to look at individual� "g Hh &B C. If the charge
distributions"g Hh andB are well separated, for which we have introduced a new and strict
test, one uses the multipole expansion, the so called ’far field’ (FF) contribution� "g Hh &B C

FF� * Vg HhW HX d heb HXec #f $VB i Hhb Hc (29)

wheref points from nucleus� to B . For the remaining terms one cannot apply this
formula since the charge distributions penetrate and one bas to use for this ’near field’
(NF) part the conventional integral code:� "g Hh &B C

NF� usual integrals� (30)

Our aim is to define parameter sets for the MARI-J method that yield the shortest CPU
times while maintaining errors due to the multipole expansions at a minimum level, be-
low the errors of the RI-J approximation. We specify two parameter sets, which incur the
shortest CPU times while maintaining a minimum precision for each calculated molecule
corresponding to 1j10,� and 1j10,J �h, respectively. They are hereafter referred to
simply as the high- and low-precision sets. Table 1 lists errors obtained for the largest
molecules studied, specified in more details below. The errors are evaluated by comparing
converged total MARI-J energies with results of full RI-J calculations. Using the high-
precision parameter set yields errors below 1.0j10,� �h, which corresponds to no more
than 1.0j10,k �h per atom for the largest molecules in the series. As expected, the small-
est errors, less than 1j10,l �h, are observed for two-dimensional graphitic sheets and for
relatively low-density zeolite clusters. Using the low-precision set gives errors lower than
1j10

,J �h, which amounts to no more than 1j10
,l �	 per atom for the largest systems.

For the insulin molecule, the high-precision MARI-J calculation yields total energy differ-
ing 1.3j10,m �h from the full RI-J calculation. Surprisingly, the low-precision calculation
yields a difference of only 2.2j10,m �h. This is a similar result as for the zeolite fragments
and shows that the low-precision MARI-J calculations are accurate enough for most appli-
cations. Only for dense three-dimensional systems, or systems with very diffuse basis sets
one should consider using the high-precision parameter set. We conclude that the errors
introduced by the multipole expansions are negligible compared to the errors of the RI-J
approximation itself, incomplete basis sets and numericalintegrations.

4.1 Demonstrative tests

This section describes the application of the MARI-J method to some model systems:
graphitic sheets, zeolite fragments and insulin molecule (Figure 1). We believe that this
choice of the systems corresponds more to the problems that DFT methods are typically
applied to than the usual one and two dimensional model systems used to test the+ #� $
algorithms.
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Figure 1: Schematic draw of the insulin molecule used for ourcalculations.

All DFT calculations employ the Becke-Perdew (BP86) exchange-correlation functional
[26, 27, 28]. Unless specified otherwise we use split-valence basis sets with polarization
functions on all non-hydrogen atoms, denoted SV(P) [29] andcorresponding auxiliary
bases [15, 19]. To determine the differences of total energies between the MARI-J method
and full RI-J treatment the DFT energies are converged better than 1j10,�R �h and the
numerical integrations use grid 3 (see Ref. [7] for details). For the timing runs the energy
convergence criterion is set to 1j10,� �h and numerical integrations use grids m3 and
m4[7, 19]. Whereas grid m3 is recommended for smaller molecules grid m4 should be
used for larger ones. All calculations are performed on an HPJ6700 workstation with a
PA RISC HP785 processor (750 MHz) and 6 GB main memory.

4.1.1 Model systems

The 2-D series of graphitic sheets, C�n oH�n , 
 � ) % � � � % �), all in D6h symmetry, have C-C
and C-H bond lengths set to 1.42 and 1.0Å, respectively. These are similar models as used
by Strain et al.[30] and Pérez-Jordá and Yang[31] to assesperformance of their multipole-
based methods. The largest sheet used in this study, Cm�JHl� , contains 12240 basis and
32328 auxiliary basis functions.
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Table 1: Selected results for the largest model systems studied. Number of atoms (pat), number of basis
functions and auxiliary basis functions (pbf), CPU times (min) per iteration for the NF (qNF) and FF (qFF)
portions of the MARI-J calculations and the full RI-J treatment (qRI-J), and absolute errors in the total energies
(rh) compared to the full RI-J calculations (srMA ). Results for high- (hp) and low-precision (lp) MARI-J
calculations (see text for details). For comparison CPU timings for grid construction (grid m4) are given
(qgrid).

Graphitic
sheets

Zeolite
fragments

Insulin
molecule

Composition Cm�JHl� Sik�O� ��HJm C�t�H�m�Ol�N�tS�Zn
Symmetry D6h C1 C1�at 936 360 787�bf 12240 4848 6456�bf (aux) 32328 12072 16912NNF (hp) 4.9 11.5 35.1NFF (hp) 2.3 1.26 3.4NNF (lp) 4.1 8.1 25.3NFF (lp) 1.6 0.9 2.3NRI-J 33.7 58.6 147.8u�MA (hp) 1.6j10,m 6.3j10,m 1.3j10,mu�MA (lp) 6.1j10,t 2.6j10,l 2.2j10,mNgrid (m4) 18.1 30.3 47.0a

The fragments of pure-silica zeolite chabazite are constructed from the experimental crys-
tal structure [32]. We take a unit cell consisting of a doublesix-membered silica ring unit
and create zeolite fragments containing between one and eight such units, all in C� symme-
try. The dangling Si-O bonds are saturated with hydrogen atoms. The coordinates of the
insulin molecule (Figure 1), [33] in C� symmetry, are taken form the PDB database [34]. It
comprises 787 atoms, 6456 basis and 16912 auxiliary basis functions. Table 1 summarizes
the largest molecules calculated in this study. The coordinates of all structures are available
in internet underftp://ftp.chemie.uni-karlsruhe.de/pub/marij.

4.1.2 Timings and scaling

First, we would like to comment on the often cited+ #� � $ computational effort of the
RI-J method due to the density fitting step, i.e. solution of Eq. (16). The TURBOMOLE
implementation of the RI-J method is based on a very fast Cholesky decomposition of the
positive definite matrix� B &F C. For symmetric molecules the times needed to calculate
the fully symmetric part of two-center repulsion integrals� B &F C and following Cholesky
decomposition are negligible. For the insulin molecule with C� symmetry, 787 atoms and
16912 auxiliary basis functions this step takes approximately 20 min, and is done only once
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at the beginning of the SCF procedure for both RI-J and MARI-J calculations. For most
of the practical calculations the cost and scaling behaviorof the RI-J method is determined
by the calculation of three-center Coulomb integrals. For very large systems methods can
be implemented which reduce the computational cost of the density fitting step even below+ #� � $ [35, 36].

Figures 2 and 3 show CPU times per SCF iteration for the systemseries studied using the
RI-J and MARI-J methods and Table 1 summarizes results for the largest molecules. For
comparison, the times needed for evaluation of exchange-correlation energies with grids
m3 and m4 are also shown. These timings do not include the costs of the grid formation,
which is done only once at the beginning of the SCF procedure.Table 1 shows timings of
this step for the largest molecules. In most cases the application of the MARI-J method
allows one to reduce the computational effort for the Coulomb term to a level comparable
to the calculation of the exchange-correlation energy. TheMARI-J method shows the best
performance for two-dimensional graphitic sheets and zeolite fragments. For the largest
graphitic sheet the CPU times are reduced 4.7 and 5.9 times for high and low-precision
parameters sets, respectively, as compared to the full RI-J calculation. A similar reduction
of the CPU times (factors 4.6 and 6.5) is observed for the largest zeolite fragment. For the
insulin molecule we obtain 3.8 and 5.3-fold speedups.

For all systems studied the “crossover point” with full RI-J treatment is reached already for
the smallest systems. For graphitic sheets and zeolite fragments the MARI-J calculations
are already faster at about 250-350 basis functions, depending on the accuracy. A few
test calculations on even smaller systems show that the MARI-J does not introduce any
significant overhead compared to the full RI-J treatment.

The influence of the required precision on the CPU timings forthe MARI-J method de-
pends on the system studied. For graphitic sheets, zeolite clusters and diamond pieces the
difference between CPU times for high and low-precision MARI-J calculations is about
30%.

Table 1 also shows a comparison of the CPU times for NF and FF portions of the Coulomb
calculations for the largest systems in each series. Although only a few percent of the
three-center ERIs are evaluated analytically the NF part still dominates the calculations.
For the molecules with C� symmetry the FF part of the MARI-J calculations takes 10%
or less of the CPU time for the Coulomb part. For symmetric molecules the CPU times
for the FF part increase to 20-30 %. The current implementation of the MARI-J method
does not fully take advantage of symmetry in the calculations of the FF part. Symmetry
implementation in all parts of the MARI-J algorithm should reduce these times but would
only slightly influence the total calculation times.

We note, that all calculations reported here employ the standard SCF procedure, and the
diagonalization of the Fock matrix is not a dominant step. For the insulin molecule the
average CPU times per SCF iteration are 42, 17, and 39 or 28 CPUminutes for the diago-
nalization, exchange-correlation, and high- or low-precision MARI-J steps, respectively.
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Calculation
Graphitic

sheets
Zeolite

fragments

Full RI-J 2.00 2.11
MARI-J Total 1.44 1.54

high precision NF 1.41 1.54
FF 1.49 1.52

MARI-J Total 1.47 1.56
low precision NF 1.45 1.57

FF 1.51 1.45
XC (m4) 1.23 1.33
XC (m3) 1.23 1.34�dist 1.09 1.20

Table 2: Scaling exponents of different steps for the computation of the Coulomb and exchange-correlation
(grids m3 and m4) terms. For comparison the scaling exponents of significant shell-pairs of basis functions
(pdist) are also shown.

Figure 2: CPU time per SCF iteration for calculation of the Coulomb term versus the number of basis
functions in a series of graphitic sheets, CvwxHvw , y z { | } } } | ~{. Results for full RI-J calculations and
MARI-J with high- (hp) and low-precision (lp) parameters sets. Forcomparison CPU times needed for
evaluation of exchange-correlation energy (� � ) with grids m3 and m4 are included.
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Figure 3: CPU time per SCF iteration for calculation of the Coulomb term versus the number of basis
functions in a series of zeolite fragments. Results for fullRI-J calculations and MARI-J with high- (hp) and
low-precision (lp) parameters sets. For comparison CPU times needed for evaluation of exchange-correlation
energy (� � ) with grids m3 and m4 are included.

Table 2 shows scaling exponents of different calculation steps for the systems studied.
They are obtained by a logarithmic fit using results for the largest molecules in each se-
ries. As expected the exponents for the full RI-J calculations are close to 2.0 and are larger
for dense three-dimensional systems than for graphitic sheets and zeolite fragments. The
scaling exponent is reduced to about 1.5 for MARI-� , and that for�� � is about 1.3, i.e.
we have nearly linear scaling. As expected, the scaling exponents of the RI-J calculations
are closely related to the scaling exponents of numbers of significant products of basis
functions comprising the electron density as shown in Table2. The thresholding procedure
applied to multipole moments, as described in [25], significantly reduces the formal+ #� � $
scaling behavior of the FF part of the MARI-J calculations. The scaling exponents are low-
ered by more than 0.5. For zeolite fragments and diamond pieces changing from high- to
low-precision parameter set lowers the scaling exponents for the FF part. For graphitic
sheets the scaling exponent increases slightly when going from high- to low-precision pa-
rameters. It is difficult to saya priori whether increasing the precision of the MARI-J
calculations causes also increases in the scaling exponentof the FF part.
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Figure 4: Comparison of timing for various parts of gradientcalculations for graphitic sheets

4.2 MARI- � Gradient evaluation

Geometry optimization require a succession of energy and gradient calculations, and it is
highly desirable to take advantage of the multipole expansion in both steps. The imple-
mentation of the MARI-� gradient is a demanding technical task. We will thus not go
into the details [37] and will merely report the results of our efforts. In Figure 4 we show
a comparison of CPU times for various parts of the gradient calculations for the case of
graphitic sheets. The state of affairs is even better than for the energy calculation: timings
for the Coulomb term� are reduce by a factor of 15, they are now comparable to the� �
term.

5 DFT second analytical derivatives

We have already pointed out that first order derivatives� K can be computed faster than
the energy in HF or DFT, and that this is vital for daily routine in theoretical treatments of
molecules. Even more useful would be the knowledge of secondderivatives, the so called
Hessian. �K� � ����L �� � (31)
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The Hessian determines if a given stationary point, Eq. (20), is a local minimum specifying
an isomer, or a saddle point which characterizes a transition state of a reaction, provided
only one eigenvalue of� is negative. From the Hessian one also gets quite directly the
frequencies of infra-red (IR) and Raman spectra within the harmonic approximation.

The explicit expression for

�K� is best obtained by differentiating
�
K , Eq. (21) to Eq. (23),
once more with respect to a second coordinate

��K� � ��� �:�:L � N�O =K� � (32)

The detailed formulae, which are quite lengthy, need not concern us here; the most impor-
tant aspect of (32) is that one now has to compute the perturbed MOs, i.e. 

K �- � � � K- �.
This leads to the so called coupled perturbed HF or KS equations (CPHF or CPKS) which
are typically solved in the following way. One expresses theperturbed MO in terms of the
unperturbed ones with the help of a transformation matrix�K ,� K-� � *� �/� � K�� (33)

which is determined by HF-type equations#;� � ;� $ � K�� � 7��� �� K � � f� < K�� (34)�� H� �� � � � *��-/12 �-� �/��1��2� M � #34 &56$ �  � � -/12 � d ��� (35) � � -/12 � �) � : �: "� �- �/ �1�2�� (36)

The technical details are complicated but the essential point is that one necessarily has to
solve a CPHF or CPKS equation for every degree of freedom

 
, i.e. the evaluation of the

Hessian is at least
 

times as expensive as a single point or a gradient calculation. Since
 

increases linearly with molecular size,
 � + (N), the computation of the Hessian is+ (N�).

This is+ (N) more than for the gradient� K but one also gets O(N) more information. We
have demonstrated above that energy and gradient calculations can be done with about+ (N) effort - but second derivatives can presently only be treated for molecular sizes for
which the reduced scaling does not apply.

The challenge in the development of DFT or HF implementations is not only computa-
tional demands, it is also algorithmic complexity, since one really has to cope with lengthy
expressions. Our plan was originally to start from the second derivatives HF code of
TURBOMOLE and to add DFT. It was decided, however, to restructure the existing code
which would have lead to efficiency problems for systems with50 or more atoms.

Our implementation of DFT second derivatives has been described in a publication together
with some applications to demonstrate efficiency and accuracy [38]. The code shares some
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general features with other programs, e.g. GAUSSIAN, such as integral direct and multi-
grid techniques for the CPKS equations, and inclusion of weight derivatives in the quadra-
ture. Other features to increase efficiency appear to be unique for TURBOMOLE.

The iterative solution of CPKS is based on a preconditioned conjugate gradient method
with subspace acceleration, i.e. all solution vectors are developed in a single subspace
which is enlarged in each iteration. This guarantees good convergence: typically four to
six iterations suffice to push the residual norm below the target of 10,t.
We decompose the space of

 
internal coordinates into irreducible subspaces (of the molec-

ular symmetry group). This reduces memory and disc storage requirements since occurring
matrices are symmetry blocked, which also facilitates treatment of CPKS and enhances ef-
ficiency. It is a further advantage that the evaluation of theHessian can be limited to certain
irreps, e.g. those corresponding to IR- or Raman active modes.

All following results were obtained by force constant calculations using the new TURBO-
MOLE moduleAOFORCE with the BP86 DFT-method. We employed an SV(P) (split
valence plus polarization except at hydrogen) [29] basis set. To give an impression of com-
putational cost for systems of different size and symmetry,we display in Table 3 total CPU
times (wall times do not differ by more than 2 %) and their mostimportant components
in benchmark calculations on several hydrocarbons. The molecules treated are n-alkanes
(of formula�t� �� to ��l�l�), planar graphitic sheets (which results in compositions from���� to �Jm� �m), and diamond like�� � carbon clusters (starting with adamantane,� �R� �� ,
and creating further clusters by adding larger sheets from one side up to�t��t�). The alka-
nes were treated in their��� structure, the aromatic sheets in0�	, and the diamond clusters
in �
. The CPKS equation solver needed four iterations for each alkane and diamond clus-
ter and five iterations for each aromatic sheet, thus matrices � �d �� � � had to be formed six
times for each of the first and seven times for the latter compounds. As can be seen, the
total CPU time increases approximately as+ #� � $ for larger systems, which is due to the
evaluation of the Coulomb part of� �d �� � � discussed above Eq. (35). The effort for first
weight derivatives needed in both  �� � and� ����K � 1 is negligible. For smaller molecules,
the DFT quadrature in  �� � is clearly more expensive than the differentiated four-center
integrals - in larger systems like�Jm� �m these two contributions exhibit similar timings.

As a demonstration for the ’IR-only’ and ’Raman-only’ option we have treated fullerene��R , again on AMD-Athlon, 1.2 GHz:��R (¡	), 900 BF all irreps t=3.40 h� �¢ (IR) t=1.21 h£¤
and

�¤
(Raman) t=1.61 h

1r ¥¦§¥¨ § z © xª© «©¨ , ¬ ¥¦§ z ©­©¦ which is a contribution to the®¯ ° ¦±² in Eq. (34)
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Table 3: CPU times and its most important constituents (in hours) on AMD-Athlon (1.2 GHz, 768 MB
RAM) for BP86/SV(P) force constant calculations of variousclasses of hydrocarbons.³ denotes the number
of degrees of freedom andpBF the number of basis functions. For the definition of the particular CPU time
contributions see text.

molecule
 �BF � �d �� � �   �� � � ����K � total

linear alkanes (��� )�t� �� 45 99 0.04 0.02 0.03 0.09� ����m 117 251 0.54 0.16 0.24 0.95����JJ 189 403 2.27 0.41 0.68 3.51��k��R 261 555 5.60 0.82 1.40 8.32��l� l� 333 707 10.37 1.46 2.37 15.47
aromatic sheets (0�	)���� 30 102 0.02 0.01 0.02 0.04� ��� �R 72 260 0.36 0.13 0.23 0.73��R� �J 126 478 2.76 0.58 1.11 4.58�Jm� �m 192 756 12.21 1.90 3.40 18.24
diamond clusters (�
)� �R� �� 72 182 0.07 0.04 0.03 0.15������ 168 454 1.63 0.38 0.45 2.64�t��t� 303 869 13.48 2.52 2.47 20.48

5.1 Implementation of RI-� for second derivatives

We have so far considered the computation of analytical second derivatives in general and
have pointed out that the most demanding task is the solutionof CPKS equations. In
each CPKS iteration one has to evaluate a Coulomb term� (and for hybrid functionals an
additional exchange term� ), which dominates CPU times. The computational effort can
be reduced if� is treated by the RI-� technique for non-hybrid functionals. This concerns
actually only the first term in Eq. (35), which includes a Coulomb matrix´ � @� ��-/ � @� � � *12 #34 &56$ @d 12

(37)@� � 8� 8µ (38)

where8 is the MO coefficient matrix from Eq. (6). With RI-� we get�-/ � @� � ? @�-/ � @� � � *A I12 #34 &B $ #B &F $,� #F &56$ @d 12
(39)

The replacement of́ by @́ requires ’only’ to import the RI-� machinery into the
AOFORCE module.

Our implementation of RI-� for second analytical derivatives is described in a publication
[39], which documents reliability and efficiency of RI-� for this purpose. CPU times for
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the evaluation of� are reduced to about 10%, which is not as spectacular as for energy
or gradient calculations. The reason for this is simple: ourCPKS solver treats a set of
CPKS equations simultaneously and two-electron integrals(the most expensive part) are
evaluated only once for the entire set. Total timings are typically reduced by a factor 2.5,
the bottleneck is now in the treatment of�� � , i.e. in the second term in Eq. (35), which is
believed to be efficiently implemented.

5.2 Demonstrative tests

5.2.1 Indinavir

For this more realistic system (����Jl¶ t·J,  
=270,� � symmetry) we carried out BP86

partial RI-� DFT second nuclear derivative calculations. On Intel Xeon (2.4 GHz) com-
puters, we obtained the following timings:

SV(P), 769 basis functions ��¢¸ �d � �
: 3.2 h tot. CPU�¢¸ : 25.7 h

TZVP [40], 1182 basis functions ��¢¸ �d � �
: 8.8 h tot. CPU�¢¸ : 74.2 h

Indinavir has some floppy modes with frequencies below 10 cm,�. This requires a careful
structure optimization since otherwise the computed frequencies can be imaginary, i.e.? E¹ cm,�. We recommend to include derivatives of quadrature weightsin the structure
optimization to make sure the energy minimum has been accurately located and to avoid
spurious imaginary frequencies.

5.2.2 Cyanocobalamin

As a last example we report timings for the computation of thesecond derivatives of cyano-
cobalamin (vitamin B12, C��HmmN�JO�JPCo,

 
=537,� � symmetry). Using again an SV(P)

basis, 1492 basis functions, and grid m4 the calculation took 18 days and 22 hours. In this
case it was decided to use grid m4 (instead of the coarser gridm3), since for systems
exceeding about 50 atoms we generally recommend to use a finergrid. The RI-� part re-
quired just 13% of the total time. Matrix algebra, e.g. Eq. (38) accounts only 3% of the
CPU time.

In Figure 5 we present a comparison of the experimental solidstate infrared absorption
spectrum [41] with the one computed in this work. For this purpose we broadened the
computed lines by 30 cm,� and scaled globally the intensities to roughly match experi-
ment reported in arbitrary units. The line at 2152 cm,� corresponds to the CN stretch of
the central CoCN group in good agreement with experiment. At2731 cm,� we find an
intramolecular OM M MH-O mode, around 3170 cm,� are various NH stretches, which are
all localized at the molecular surface. These modes are affected by intermolecular inter-
actions causing frequency shifts and broadening, as shown by experiment. Even the peak
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Figure 5: Comparison of the experimental solid state absorption infrared spectrum of cyanocobalamin (solid
line) [41] with the one computed in this work (dashed line).

at 1754 cm,�, again at the surface of B12, should be affected by packing effects. The
detailed assignment of vibrations resulting from the theoretical treatment thus shows that
information provided by solid state spectra is limited. This conclusion also holds for the
IR spectra reported in polar solvents D�O, ethanol and 75% glycerol [42]. There are three
peaks denoted B, C and D between 1530 and 1680 cm,�. In this range we find numerous
modes including surface modes affected by solvation.

6 Summary

We have developed and implemented the MARI-� technique in the TURBOMOLE mod-
ulesRIDFT andRDGRAD, which serve to optimize wavefunctions and to compute forces
on the nuclei within DFT. This has considerably reduced the effort to deal with the in-
terelectronic Coulomb repulsion� , which was the dominating step before. Since larger
molecules - with more than 100 atoms - are mainly treated by DFT, and since most CPU
time is typically spent in the modulesRIDFT andRDGRAD, which are required in the
iterative procedure to determine molecular structures, wehave greatly increased the ef-
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ficiency of TURBOMOLE. The gains are especially pronounced for larger systems with
more than 300 atoms, and up to 1000 atoms are now feasible, seeFigures 2-4.

The other important project concerned the extension of functionality. The module
AOFORCE can now deal with second analytical derivatives within DFT.This was not
implemented before.AOFORCE was completely redesigned, it is now efficient for closed
and open shell states treated by HF and DFT. As demonstrated above, see e.g. Figure 5,
one can now even compute IR- and RAMAN-frequencies for molecules with more than
100 atoms.

All timings reported in this work and the corresponding publications are conservative in the
following sense. Shortly after the HPC-Chem project ended but in direct connection with
it, the present authors have redesigned the integral routines computing� " &B C in RI-�
energy and gradient calculations, which are also called in all other modules employing the
RI technique. This has increased efficiency, CPU times for the NF part of MARI-� are
reduced by 30 % compared to the timings reported in Table 1.
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1 Introduction

During the last decade density functional theory (DFT) has become a very efficient tool for
electronic structure calculations. DFT methods were successfully applied to many prob-
lems in different fields ranging from material science to chemistry and bio-chemistry. Most
of the applied methods use either plane waves or Gaussian-type functions for the expan-
sion of the Kohn-Sham orbitals. Both types of basis functions have their own merits.
Plane waves provide from the beginning an orthogonal basis set and are independent of the
atomic positions which makes the force calculation very simple. Moreover, the calculation
of the Hartree (Coulomb) potential can be efficiently performed by fast Fourier transforma-
tion (FFT). Unfortunately, there are also some disadvantages. The strong variations of the
wave function close to the nuclei require a huge number of plane waves. Atomic pseudo
potentials are usually employed to alleviate this problem,but for many applications the
number of plane waves is still large. Furthermore, the wholespace is equally filled with
plane waves and therefore each point in space is described with the same accuracy, but this
feature of the plane waves turns out to be rather inefficient for systems of low density like
biological systems where the homogeneous description of empty and atom-filled regions
results in a waste of basis functions and thus computer time.By contrast, Gaussian-type
functions localized at the atomic centers are much more efficient in this respect, since they
provide a more compact description of the atomic charge densities and basically there is no
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need to employ atomic pseudo potentials. Nevertheless, Gaussian-type functions have also
some disadvantages. The force calculation is more complicated, the Hartree term usually
requires the computation of a large number of multi-center integrals, and possibly basis set
superposition errors have to be considered. The Gaussian plane waves (GPW) method [1]
tries to combine the merits of Gaussian-type functions and plane waves. In that way it be-
comes feasible to build the Kohn-Sham operator matrix with acomputational cost scaling
linearly for a growing system size.

A new implementation of the GPW method, called QUICKSTEP, was performed within the
framework of the HPC-Chem project [2]. The goal of the project was to implement the
GPW method in a fully modular and efficiently parallelized manner. QUICKSTEP is part
of the open source project CP2K [3, 4] which ensures the continuation of the development
even after the end of the HPC-Chem project. The next section will provide a short outline
of the GPW method followed by a description of the pseudo potentials and the Gaussian
basis sets employed by QUICKSTEP. Finally, the accuracy and the efficiency of the new
parallelized QUICKSTEP implementation will be shown.

2 Gaussian and plane waves method

The energy functional for a molecular or crystalline systemin the framework of the Gaus-
sian plane waves (GPW) method [1] using the Kohn-Sham formulation of density func-
tional theory (DFT) [5, 6] is defined as� �
� �� T �
 � � � V �
� � � H �
 � � � XC �
� � � II (1)� */- B/- º»/ #¼ $ & � �) '� &»- #¼ $½� */- B/- º»/ #¼ $ &¾ PP

loc
#� $ &»- #¼ $½� */- B/- º»/ #¼ $ &¾ PP

nl
#¼ % ¼ ¿ $ &»- #¼ ¿ $½� )À V *Á @
Â #Ã $ @
 #Ã $Ã �� � Ä
 #¼ $ ÅXC �Ä
� �¼� �) *Æ ÇÈÉ ÊÆ ÊÉ&Ë Æ � Ë É &

where� T �
 � is the kinetic energy,� V �
� is the electronic interaction with the ionic cores,� H �
� is the electronic Hartree (Coulomb) energy and� XC �
� is the exchange–correlation
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energy. The interaction energies of the ionic cores with chargesÊÆ and positions
ËÆ is

denoted by� II . The electronic interaction with the ionic cores is described by norm-
conserving pseudo potentials with a potential split in a local part

¾ PP
loc

#� $ and a fully non-
local part

¾ PP
nl

#¼ % ¼ ¿ $ (see section 3).

The electronic density 
 #¼ $ � */- B/- »/ #¼ $»- #¼ $ (2)

is expanded in a set of contracted Gaussian functions»/ #¼ $ � *� ��/G� #¼ $ (3)

whereB/-
is a density matrix element,G� #¼ $ is a primitive Gaussian function, and

��/ is
the corresponding contraction coefficient. The density matrix Ì fulfills normalization and
idempotency conditions ÍÎ #Ì Ï $ � � (4)Ì Ï � #Ì Ï $#Ì Ï $ (5)

whereÏ is the overlap matrix of the Gaussian basis functions</- � º»/ #¼ $ &&»- #¼ $½ (6)

and� is the number of electrons.

In the original work by Lippert et al. [1] the same auxiliary basis approximation was used
for the Hartree and exchange-correlation energy. It was useful to relax this constraint
and use two independent approximations to the density, denoted @
 #Ã $ for the Hartree
energy and

Ä
 #¼ $ for the exchange-correlation energy. Both approximate electronic charge
densities are functions of the density matrixÌ .

3 Pseudo potentials

The GPW method works like plane waves methods with atomic pseudo potentials, since an
expansion of Gaussian functions with large exponents is numerically not efficient or even
not feasible.

The current implementation of the GPW method uses only the pseudo potentials of Goe-
decker, Teter, and Hutter (GTH) [7, 8]. The separable dual-space GTH pseudo potentials
consist of a local part
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loc
#� $ � � Ê ion� ÐÎÑ !ÒPP�( � J*�È � � PP� ÓÔ)ÒPP�Õ��,� ÐÖ× Ø� !ÒPP�(�Ù (7)

with ÒPP � �Ô)�PP
loc

and a non-local part¾ PP
nl

#¼ % ¼ Ú $ � *WX *�b º ¼ &� WX� ½ ÛW�b º � WXb & ¼ Ú ½ (8)

with the Gaussian-type projectorsº¼ & � WX� ½ � � W� Ü WX # Ý� $� We��,� ÐÖ× Þ� �) � ��W � �ß
as shown in Eq. 1 resulting in a fully analytical formulationwhich requires only the defi-
nition of a small parameter set for each element. Moreover, the GTH pseudo potentials are
transferable and norm-conserving. Nevertheless, plane waves methods employ this pseudo
potential type only for reference calculations or if no other reliable pseudo potentials are
available, since this type requires relative high cut-off values, i.e. more plane waves. How-
ever, in the framework of the GPW method there are no such limitations, since all contribu-
tions are integrals over Gaussian functions which can be calculated analytically. Therefore
the GTH pseudo potentials are particularly suited for the use with QUICKSTEP and that is
why QUICKSTEPonly supports GTH pseudo potentials, currently. The GTH pseudo poten-
tial parameters were optimized with respect to atomic all-electron wavefunctions obtained
from fully relativistic density functional calculations using a numerical atom code. The
optimized pseudo potentials include all scalar relativistic corrections via an averaged po-
tential [8], because the consideration of relativistic effects is indispensable for applications
involving heavier elements. A database with many GTH pseudopotential parameter sets
optimized for different exchange-correlation potentialsis already available [3]. It provides
all parameter sets formatted for a direct usage with QUICKSTEP and it contains parameter
sets for almost the whole periodic table based on the local density approximation (LDA).
Moreover, there are also many optimized parameter sets for the exchange-correlation po-
tentials based on the generalized gradient approximation (GGA) of Becke, Lee, Yang, and
Parr (BLYP) [9, 10, 11], Becke and Perdew (BP) [9, 12], Hamprecht, Cohen, Tozer and
Handy (HCTH/120, HCTH/407) [13] and Perdew, Burke and Ernzerhof (PBE) [14]. The
following GTH pseudo potentials are currently available:
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LDA:
H(1), He(2), Li(1), Li(3), Be(2), Be(4), B(3), C(4), N(5), O(6), F(7), Ne(8), Na(1), Na(9),
Mg(10), Mg(2), Al(3), Si(4), P(5), S(6), Cl(7), Ar(8), K(1), K(9), Ca(10), Ca(2), Sc(11),
Sc(3), Ti(12), Ti(4), V(13), V(5), Cr(14), Cr(6), Mn(15), Mn(7), Fe(16), Fe(8), Co(17),
Co(9), Ni(10), Ni(18), Cu(1), Cu(11), Zn(12), Zn(2), Zn(20) Ga(13), Ga(3), Ge(4), As(5),
Se(6), Br(7), Kr(8), Rb(1), Rb(9), Sr(10), Sr(2), Y(11), Y(3), Zr(12), Zr(4), Nb(13), Nb(5),
Mo(14), Mo(6), Tc(15), Tc(7), Ru(16), Ru(8), Rh(17), Rh(9), Pd(10), Pd(18), Ag(1),
Ag(11), Cd(12), Cd(2), In(13), In(3), Sn(4), Sb(5), Te(6),I(7), Xe(8), Cs(1), Cs(9), Ba(10),
Ba(2), La(11), Ce(12), Pr(13), Nd(14), Pm(15), Sm(16), Eu(17), Gd(18), Tb(19), Dy(20),
Ho(21), Er(22), Tm(23), Yb(24), Lu(25), Hf(12), Ta(13), Ta(5), W(14), W(6), Re(15),
Re(7), Os(16), Os(8), Ir(17), Ir(9), Pt(10), Pt(18), Au(1), Au(11), Hg(12), Hg(2), Tl(13),
Tl(3) Pb(4), Bi(5), Po(6), At(7), Rn(8)

BLYP:
H(1), He(2), Li(3), Be(4), B(3), C(4), N(5), O(6), F(7), Ne(8), Na(9), Mg(10), Al(3) Si(4),
P(5), S(6), Cl(7), Ar(8), Ca(10), Ti(12), V(13), Cr(14), Mn(15), Fe(16), Co(17), Ni(18),
Cu(11), Zn(12), Ge(4), Br(7), Zr(12), I(7), Ba(10), Ba(2),W(14)

BP:
H(1), He(2), Li(3), Be(4), B(3), C(4), N(5), O(6), F(7), Ne(8), Na(1), Na(9), Mg(10),
Al(3), Si(4), P(5), S(6), Cl(7), Ar(8), Ca(10), Sc(11), Ti(12), V(13), Cr(14) Mn(15),
Fe(16), Co(17), Ni(18), Cu(11), Zn(12), Zr(12), Cs(1), Cs(9)

HCTH/120:
H(1), O(6), Ar(8)

HCTH/407:
H(1), O(6)

PBE:
H(1), He(2), Li(3), Be(4), B(3), C(4), N(5), O(6), F(7), Ne(8), Na(9), Mg(10), Mg(2),
Al(3), Si(4), P(5), S(6), Cl(7), Ar(8), Ca(10), Ti(12), Zr(12)

The numbers in brackets denote the number of valence electrons employed by the respec-
tive pseudo potential, i.e. the effective core charge. The pseudo potential data base is
maintained within the CP2K project [3] and thus all the listed GTH pseudo potential data
sets are available online.
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4 Basis sets

The Kohn-Sham orbitals are expanded in Gaussian orbital functions in the framework of
the GPW method as described in section 2. Therefore an appropriate set of Gaussian func-
tions has to be defined as a basis set for each QUICKSTEP calculation. There is a plenty of
Gaussian basis sets available in the literature. However, proper basis sets have to be opti-
mized for the usage with the GTH pseudo potentials from the previous section. Therefore,
the exponents of a set of primitive Gaussian functions were optimized for all first- and
second-row elements with an atomic DFT code applying the appropriate GTH potential
parameters for each element. The same set of exponents was employed for each angular
momentum quantum number of the occupied valence states of the actual element which
are only� and� orbitals for the elements from H to Ar. The optimization was performed
for a growing numbers of primitive Gaussian functions in theset in order to obtain basis
sets of increasing quality. The atomic DFT code allows for the calculation of first ana-
lytic derivatives of the total atomic energy with respect tothe Gaussian orbital exponents.
The second derivatives were calculated by an updated Hessian procedure (BFGS). Finally,
the primitive Gaussian functions were contracted using thecoefficients of the respective
atomic wavefunctions. These basis sets were augmented by polarization functions which
were taken from the all-electron basis sets cc-pVXZ (X = D, T,Q) of Dunning [15, 16].
In that way a new sequence of basis sets was created with an increasing number of primi-
tive Gaussian functions and polarization functions for each first- and second-row element.
The basis sets were labelled DZVP, TZVP, TZV2P, QZV2P, and QZV3P due to the applied
splitting of the valence basis where DZ, TZ, and QZ denote double-, triple- , and quadruple-
zeta, respectively, and the increasing number of polarization functions. The quality of the
basis sets should improve systematically within this sequence. These basis sets can be fur-
ther augmented by diffuse functions, if required, analogous to the aug-cc-pVXZ basis sets
resulting in a sequence aug-DZVP, aug-TZVP, aug-TZV2P, aug-QZV2P, and aug-QZV3P
analogous to the aug-cc-pVXZ basis sets. The inclusion of diffuse functions may improve
the accuracy of certain molecular properties, however, they are prohibitive for condensed
phase calculations, since they introduce linear dependencies into the basis set. The basis
sets for H to Ar are collected in a basis set file which is included into the CP2K program
package.

5 Wavefunction optimization

The total ground state energy (see Eq. 1) of a system for a given atomic configuration
is minimized by an iterative self-consistent field (SCF) procedure. Three methods are
currently available in QUICKSTEP to perform an SCF iteration procedure: a traditional
diagonalization (TD) scheme, a pseudo diagonalization scheme [17], and an orbital trans-
formation (OT) method [19]. For the sake of simplicity, we will restrict our description
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of these methods in the following to closed-shell systems, however, the generalization to
open-shell (spin-polarized) systems is straightforward and QUICKSTEP can deal with both
types of systems using each of these methods.

5.1 Traditional diagonalization (TD)

The traditional diagonalization scheme uses an eigensolver from a standard parallel pro-
gram library called ScaLAPACK to solve the general eigenvalue problemà á � Ï á ; (9)

where
à

is the Kohn-Sham matrix andÏ is the overlap matrix of the system. The eigen-
vectors

á
represent the orbital coefficients, and the; are the corresponding eigenvalues.

Unfortunately, the overlap matrixÏ is not the unit matrix, since QUICKSTEP employs an
atom-centered basis set of non-orthogonal Gaussian-type orbital functions. Thus we have
to transform the eigenvalue problem to its special formà â � ã äã á ; (10)#ã ä $,� à ã ,� á¿ � á¿ ; (pdsygst) (11)à ¿ á¿ � á¿ ; (pdsyevx or pdsyevd) (12)

using a Cholesky decomposition of the overlap matrixÏ � ã äã (pdpotrf) (13)

as the default method for that purpose. Now, Eq. 12 can simplybe solved by a diagonal-
ization ofå¿. The orbital coefficients

á
in the non-orthogonal basis are finally obtained by

the back-transformation á¿ � ã á
(pdtrsm). (14)

The names in brackets denote the ScaLAPACK routines employed for the respective oper-
ation by QUICKSTEP.

Alternatively, a symmetric orthogonalization instead of aCholesky decomposition can be
applied by using ã � Ï �æ� � (15)

However, the calculation ofÏ �æ� involves a diagonalization ofÏ which is computationally
more expensive than a Cholesky decomposition. On the other hand, linear dependencies
in the basis set introduced by small Gaussian function exponents can be detected whenÏ is diagonalized. Eigenvalues ofÏ smaller than��,t usually indicate significant lin-
ear dependencies in the basis set and a filtering of the corresponding eigenvectors might
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help to ameliorate numerical difficulties during the SCF iteration procedure. Both orthog-
onalization schemes are implemented in QUICKSTEP. For small systems the choice of the
orthogonalization has no crucial impact on the performance, since it has to be performed
only once for each configuration during the initialization of the SCF run. By contrast, the
eigenvectors and eigenvalues of the full Kohn-Sham matrix

à ¿ have to be calculated in
each iteration step as indicated by Eq. 12 using a divide-and-conquer (pdsyevd) scheme
or an expert driver (pdsyevx) which allows to request only the build of an eigenvector
sub-set. The divide-and-conquer scheme is faster than the expert driver, if all eigenvectors
have to be computed. However, for the construction of the newdensity matrixÌ � ) áçèè áäçèè (16)

only the occupied orbitals are needed. In that case the expert driver is superior, since for
standard basis sets only 10–20% of the orbitals are occupiedand the orthonormalization
of the requested eigenvectors is a time-consuming step, especially on parallel computers
where it requires heavy communication between the processes.

The TD scheme is usually combined with methods to improve theconvergence of the
SCF iteration procedure. The most efficient SCF convergenceacceleration is achieved by
the direct inversion in the iterative sub-space (DIIS) [17,20] exploiting the commutator
relation é � à Ì Ï � Ï Ì à

(17)

between the Kohn-Sham and the density matrix where the errormatrix
é

is zero for the
converged density. The TD/DIIS scheme is an established method for electronic structure
calculations. The DIIS method can be very efficient in the number of iterations required to
reach convergence starting from a sufficiently pre-converged density which is significant,
if the Kohn-Sham matrix construction is much more time consuming than the diagonal-
ization. Nevertheless, the cost for the TD/DIIS scales as+ #d � $, whered is the size of
the basis set. This implies that, even at fixed system size, increasing the number of basis
functions results in a cubic growth of the computational cost. A further disadvantage of
the DIIS is that the method might fail to converge or that a sufficiently pre-converged den-
sity cannot be obtained. This happens more frequently for electronically difficult systems.
For instance spin-polarized systems or systems with a smallenergy gap between the high-
est occupied (HOMO) and the lowest unoccupied orbital (LUMO) like semiconductors or
metals belong often to this kind of systems.

5.2 Pseudo diagonalization (PD)

Alternatively to the TD scheme, a pseudo diagonalization [17, 18] can be applied as soon
as a sufficiently pre-converged wavefunction is obtained. The Kohn-Sham matrix

à êë
in

the atomic orbital (AO) basis is transformed into the molecular orbital (MO) basis in each
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SCF step à ìë � áäà êë á
(PDSYMM andPDGEMM) (18)

using the MO coefficients
á

from the preceding SCF step. The converged
à ìë

matrix
using TD is a diagonal matrix and the eigenvalues are its diagonal elements. Already after
a few SCF iteration steps the

à ìë
matrix becomes diagonal dominant. Moreover, theà ìë

matrix shows the following natural blockingí îî îïïî ïï ð (19)

due to the two MO sub-sets of
á

namely the occupied (
î
) and the unoccupied (

ï
) MOs.

The eigenvectors are used during the SCF iteration to calculate the new density matrix
(see Eq. 16), whereas the eigenvalues are not needed. The total energy only depends on
the occupied MOs and thus a block diagonalization which decouples the occupied and
unoccupied MOs allows to converge the wavefunctions, i.e. only all elements of the blockîï

or
ïî

have to become zero, since
à ìë

is a symmetric matrix. Hence the transformation
into the MO basisà MOñ¢ � áTñ à AOá¢ (PDSYMM andPDGEMM) (20)

has only to be performed for that matrix block. Then the decoupling can be achieved
iteratively by consecutive) j ) Jacobi rotations_ � ;� � ;�) � ìë� � (21)N � ^òó #_ $&_ & � Ô � � _� (22)

Q � �ÔN� � � (23)� � NQ (24)ôõ � � Q õ � � � õ � (DSCAL andDAXPY) (25)ôõ � � � õ � � Q õ � (DSCAL andDAXPY) (26)

where the angle of rotation_ is determined by the difference of the eigenvalues of the MOs� and ö divided by the corresponding matrix element� ìë� � in the
îï

or
ïî

block. The
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Jacobi rotations can be performed with the BLAS level 1 routinesDSCAL andDAXPY.
The

îî
block is significantly smaller than the

ïï
block, since only 10–20% of the MOs are

occupied using a standard basis set. Consequently, the
îï

or
ïî

block also includes only
10–20% of the

à ìë
matrix. Furthermore, an expensive re-orthonormalizationof the MO

eigenvectors
á

is not needed, since the Jacobi rotations preserve their orthonormality.

5.3 Orbital transformations (OT)

Finally, an orbital transformation method [19] is implemented in QUICKSTEP which per-
forms a direct minimization of the wavefunctions. The OT method is guaranteed to con-
verge and it scales, depending on the preconditioner, as+ #d � � $, whered is the total
number of MOs or basis functions and� is the number of occupied MOs. A detailed de-
scription of the OT method is given in Ref. [19]. In the framework of the OT method the
electronic energy� #á$ is minimized using the constraintáä Ï á � ÷ (27)

where
á
, Ï , and÷ are the matrix of the orbital coefficients, the overlap matrix, and the

identity matrix, respectively. Given the constant start vectors
áR

which fulfill the conditionáäR Ï áR � ÷ (28)

a new set of vectors
á #ø$ is obtained byá #ø$ � áR \]^ #ã $ � ø ã ,� ^ùó #ã $ (29)

with ã � #øä Ï ø$�æ� and øä Ï âR � ú (30)

This implies áä #ø $ Ï á #ø$ � ÷ û ø (31)ø can be used to optimize the energy� #á #ø$$ with standard methods like conjugate gra-
dient in combination with line search, since the allowedø span a linear space. In that way,
the OT method as a direct minimization method addresses bothdeficiencies of the TD or
PD scheme, as the method is guaranteed to converge, and scales, depending on the precon-
ditioner, as+ #d � � $. In more detail, the following scalings can be observed for the OT
method:ü matrix product sparse-full likeÏ ý : + #d �� $ S + #d � $ü matrix products full-full like#à õ $äý : + #d � � $ü diagonalization of the� j � matrixý äÏ ý : � + #� � $
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The computational cost of the OT method is normally dominated by the computation of
the+ #d � $ termsþ á

andÏø, but is in principle+ #d � � $ with a sparse preconditioner,
and+ #d �� $, if a non-sparse preconditioner is used. The relative efficiency of TD/DIIS
and OT depends on many factors such as system size, basis set size, and network latency
and bandwidth.

6 Accuracy

As a first accuracy test for QUICKSTEP, we employed the new basis sets described in
section 4 for the geometry optimization of small molecules using the local density ap-
proximation (LDA). The CP2K geometry optimizer works with first analytic derivatives
whereas the second derivatives are obtained via an updated Hessian method. In that way
each molecule of the following test set of 39 small molecules:

H� , Li �, LiH, BH� , CHJ , C�H�, C�HJ, C�H�, N� , NH�, HCN, H�O, H�O�, CO,
CO�, CH�OH, N�O, F� , HF, LiF, CH�F, OF� , AlH, SiHJ , SiO, P� , PH� , HCP,
PN, S� , H�S, CS, CS� , SO�, COS, SF� , HCl, CH�Cl, LiCl

consisting of first- and second-row elements was optimized using Cartesian coordinates.
Figure 1 compares the optimized bond distances obtained with QUICKSTEP using differ-
ent basis sets with the NUMOL results of Dickson and Becke [21]. NUMOL is a purely
numerical DFT code and thus considered to be free of basis seteffects. The smallest basis
set DZVP gives on average slightly too long bond distances, but already the TZVP basis
set works fine for most of the molecules. Finally, the TZV2P, QZV2P, and QZV3P show
an excellent agreement for all bond distances. Figure 2 shows the results for the optimized
bond and dihedral angles. The agreement for the small DZVP and the TZVP basis set is
already excellent. Only one data point is off which corresponds to the dihedral angle of
H�O�. This angle is known to be very sensitive to the number of employed polarization
functions. Thus one set of polarization functions is insufficient as shown by the results for
the DZVP and TZVP basis set. However, for the TZV2P basis set the dihedral angle is
already very close to the reference value and for the QZV3P basis set shows more or less a
converged result. A comprehensive view of the numerical results of the geometry optimiza-
tions is provided by Table 1 which shows the maximum and the root mean square deviation
of all bond distances and angle compared to the NUMOL resultsbased on a statistics in-
cluding 52 bond distances and 18 angles and dihedral angles.The errors become smaller
for a growing basis set size as expected. The TZV2P basis set gives already an excellent
overall agreement and for the QZV3P most distances coincidewithin the expected errors.
Note, that a fully agreement with the NUMOL values is not possible, since NUMOL uses a
slightly different LDA implementation and it employs a frozen core approximation for the
elements beyond Beryllium that differs from the GTH pseudo potentials used by QUICK-
STEP. These difference may cause a change of the bond distances ofabout� ��� � Å. This
small error also shows that the effect of the pseudo potential is negligible compared to basis
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Table 1: Maximum (sÿ �� ) and root mean square deviation (� ) of bond distances (̊A), bond angles, and
dihedral angles (

�
) compared to the NUMOL results for different basis sets.

basis set distances [Å] angles [
�
]u��� � u��� �

DZVP 0.048 0.018 6.4 1.6

TZVP 0.040 0.013 8.5 2.1

TZV2P 0.015 0.006 1.7 0.6

QZV2P 0.012 0.005 2.1 0.6

QZV3P 0.011 0.004 0.7 0.3

set effects concerning structural properties. Thus a basisset can be chosen tuned due to the
accuracy requirements of the actual application, but finally the accuracy of QUICKSTEP is
determined by the error of the employed exchange-correlation potential.

Figure 1: The optimized bond distances for 39 small molecules calculated with QUICKSTEPusing different
basis sets are compared to the NUMOL results of Dickson and Becke [21].
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Figure 2: The optimized bond angles and dihedral angles for 39 small molecules calculated with QUICKSTEP

using different basis sets are compared to the NUMOL resultsof Dickson and Becke [21].

7 Benchmarks

After proving the accuracy of QUICKSTEP in the previous section, it will be shown in
this section that QUICKSTEP can achieve that accuracy with high computational efficiency.
For that purpose, we firstly selected liquid water at ambientconditions as a benchmark
system to show both the serial performance of QUICKSTEP and its scalability on a parallel
computer. Moreover, we will report the performance resultsof geometry optimizations for
some molecular and a crystalline system.

7.1 Liquid water

Liquid water is often used as a benchmark system, since it caneasily be scaled by simply
doubling the number of water molecules in the unit cell whichis equivalent to a doubling of
the unit cell at the same time. For instance, liquid water is employed as a standard bench-
mark system for the CPMD code [22] to check its performance and scalability on various
parallel computers. Furthermore, water is an important ingredient of many bio-chemical
applications involving water as the natural solvent and molecular dynamics (MD) simula-
tions are performed to study the properties and the behaviorof such systems. Therefore,
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Table 2: Detailed characteristics of the employed benchmark systems for liquid water at ambient conditions
(300 K, 1 bar). The edge length of the cubic simulation cell, the number of atoms, electrons, Gaussian-type
orbitals (

	
), occupied orbitals (p ), and plane waves, i.e. grid points, is listed.

system cell [̊A] atoms electrons d � grid points (j���)
32 H�O 9.9 96 256 1280 128 1.3

64 H�O 12.4 192 512 2560 256 2.0

128 H�O 15.6 384 1024 5120 512 4.1

256 H�O 19.7 768 2048 10240 1024 9.3

512 H�O 24.9 1536 4096 20480 2048 16.0

1024 H�O 31.3 3072 8192 40960 4096 32.8

MD runs for pure liquid water at ambient conditions (300 K, 1 bar) were conducted for
benchmarking using realistic input parameters as they would also be chosen for produc-
tion runs. A GTH pseudo potential and a TZV2P basis set for hydrogen and oxygen were
employed in all benchmark runs including 40 contracted spherical Gaussian-type orbital
functions per water molecule. The high accuracy of the TZV2Pbasis set was already
shown in section 6. Table 2 lists the detailed characteristics of the employed benchmark
systems ranging from 32 water molecules in a cubic unit cell of edge length 9.9̊A up to
1024 water molecules in a cubic unit cell of 31.3Å edge length. These unit cell sizes
required up to
) �� M ��� plane waves, i.e. grid points, as an auxiliary basis set given a den-
sity cut-off of 280 Ry for the expansion of the electronic density. This density cut-off was
used for all the benchmark calculations of liquid water. Equally, the orbital basis set is lin-
early growing from 1280 to 40960 Gaussian-type orbital functions. However, the involved
matrices like the overlap or Kohn-Sham matrix are growing quadratically for this entity.
Thus the Kohn-Sham matrix calculation for 1024 H�O requires to deal with matrices of
the size

7��
� j 7��
� and it is therefore indispensable to take advantage of the localized
character of the atomic interactions as efficient as possible. Table 3 shows the occupation
of the overlap matrix for each benchmark system using a TZV2Pbasis set and a numeri-
cal threshold value of��,�� a.u. for the overlap integral between two primitive Gaussian
functions. For the systems with 32 and 64 H�O each water molecule interacts with each
other in the unit cell. Starting from roughly 200 water molecules, the interaction sphere
of a water molecule is completely confined in the unit cell, i.e. for larger systems more
and more water molecules inside the unit cell do not interactany longer with each other.
This can be retrieved from the overlap matrix occupations starting with 256 H�O, since
the occupation is halved for each doubling of the simulationcell. Thus beginning with
256 H�O in the unit cell the number of interactions grows linearly and similarly the spar-
sity of the matrices increases continuously. QUICKSTEP takes efficiently advantage of the
matrix sparsity, however, this becomes only effective for more than 200 water molecules in
the simulation cell. It is further important to recognize that the number of occupied orbitals
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Table 3: Occupation of the overlap matrix applying a numerical threshold value of~���� for the overlap
contribution of two primitive Gaussian orbital functions.

system occupation

32 H�O 100.0 %

64 H�O 99.6 %

128 H�O 85.1 %

256 H�O 51.3 %

512 H�O 25.8 %

1024 H�O 12.9 %� is significantly smaller than the total number of orbitalsd (see Table 2). In this bench-
mark using the TZV2P basis set only 10 % of the orbitals are occupied. Thus any operation
only dealing with the occupied orbitals#d � $ is favorable compared to#d � $ for the full
matrix. This is a crucial performance issue when comparing the eigensolvers implemented
in QUICKSTEP. Figure 3 shows the timings for the benchmark systems of Table 2 using the
IBM Regatta p690+ system at the Research Centre Jülich, called Jump. The Jump system
consists of 39 compute nodes. Each node provides 32 Power4+ (1.7 GHz) processors. The
processors are interconnected by an IBM High Performance Switch1 (HPS). The results are
given using a double logarithmic scale to show the scaling ofthe TD and the PD scheme.
Each MD step included a full wavefunction optimization followed by a calculation of the
forces on each atom. The total energy of the system was converged to 10

,l
a.u. and the

deviation of the electron count for the converged density was less than 10,t. Ten MD steps
were performed for each benchmark system (except 1024 H�O) using a time step of 0.5 fs.
The CPU timings of the last 5 MD steps were averaged. Figure 3 displays the obtained
CPU timings per MD step for various CPU numbers and system sizes using the TD and the
PD scheme. The missing data points are due to the limited memory per CPU which did not
allow to run larger systems using only a small number of CPUs.The small systems with
32 and 64 H�O can efficiently be run on a small number of CPUs. 64 H�O need roughly
one CPU minute per MD step, i.e. 2 CPU minutes per fs simulation time, when using 16
CPUs. The larger systems with 128 and 256 H�O run efficiently on 32 and 64 CPUs,
respectively. However, 14 minutes per MD step for 256 H�O does not allow to obtain ap-
propriate MD trajectories in reasonable time. It was not possible to run 512 H�O, even if
using 256 CPUs, since the TD scheme which is based on ScaLAPACK/BLACS requires
to deal with a distribution of several full matrices during the SCF procedure exceeding the
available memory.

A direct comparison of the two panels of Figure 3 shows that the PD scheme scales slightly

1This benchmark was run on the Jump system before the major software update (PTF7) in July 2004
which improved the MPI communication performance significantly.
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Figure 3: Scaling of the CPU time per MD step using the traditional diagonalization (TD) scheme and
the pseudo diagonalization (PD) scheme for the benchmarks systems of Table 2. The calculations were
performed on an IBM Regatta p690+ system with 32 Power4+ (1.7GHz) per node interconnected by an IBM
High Performance Switch (HPS).
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better than the TD scheme. The small systems with 32 and 64 H�O scale up to 32 CPUs
and the largest system with 256 H�O scales even up to 128 CPUs using the PD scheme.
However, the absolute CPU times per MD step for the TD and the PD scheme are very
close, even if the PD scheme requires less communication than the TD scheme. The PD
scheme shows only for 256 H�O on average significant shorter CPU times per MD step
compared to the TD scheme. As described in section 5, the PD scheme can only be ap-
plied to sufficiently pre-converged wavefunctions. The TD scheme is employed until this
convergence is achieved and thus no speed-up with respect tothe TD scheme is obtained
for the first SCF iteration steps. Furthermore, the initialization of the PD scheme requires
at least once a diagonalization of the Kohn-Sham matrix including the calculation ofall
eigenvectors. This step turns out to be rather expensive. Itis known that the orthonormal-
ization of a large eigenvector set is computationally expensive step that involves a lot of
communication. In fact, this SCF step may consume two or three times more CPU time
than a normal TD SCF step and turns out to be a bottleneck for the larger systems. How-
ever, once the PD scheme is set up, the following iteration steps are less expensive than a
TD step. Moreover, the PD steps are becoming cheaper and cheaper, since the number of
matrix elements which have to be processed by the Jacobi rotations decrease continuously.
However, a typical MD step only involves approximately 8 SCFiteration steps and at least
two or three of these are normal TD steps followed by an expensive TD step providing the
full eigenvector set. Thus there are only four or five SCF steps left for the faster PD scheme
and finally nothing is gained compared to the pure TD scheme for most of the test systems.

By contrast, the OT method shows a much better performance asshown in Figure 4. The
OT method needs less memory than the TD and the PD scheme, because it does not deal
with full matrices during the SCF iteration and therefore itallows to run larger benchmark
systems with up to 1024 water molecules in the unit cell. Alsothe scaling behavior of
the OT method is much better. The small systems with 32 and 64 H�O scale nicely up to
32 CPUs. A scaling beyond 32 CPUs cannot be expected, since the data blocks per CPU
become too small to keep an SP4+ processor efficiently busy and the calculation will be
completely dominated by the communication between the processes. At least one or two
H�O molecules per CPU are needed, formally. Also the larger benchmark systems show a
better scaling with OT as indicated by the slope. The 512 H�O system shows a continuous
scaling up to 128 CPUs including 4 compute nodes of the Jump system. This shows that
the scaling behavior of QUICKSTEP is also preserved when the processors of more than
one compute node are employed.

7.2 Molecular and crystalline systems

As a final performance test for QUICKSTEP, geometry optimizations for a couple of molec-
ular and crystalline systems were performed. The detailed characteristics of the employed
molecular and crystalline benchmark systems is listed in Table 4. The DZVP basis set
described in section 4 was used for all elements including hydrogen, even if the� -type
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Figure 4: Scaling of the CPU time per MD step using the orbitaltransformation (OT) scheme for the bench-
marks systems of Table 2. The calculations were performed onan IBM Regatta p690+ system with 32
Power4+ (1.7 GHz) per node interconnected by an IBM High Performance Switch (HPS).

polarization functions for hydrogen are not needed in most cases. It turned out that the
quality of the DZVP basis set is sufficient for most of the applications. Optionally, a re-
finement of the structure can be obtained with the TZV2P basisset based on the structure
pre-optimized with the DZVP basis set. It was shown in section 6 that the TZV2P basis set
provides structures of high accuracy within the actual density functional approximation.
The density cut-off for the plane waves expansion of the electronic density was chosen
sufficiently large, i.e. in correspondence with the largestGaussian function exponent of the

Table 4: Detailed characteristics of the employed molecular and crystalline benchmark systems. The number
of atoms, electrons, Gaussian-type orbitals (

	
), and occupied orbitals (p ) is listed. The employed exchange-

correlation functional is given in brackets.

system atoms electrons d � Cut-off [Ry]

C�R fullerene (LDA) 60 240 780 120 240

C�mR fullerene (LDA) 180 720 2340 360 240

Grubbs catalysator (BP) 120 284 774 142 280

Taxol (BLYP) 113 328 908 164 280

[2]Catenan (BLYP) 164 460 1524 230 280

RNA duplex (BLYP) 368 1192 3444 596 320
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Table 5: CPU time per geometry optimization step for the molecular and crystalline benchmark systems as
described in Table 4. The calculations were performed on an IBM Regatta p690+ system with 32 Power4+
(1.7 GHz) per node interconnected via an IBM High Performance Switch (HPS).

system 4 CPUs 8 CPUs 16 CPUs

C�R fullerene 30 11 8

C�mR fullerene 115 69 36

Grubbs catalysator 178 108 63

Taxol 208 118 74

[2]Catenan 246 138 92

RNA duplex 432 186 128

orbital basis set based on the accuracy of the computed electron count. The OT method
was employed in all optimization runs.

C�R is the well-known hollow, soccer ball shaped molecule called buckminsterfullerene or
simply bucky ball. The C�mR fullerene is a bigger variety of the C�R which is also a hollow
ball structure. Figure 5 shows the ruthenium based olefin metathesis catalysts also called
after its inventor Grubbs catalysator. Taxol (see Figure 6)is a compound which is used as an
anti-cancer drug. The [2]Catenan [23] is an electronicallyreconfigurable molecular switch
which consists of two interlocked rings: (1) a tetracationic cyclophane that incorporates
two bipyridinium units and (2) a crown ether containing a tetrathiafulvalene unit and a 1,5-
dioxynaphthalene ring system located on opposite sides of the crown ether (see Figure 7).
Finally, Figure 8 shows the unit cell of a fully hydrated RNA duplex crystal structure
[24]. For all the molecular systems a sufficiently large unitcells were chosen to eliminate
the interaction with the images. GTH pseudo potentials wereemployed for all structure
optimization runs. For ruthenium and sodium the semi-core pseudo potential versions
were used including 16 and 9 valence electrons, respectively.

The CPU times per geometry optimization step are listed in Table 5 using 4, 8, and 16 CPUs
of one compute node of the Jump system at the Research Centre Jülich. Each geometry
optimization step includes like an MD step a full wavefunction optimization followed by a
calculation of the forces on all atoms. The timings depend not only on the size of the orbital
basis set, but also on the selected exchange-correlation functional and the density cut-off.
For instance, the C�mR fullerene has a large orbital basis, however, the pseudo potential of
carbon is softer than the pseudo potential of oxygen and thusit requires only the relatively
small density cut-off of 240 Rydberg. Moreover, the gradient of the electronic density has
not to be calculated in the framework of the local density approximation (LDA), whereas
this is needed for the exchange-correlation functionals BLYP [9, 10, 11] and BP [9, 12] (see
section 3) based on the generalized gradient approximation(GGA). A couple of geometry
optimization steps can be performed for all the presented systems within the limits of an
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Figure 5: Grubbs catalysator (RuC��H��P�Cl�)

Figure 6: Taxol (C��H��O��N)
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Figure 7: [2]Catenan (C��H�vO��N�S� )

Figure 8: Unit cell of the fully hydrated RNA duplex (C�vH�v�N��O��Na�P� ) crystal structure
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interactive job on the Jump system which provides up to 16 CPUs for 30 minutes. In that
way, QUICKSTEP allows to optimize efficiently the structure of small and medium-sized
molecular or crystalline systems.

8 Summary and outlook

It was shown that QUICKSTEP allows for fast and accurate density functional calculations
of molecules and condensed phase systems. It provides the basic functionality needed to
perform structure optimizations and to run Born-Oppenheimer molecular dynamics simu-
lations. The nice scaling behavior of QUICKSTEP was proved using the new IBM parallel
computer system Jump at the Forschungszentrum Jülich. Theefficient parallelization of
QUICKSTEP allows to obtain results in shorter time or to investigate larger systems.

Nevertheless, there are many possibilities to improve further the efficiency and functional-
ity of QUICKSTEP. The extension of the GPW method to the Gaussian augmented plane
waves (GAPW) method [25] will significantly speedup the calculations. Moreover, the
GAPW method will also allow to perform all-electron densityfunctional calculations [26].
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1 Introduction

Recent advances in computer hardware and its exploitation through the techniques of high-
performance computing, as well as advances in the development of approximate theories
of quantum chemistry and quantum molecular dynamics, have together brought us to the
position where theory can provide reliable answers to chemical questions that are of rel-
evance not only to furthering fundamental understanding, but also to real-life industrial
and environmental problems. This emergence of the relevance of quantum chemistry has
been recognized through the award of the 1998 Nobel prize forchemistry, and through
the wholesale adoption of quantum chemical methods by the chemical community, both
academic and industrial.

The breakthrough in the ability to treat realistic chemicalsystems has to a large extent been
due to improvements of density functional theory (DFT). Thedevelopment of accurate
density functionals and linear scaling techniques have made it possible to predict energies
and molecular structures for molecules with 1000 or even more atoms. These techniques
are the subject of other articles in this volume, and will notbe further discussed here.
The problem of DFT is that there is no way to systematically assess or to improve the

1present address: Institute for Physical and Theoretical Chemistry, University of Regensburg, Univer-
sitätsstraße 31, 93040 Regensburg
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accuracy of a calculation, since the exact functional is unknown. Thus, the results depend
on the chosen functional, and experience is needed to selecta suitable functional for a
given problem. The best currently available density functionals contain some parameters,
which have been fitted to obtain best agreement with experiment, and therefore DFT can
be viewed as a semi-empirical method. Even for such functionals it is often difficult or
impossible to estimate the accuracy of a computed result, unless calculations are performed
for similar molecules as contained in the training set.

On the other hand, there is a well established hierarchy of wave-function basedab initio
methods, which allow to approach the exact solution of the electronic Schrödinger equa-
tion systematically. In most cases, such methods are based on the Hartree-Fock method
as zeroth-order approximation. In Hartree-Fock, each electron moves independently in
an average field caused by the the other electrons. To go beyond this approximation it is
necessary to treat the electron correlation, i.e., the direct dynamical interaction of all elec-
trons. Typically, the correlation energy (the difference between the exact energy and the
Hartree-Fock energy) amounts only to 1% of the total energy.However, this is of the same
order of magnitude as the energy differences which are relevant in chemistry, and since the
correlation energy may change significantly from reactantsto products, a high-level elec-
tron correlation treatment is mandatory for an accurate prediction of energy differences
and molecular properties.

Unfortunately, the computational cost of wave-function based methods is much higher than
for DFT, and for the best methods the increase of computer time with molecular size is ex-
tremely steep. Even for the simplest method to treat the electron correlation, second-order
Møller-Plesset theory (MP2), the computer time formally scales as� #� t $, where

�
is

a measure of the molecular size. This means that doubling thesize increases the com-
puter time by a factor of 32 (this factor can be somewhat reduced by screening techniques
[1]). For the more accurate fourth-order perturbation theory (MP4) or the coupled clus-
ter method with single and double excitations (CCSD) and perturbative triple excitations
[CCSD(T)] the scaling is even� #� l $, i.e., the CPU time increases by a factor of 128 if
the number of electrons is doubled. Therefore, despite the increase of computer speed by
3-4 orders of magnitude during the last decade, still only relatively small molecules (10-20
atoms) can be be treated by such accurate methods. Even the use of the largest super-
computers cannot significantly extend the applicability ofconventional electronic structure
methods.

The steep scaling of the computational cost with molecular size is mainly caused by the
delocalized character of the canonical Hartree-Fock orbitals, which are traditionally used as
a basis. However, (in insulators) electron correlation is ashort range effect which decreases
approximately as� ,�, where� is the distance between two local charge distributions. This
can be exploited by localising the molecular orbitals and neglecting distant interactions.
Based on a local ansatz originally proposed by Pulay [2, 3, 4,5], our group has recently
been able to develop local MP2 and CCSD(T) methods with linear [� #� $] scaling of the
computational cost [6, 7, 8, 9, 10, 11, 12, 13]. This has dramatically extended the range
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of applicability of such high-level methods, and energies for molecules with 100 atoms or
more can now be computed with good basis sets.

The HPC-Chem project has significantly contributed to further develop and improve the
efficiency of these unique new methods, which have been implemented in theMOLPRO
package ofab initio programs [14]. Work has been done in four areas: firstly, the new
local correlation methods have been parallelized. The use of parallel computer hardware
is particularly useful for linear scaling methods, since then the size of the molecules which
can be treated in given time increases linearly with the number of processors. Secondly, the
pre-factor of the cost function has been reduced by the implementation of so called density
fitting approximations for computing the integrals. Third,the method has been extended
to open-shell cases. And finally, the slow convergence of theelectron correlation energy
with basis set size has recently been improved by the implementation of efficient local� ��-
methods. Before describing these methods and new developments in more detail, we will
give a short description of theMOLPRO package. This highlights the long history of method
development which is typical for many quantum chemistry codes. The enormous amount
of code (about one million lines) and the ”grown” structure makes it rather difficult to
maintain, modularize, and parallelize the program. In thisrespect, the man-power provided
by the HPC-Chem project has been extremely helpful.

2 About MOLPRO

The development of theMOLPRO program was started by Wilfried Meyer and Peter Pulay
in 1969. At a very early stage they implemented a general Hartree-Fock program, includ-
ing spin restricted (RHF) and unrestricted open-shell (UHF) treatments. Based on this,
Pulay wrote the first analytical gradient program, which is one of the key developments in
quantum chemistry and forms the basis for molecular geometry optimization. At the same
time, Meyer developed his famous pseudo natural orbital configuration interaction method
(PNO-CI) and the coupled electron pair approximation (CEPA) [15, 16]. These methods
made it possible to obtain for the first time 80-90% of the electron correlation energy in
small molecules like H�O [15] and CHJ [16]. A second generation of electron correlation
methods was implemented intoMOLPRO by H.-J. Werner and E. A. Reinsch in 1978 and the
following years. These methods were based on Meyer’s theoryof self-consistent electron
pairs (SCEP) [17]. This is a particularly efficient direct CImethod in which any compli-
cated logic for computing the Hamiltonian matrix elements was eliminated by a suitable
renormalization of the configurations. This leads to efficient matrix algebra, which allows
to use modern hardware to the best possible extent. Additionally, the theory was formu-
lated in a basis of non-orthogonal atomic orbitals (AOs). Only very much later it has turned
out that the use of such a non-orthogonal basis is the key to linear scaling in local electron
correlation methods. In the early 80ths,MOLPROwas extended by multiconfiguration-self-
consistent field (MCSCF) [18, 19] and internally contractedmultireference configuration
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interaction (MRCI) methods [20]. In 1984, one of the presentauthors (HJW) started to col-
laborate with Peter Knowles, and more efficient MCSCF and MRCI programs were written
[21, 22, 23, 24, 25, 26], in which new techniques for computing Hamiltonian matrix ele-
ments and high-order density matrices [22, 24] were applied. Later on, efficient closed and
open-shell coupled cluster methods [27, 28, 29, 30], multireference perturbation theory
(MRPT2, MRPT3, CASPT2) [31, 32], and DFT methods were developed. Furthermore,
analytic energy gradients for DFT, RHF, UHF, MCSCF [33], MP2[34, 35], CASPT2 [36],
and QCISD(T) [37], as well as many other utilities were implemented (for more details see
www.molpro.net). By now,MOLPRO has the reputation to be one of the most efficient
and general programs for highly accurate electronic structure calculations. It is world-wide
used by hundreds of research groups.

The development of local electron correlation methods, which will be described in the
following sections, was started in the group of H.-J. Wernerin 1996 [6], and linear scaling
was achieved for LMP2 for the first time in 1999 [7]. Quite recently, density fitting was
introduced intoMOLPRO by Manby and Knowles, and their integral program forms the
basis for the local density fitting methods described in later sections.

3 Local correlation methods

As already mentioned in the introduction, the steep scalingof conventional electron corre-
lation methods mainly originates from the delocalized character of the canonical molecu-
lar orbitals, which are traditionally used as a basis. This leads to a quadratic scaling of the
number of electron pairs to be correlated, and in turn the correlation space for each pair also
grows quadratically with molecular size, leading overall to an� #� J $ increase of the num-
ber of double excitations and corresponding coefficients (amplitudes) with the number of
electrons. However, dynamic electron correlation in non-metallic systems is a short-range
effect with an asymptotic distance dependence of� � ,� (dispersion energy), and therefore
the high-order dependence of the computational cost with the number of electrons of the
system is not physically imposed.

In order to avoid these problems, local correlation methodshave been proposed by very
many authors (see citations in our original work [6, 7, 11, 38]). Our method is based on
the local correlation method of Pulay [2, 3, 4, 5]. As in most local correlation methods,
localized occupied orbitals (LMOs)� �ç è� � */ �/�/� (1)

are used to represent the Hartree-Fock reference wavefunction. The rectangular coefficient
matrix L represents the LMOs in the AO basis��/ �. The particular feature of the Pulay
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ansatz is to use non-orthogonal projected atomic orbitals (PAOs) to span the virtual space���ç� � */ �/ B/� � (2)

The coefficient matrix (often called projector) is defined as� �  � !! µ=êë % (3)

where=êë the overlap matrix of the AOs. Due to this definition, the PAOsare orthogonal
to the occupied space � ���ç� &� �çè� C � �� µ=êë!��� � � (4)

but non-orthogonal among themselves. They are inherently local, and it is therefore possi-
ble to assign to each localized orbital an individual subset(orbital domain) of PAOs, which
are spatially close to the region where the LMO is large. Similarly, for each orbital pair
one can formpair domains, which are the union of the two orbital domains involved. Sin-
gle excitations are made into the orbital domains, double excitations into the pair domains,
and so on. For a given electron pair, the number of functions in a pair domain is indepen-
dent of the molecular size, which reduces the scaling of the number of configuration state
functions (CSFs) and corresponding amplitudes from� #� J $ to � #� � $. Furthermore, a
hierarchical treatment of different electron pairs depending on the distance of the two cor-
related localized occupied molecular orbitals (LMOs) can be devised.Strongpairs, where
the two electrons are close together, are treated at highestlevel, e.g. LCCSD, whileweak
anddistantpairs can be treated at lower level, e.g. LMP2. For distant pairs it is possible to
approximate the relevant two-electron integrals by multipole expansions [39].Very distant
pairs, which contribute to the correlation energy only a fewmicro-hartree or less, are ne-
glected. An important advantage of the local treatment is that the number of strong, weak,
and distant pairs scales linearly with molecular size, independently of the distance criteria
used for their classification (cf. Figure 1). Only the numberof the neglected very distant
pairs scales quadratically. The number of amplitudes in each class scales linearly as well,
since the number of amplitudes per pair is independent of themolecular size. This forms
the basis for achieving linear scaling of the computationalcost.

The errors introduced by these local approximations are normally very small. Typically
they amount to only 1% of the valence-shell correlation energy for a triple zeta (cc-pVTZ)
basis set if the domains are chosen as originally proposed byBoughton and Pulay [40]. The
errors can be reduced and controlled by extending the domainsizes. For instance, about
99.8% of the canonical correlation energy for a given basis set are recovered if the standard
domains are augmented by the PAOs at the first shell of neighboring atoms.
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Figure 1: Number of pairs as a function of chain length for glycine polypeptides (gly)w
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3.1 Local MP2

In the local basis the first-order wavefunction takes the form&" ��� ½ � �) *�b #A *��# $�b % � �b� � && � ��b ½ with � �b� � � � b ��� % (5)

whereB represents the orbital pair list and�E' � denotes a pair domain of PAOs, which is
defined in advance (for details, see Refs. [6, 7]). Here and inthe following, indicesE % ' % ( % Z
denote occupied orbitals (LMOs) and� % � % N % ï virtual orbitals (PAOs). Note that the number
of PAOs� % � ) �E' � for a given pair#E' $ is rather small andindependentof the molecular
size. Therefore, the individual amplitude matrices� �b� � are very compact and their sizes are
independent of the molecular size. The total number of amplitudes� �b� � depends linearly on
the molecular size and it is assumed that they can be stored inhigh-speed memory.

Since the local orbital basis does not diagonalize the zeroth order Hamiltonian, an iterative
procedure is required to determine the amplitude matrices#* �b $� � + � �b� � . The optimization
is based on the minimization of the MP2 Hylleraas functional[41]�� � *�b #A *��#$�b %#)* �b � * b � $� � $ #å �b � , �b $� � (6)

with respect to the amplitudes#* �b $� �, where, �b � å �b �  * �b = � =* �b   � *c = �9�c* cb � 9cb* �c � = (7)
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are the so called residual matrices. The quantities= and  are the overlap and Fock ma-
trices in the projected basis, respectively, and the exchange matrices#å �b $� � � #� E &�' $
represent a small subset of the transformed two-electron repulsion integrals (ERIs). Due
to the absence of any coupling of amplitudes with ERIs in eq. (7) there is a one-to-one
mapping between amplitude and exchange matrices. Hence, the number of required trans-
formed ERIs is identical to the number of relevant amplitudes and therefore obviously of� #� $. Note that this is a particular feature of the algebraic structure of the LMP2 equa-
tions, and no longer holds for LCCSD, which will be discussedin the next section.

At the minimum of�� , the #, �b $� � must vanish for� % � ) �E' �, and then�� corresponds
to the second-order energy� ���. Thus, one has to solve the system of linear equations#, �b $� � � �. The iterative method to solve these equations is describedin detail in Ref.
[6].

For a given pair#E' $, only the local blocks#å �b $��,  ��, and=�� for � % � ) �E' � are needed
in the first three terms, while for the overlap matrices in thesum only the blocks connect-
ing the domain�E' � with �E( � or �' ( � are required. The sizes of all these matrix blocks are
independent of the molecular size. Taking further into account that for a given pair#E' $ the
number of terms( in the summation becomes asymptotically independent of themolec-
ular size if very distant pairs are neglected, it follows that the computational effort scales
linearly with molecular size.

The exchange matriceså�b are conventionally obtained from the two-electron repulsion
integrals in AO basis (ERIs) by a four-index transformation, i.e.� �b� � � #� E &�' $ � */ B/� *- B- � *- �-� *. �.b #4" &3� $ % (8)#4" &3� $ � � �/ � � �/��/ #/ �$�- #/ �$� ,��� � - #/� $�. #/� $ %
where the coefficient matrices! and

�
represent the LMOs and PAOs, respectively, in the

atomic orbital basis. The ERIs#4" &3� $ in AO basis are computed on the fly and not stored
on disk. In order to keep the computational effort for the transformation in eq. (8) as low
as possible, the four indices are transformed one after the other. By defining suitable test
densities and screening procedures it is possible to reducethe formal� #� t $ scaling to� #� $ [7]

For distant pairs the expensive integral transformation can be avoided by performing a
multipole expansion [39] � �b� � � *Xn F��X � �bXnF �bn % (9)

where0 � � is a vector containing the multipole moments (up to octopole) of the overlap
distribution� E and��b is an interaction matrix depending only on the centres ofE and' .
In this way, theå�b for distant pairs can be evaluated in negligible time, and this leads to
significant savings in large molecules.
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Figure 2: CPU times (in seconds on P4/2 GHz) of LMP2/cc-pVDZ calculations as a function of chain length
for glycine polypeptides (gly)w .

Figure 2 demonstrates the linear scaling behavior of LMP2 calculations for a linear glycine
polypeptide chain, both for the transformation and the iteration steps. Naturally, the timings
depend sensitively on the efficiency of integral screening.Therefore, the very extended
model system used in Figure 2 represents an optimum case. Thescreening becomes less
efficient for molecules with a more compact two- or three-dimensional structure or if larger
basis sets are used. Some timings for more realistic molecules will be presented in sections
4.1 and 4.2. MP2 calculations for molecules of this size werepreviously not possible.

It should be pointed out that the absolute cost (i.e., the pre-factor) depends strongly on
the basis set size per atom. If the double zeta (cc-pVDZ) basis set is replaced by a triple
zeta (cc-pVTZ) set, as is required in order to obtain reasonably accurate results, the basis
set size per atom increases by about a factor of 2. Since the transformation depends on the
fourth power of the number of basis functions per atom, the corresponding increase of CPU
time is a factor of 16 (in practice, a factor of 10-12 is found,since due to the larger matrix
sizes some efficiency is gained). This means that LMP2 calculations for large molecules
are still computationally very demanding, despite the linear scaling (which does not affect
the dependence of the cost on the basis set quality). In the course of the HPC-Chem project
this problem was attacked in three possible ways:

(i) parallelization: this reduces the elapsed time, but of course not the total computa-
tional cost. Some aspects will be discussed in section 5.

(ii) development of local density fitting methods. This approach, which will be discussed
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in section 4, strongly reduces the pre-factor. Most importantly, in this method the
CPU time depends only cubically on the number of basis functions per atom, and
therefore dramatic savings can be achieved for large basis sets.

(iii) development of a local MP2-R12 method, using density fitting techniques. This
method improves the convergence of the correlation energy with basis set size. A
description of this method is beyond the scope of the presentarticle and will be
presented elsewhere [42].

3.2 Local CCSD(T)

In coupled cluster theory, the wavefunctions is expanded as&"11 ½ � ÐÖ× # Ý� $ &"23 ½ (10)

where
Ý� is a generalised excitation operator. In local coupled cluster theory with single

and double excitations (LCCSD), this operator is approximated asÝ� � *� *�#$�% N�� Ý��� � �) *�b #A 4 *��# $�b % � �b� � Ý��� Ý� �b (11)

where
Ý��� are spin-summed excitation operators, which excite an electron from LMO � �çè�

to PAO ���ç� . The single and double excitations are restricted to orbital domains �E� and
pair domains�E' �, respectively. In most cases, it is sufficient to include only excitations for
thestrong pairsin the expansion, and to compute the energy contribution of the weak and
distant pairs only at the LMP2 level. The list of strong pairsis denotedB�. It is obvious
that the number of single and double excitation amplitudes,N�� and� �b� � , respectively, scales
only linearly with molecular size. Therefore, similar linear scaling techniques as for LMP2
can be devised for local CCSD [6, 11, 13], even though the algorithms are much more com-
plicated. In contrast to LMP2, where one needs only exchangeintegrals#� E &�' $ over two
LMOs and two PAOs, in the LCCSD case all other types of transformed integrals are re-
quired as well, in particular also those involving three andfour PAOs#� E &�N$, #� � &Nï $. This
requires additional integral-direct transformations. Furthermore, in contrast to the LMP2
case the LCCSD residual equations do contain products of amplitudes and ERIs. Neverthe-
less, it is still possible to restrict the LMO and PAO ranges in the related supermatrices to
certain lists (operator lists) and domains (operator domains), which are larger that the am-
plitude pair lists and domains, but still independent of molecular size [11]. Nevertheless, in
spite of these additional complications, dramatic computational savings were achieved, in
particular for the calculation of the LCCSD residual matrices, which are evaluated in each
iteration. Consequently, in strong contrast to conventional CCSD calculations, the compu-
tational effort in LCCSD calculations is often dominated bythe time spent for the integral
transformations. This problem is particularly severe for large basis sets. Fortunately, as
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Figure 3: CPU times (in sec on Athlon 1.2 GHz) of LCCSD(T) calculations as a function of chain length for
glycine polypeptides (gly)w.

will be demonstrated in section 4, density fitting approximations can be used to overcome
this bottleneck.

Figure 3 shows the scaling of the computational cost as a function of the chain length
for the polyglycine model system. Perfect linear scaling isobserved, and the savings are
dramatic. For the largest calculation it can be estimated that the corresponding conventional
CCSD(T) would take 56 years, while the local (T) calculationcan be done in less than an
hour [9, 10] (this does not include the time for the integral transformation, which in the
present case dominates the computational effort.) Timingsfor some other more realistic
applications will be presented in section 4.3.

4 Density fitting approximations

The idea of simplifying electron repulsion integrals by fitting products of orbitals in an
auxiliary basis goes back at least as far as 1959, when Boys and Shavitt used the technique
to compute the intractable 3-centre Slater integrals in calculations on the H� molecule [43].
The method saw relatively little use inab initio theory for a number of decades, but proved
invaluable in DFT [44], where the emphasis was on fitting the entire density in an auxiliary
basis for the efficient solution of the Coulomb problem [45, 46, 47, 48]. The accuracy of
the method has been carefully investigated, and it has been shown that with suitable fitting
basis sets the errors are much smaller than other typical errors in the calculations, such as

62



Density fitting approximations

for instance basis set errors [49]. Optimized fitting basis sets are available for Coulomb
[50] and exchange [51] fitting, as well as for MP2 [52, 49].

Some authors, including those of TURBOMOLE, denote the density fitting approximation
as ”resolution of the identity” (RI). We prefer the name density fitting (DF) for two reasons:
first, it is strictly not a resolution of the identity, since aCoulomb metric is used. Secondly,
a resolution of the identity is used in the MP2-R12 method in adifferent context, and in
our implementation of MP2-R12 both RI and DF approximationswith different auxiliary
basis sets are involved.

In the following we assume that the basis functions (AOs)��/ � and orbitals�� �çè� % ���ç� �
are real. The two-electron integrals#43 &"� $ in the AO basis can be written as#43 &"� $ � � �/ � � �/� "/- #/ � $"-. #/� $� �� � (12)

In the density fitting methods the one-electron product densities "/- #/ �$ � �/ #/ �$� - #/ �$
are approximated by linear expansions"/- #/ $ ? @"/- #/$ � *5 0/-5 �5 #/ $ % (13)

where�5 #/ $ are fitting basis functions (e.g., atom-centred Gaussian-type orbitals, GTOs).
The expansion coefficients0/-5 are obtained by minimizing the positive definite functional
[45, 46, 47] u/- � � �/ � � �/� �"/- #/ �$ � @"/- #/ �$� �"/- #/� $ � @"/- #/� $�� �� � (14)

This leads to the linear equations*5 0/-5 �56 � f/-6 % (15)

where �56 + #£ &7 $ � � �/ � � �/� �5 #/ �$�6 #/� $� �� % (16)f/-5 + #43 &£ $ � � �/ � � �/� �/ #/ �$� - #/ �$�5 #/� $� �� � (17)

The 4-index integrals are then obtained by simple matrix multiplications#43 &"� $ ? *5 0/-5 f -.5 � (18)
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In the LCAO approximation the molecular orbitals��� � are linear expansions of the basis
functions (AOs)��/ �. Therefore, exactly the same fitting procedure as outlined above can
be used to approximate integrals over molecular orbitals#� � &Nï $ ? *5 0 ��5 f 8¢5 % (19)

wheref��5 + #� � &£ $ are 3-index integrals in the MO basis, and0 ��5 the corresponding
fitting coefficients. Thus, in principle all types of integrals needed in anyab initio method
can be approximated in this way.

We have implemented density fitting in Hartree-Fock (HF), density functional theory (DFT),
second-order Møller-Plesset theory (MP2), and coupled cluster theory with single and dou-
ble excitations (CCSD). If used with conventional methods and canonical orbitals, the ad-
vantage of density fitting is mainly a faster computation of the 2-electron integrals and a
simplification of the integral transformation. Since the contributions of the 4-external in-
tegrals can be conveniently evaluated in the AO basis, significant savings result only for
the integrals involving at least one occupied orbital. Furthermore, in HF, DFT, and MP2
the scaling of the CPU time with the number of basis functionsper atom is reduced from#�êë 9� �:ç�; $J to #�êë 9� �:ç�; $� . This means that the savings increase with increasing
basis set. However, there is no change in the scaling with molecular size. Furthermore, the#�êë 9� �:ç�; $J dependence cannot be removed in CCSD. In the following sections it will
be shown that these disadvantages can be eliminated when thedensity fitting approxima-
tion is combined with local correlation methods.

4.1 DF-HF and DF-DFT

Density fitting is most easily applied to the Coulomb part of the Fock matrix, which is
needed both in HF and DFT. This has sometimes been denoted RI-HF and RI-DFT, re-
spectively, but for the reasons explained above we call the methods DF-HF and DF-DFT.
The Coulomb contribution formally scales as� #� � $, but close to linear scaling can be
achieved using Poisson fitting basis sets [53, 54, 55, 56, 57]. The evaluation of the ex-
change contribution to the Fock matrix is more involved. It can be written as(/- ? @(/- � *� *5#$�%<= 0/�5 f-�5 � (20)

If canonical orbitals are used, all fitting functions
£ %7 must be included in the summation,

and the computational effort scales as� #� J $ [51]. In the work carried out as part of the
HPC-Chem project we have shown that this bottleneck can be avoided by using localized
orbitals [38, 57]. The use of localized orbitals offers two advantages: First, the integralsf/�5 + #4E &£ $ become negligible unless the basis functions�/ are close to the localized
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Table 1: CPU times
±

for Fock-matrix construction using conventional or Poisson auxiliary basis functions.
The full cc-pVQZ basis set has been used.
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�) )���� in seconds on AMD Opteron 2 GHz processor.

orbital � �çè� . Therefore, the number of non-negligible integrals#4E &£ $ scales asymptoti-
cally as� #� � $. Secondly, since the charge densities"/� #/$ � �/ #/$� �çè� #/$ are local, a
fitting basis located in the same region of space as"/� is sufficient for a given orbitalE. The
subset of fitting basis functions belonging to orbitalE is called the fitting domain related
to E and is denoted�E�?: . For large molecules, the number of functions�5 in each fitting
domain becomes independent of the molecular size. Then, theremaining number of re-
quired integrals#4E &£ $ scales only linearly with molecular size. Furthermore, thefitting
and assembly steps for a fixedE become independent of the molecular size, leading overall
to linear scaling for the evaluation of the exchange contribution. The price one has to pay
is that for each fitting domain a set of linear equations has tobe solved. Since this scales
with the third power of the number of coupled equations, the cost (i.e., the pre-factor of
the linear scaling algorithm) will depend sensitively on the sizes of the fitting domains.
Fortunately, relatively small fitting domains are sufficient to optimize the orbitals. Further-
more, the inverse of the Coulomb matrixJ (or the corresponding LU-decomposition) can
be reused in subsequent iterations, provided the fitting domains remain unchanged. In or-
der to minimize the errors, the final energy can be computed accurately with the full fitting
basis without explicit construction of the Fock matrix. Fordetails of our implementation
and an analysis of the errors caused by local fitting we refer to Ref. [57]. We found that
the errors on relative energies, equilibrium distances, and harmonic vibrational frequencies
are negligible.

The local fitting procedure leads to significant savings in the Fock matrix evaluation, in
particular for large basis sets. Table 1 shows some timings for pregnanediol and indinavir
molecules, using the cc-pVQZ basis sets. The calculation for indinavir includes almost
4000 basis functions. This calculation has not been possible using our conventional direct
HF program. From the timings it can be seen that if a GTO fittingbasis is used about 70%
of the time is spent in the evaluation of the 3-index integrals (this corresponds to the sum
of columnsintegrals and Coulomb). It should be noted that our current integral program is
still far from being optimum. A new implementation, using similar techniques as used in
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TURBOMOLE, is currently in progress, and this should lead toa significant reduction of
the integration times.

A further speedup can be achieved by using the Poisson equation [53, 54, 55, 56]ÝB @ �"� � " % (21)

(where
ÝB � � #7À $,�' �), which relates the Coulomb potential@ �"� to the density" that

gave rise to it. For a given basis function&�5 C+ &£ C one can define new functionsÝB &�5 C+ & @£ C, formed by the application of the Poisson operator
ÝB . Functions of

this type are called Poisson functions to distinguish them from standard Gaussian basis
functions. The integrals� A5 A6 and # @£ &43 $ then simplify to integrals over the Laplacian� A5 A6 � � �/ �5 #/ $ ÝB �6 #/ $ �� £ & ÝB &7 C (22)

and to 3-index overlap integrals# @£ &43 $ � � �/ �5 #/$�/ #/ $� - #/$ �� £ &43 C % (23)

respectively. These 3-dimensional integrals are much faster to evaluate then the 6-dimen-
sional Coulomb integrals. Furthermore, the 3-index overlap integrals decay fast with the
distance between

£
and 43 , and therefore the number of integrals scales linearly with

molecular size. Unfortunately functions like
ÝB � carry no total charge [55, 56]ö � � �/ ÝB � #/$ � � % (24)

nor indeed any net multipole of any order, becauseöBX � � �/ � BÜBX #/9� $ ÝB � #/$ � � � (25)

One must therefore augment the Poisson basis set with a few standard basis functions. For
the exact fitting of arbitrary densities it is sufficient to have only a single, standard basis
function of each angular momentum. We have optimized Poisson fitting basis sets for the
cc-pVTZ and cc-pVQZ basis sets. The errors of the final HF energies are of similar size (or
even smaller) as with the corresponding optimized GTO basisset of Weigend [51]. Using
the Poisson basis sets, the CPU time for Fock matrix evaluation is typically reduced by a
further factor of 2 (see Table 1).

Figures 4 and 5 show the scaling of the CPU time as a function ofmolecular size for
a linear chain of glycine polypeptides and polyalanine helices, respectively. The latter
systems have a 3-dimensional structure and are much more compact than the linear glycine
chains. The scaling obtained with the Poisson basis is better than quadratic. By comparing
the timings for the linear glycine chain and the alanine helices it is found that for molecules
of comparable size the time is approximately a factor of 2 larger in the latter case. This
is caused by less efficient screening in the 3-dimensional case. However, the effect of
screening is much less pronounced than in conventional direct Fock matrix evaluation.
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Figure 4: CPU times for DF-HF Fock-matrix evaluation for glycine polypeptides (gly)w as a function of the
chain lengthy

Figure 5: CPU times for DF-HF Fock-matrix evaluation for alanine helices (ala)w as a function of the chain
lengthy

4.2 DF-LMP2 and DF-LMP2 gradients

The first implementation of density fitting in MP2 theory was described by Feyereisen,
Fitzgerald and Komornicki [58]. This reduced the cost for evaluating the transformed
integrals, but the scaling with molecular size was still� #� t $. This bottleneck can be
eliminated if the DF method is combined with the local correlation methods. In LMP2
theory, one needs 2-electron integrals� �b� � � #� E &�' $ over two occupied orbitals� �çè� , � �çèb
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Figure 6: CPU times (in seconds on P4/2 GHz) for DF-MP2 and DF-LMP2 calculations for glycine polypep-
tides (gly)w as a function of the chain lengthy
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and two PAOs���ç� , ���ç� . In the DF approximation these integrals can be written as� �b� � � *5# $�b %<= 0 ��5 f�b5 % (26)

Since the PAOs� % � are close to the localized orbitalsE % ' , the charge densities"��, "�b are
local, and therefore for a given pair#E' $ the fitting functions can be restricted to a pair
fitting domain �E' �?: . This means that the fitting coefficients0 5� � are the solution of the
linear equations in the subspace of the fitting domain�E' �?: . This is very similar to the local
fitting of the exchange matrix in DF-HF, but in this case a system of linear equations has to
be solved for each pair#E' $. Alternatively, one can use orbital dependent fitting domains�E�?: for all pairs#E' $ involving a particular orbitalE. These orbital fitting domains are larger
than the pair fitting domains, but one has to solve the linear equations only once for each
correlated orbital. A possible disadvantage of using orbital-dependent fitting domains is
that this is not symmetric with respect to exchange ofE and' . We therefore denote this
as ”asymmetric fitting” procedure. However, this can be cured by using therobustfitting
formula [59]� �b�� � *5#$�%<= 0 ��5 f�b5 � *6 #$b %<= f��60 �b6 � *5#$�%<= *6 #$b %<= 0 ��5 �560 �b6 % (27)
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Table 2: Analysis of CPU times
±

for indinavir (cc-pVTZ, 2008 BF).

LMP2 DF-MP2 DF-LMP2
Integrals 25540 2992 2816
Transformation 56620 4795 970
Fitting 0 3364 362
Assembly 0 82663 38
Total #� E &�' $ 82160 93900 4208
Iteration 3772 0 3775
Total MP2 86177 93914 8247

a) In seconds for HP ZX6000 Itanium2/900 MHz.

which can be rewritten as� �b�� � *5#$�%<= 0 ��5 f�b5 � *6 #$b %<= @f��60 �b6 (28)

with @f��6 � f��6 � *5#$�%<= 0 ��5 �56 � (29)

Thus, an additional matrix multiplication is required to evaluate @f��6 , and the computational
effort in the robust assembly step [eq. (28)] is doubled as compared to the non-symmetric
approximation, in which the second term of eq. (28) is neglected (note that@f��6 vanishes if
the full fitting basis is used). In our original work [38] we used the asymmetric procedure
with orbital fitting domains�E�?: which were the union of all orbital fitting domains�E' �?: for
a fixed E. Here �E�?: includes all auxiliary basis functions centered at the atoms belonging
to the orbital domain�E�. It was found that with this choice the errors due to local fitting
are negligible, and robust fitting was not needed. More recently, we found that much
smaller fitting domains are sufficient if robust fitting is performed. Some results will be
presented in section 4.3. Independent of the choice of the local fitting domains, their sizes
are independent of the molecular size, and – provided that distant pairs are neglected –
linear scaling of the computational effort can be achieved.Table 2 shows some timings for
indinavir. The savings by the local fitting approximations is most dramatic for the assembly
step [eq. (28)]. This step takes 82663 seconds in canonical DF-MP2, but only 36 seconds
in DF-LMP2. This is a reduction by a factor of 2175! The savingof DF-LMP2 vs. LMP2
is about a factor of 20 for the evaluation of the integrals#� E &�' $ and a factor of 10 overall.
The latter factor is smaller, since the time to solve the LMP2equations is the same with or
without density fitting. While this time is only a small fraction of the total time in LMP2, it
amounts to almost 50% in DF-LMP2. The scaling of the CPU time as function of molecular
size is shown in Figure 6. It can be seen that the scaling is very close to linear, both for
LMP2 and DF-LMP2. This has made it possible to perform LMP2 calculations for much
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Figure 7: Some plots of molecular systems for which geometryoptimizations with the analytic DF-LMP2
gradient program have been performed. In all cases a basis set of triple-zeta size has been used.

pregnanediol indinavir

Zn(II)
u� complex (CH�OH)��

larger molecules than previously possible. For instance, we have been able to perform
DF-LMP2 calculations for indinavir with the full cc-pVQZ basis (3885 basis functions).
Without local density fitting, not even the Hartree-Fock calculation had been possible.
Similar techniques have been used to implement analytic energy gradients for DF-HF/DF-
LMP2. The theory is quite involved and we refer to our original work [35] for details. Most
importantly, all 4-index objects except for the LMP2 amplitudes are entirely avoided in this
method. In particular, there are no 4-index derivative integrals to compute, in contrast to
the DF-MP2 gradient method of Weigend and Häser [60]. The LMP2 amplitudes, which
by virtue of the local approximation are very compact anyway, are contracted with 3-index
integrals to a 3-index object immediately after the DF-LMP2energy calculation. Local
fitting is used both in the evaluation of the direct gradient contributions as well as in the
coupled-perturbed Hartree-Fock equations. Again, this leads to significant savings, and
much larger molecules can be treated than before. The additional errors in the geometries,

70



Density fitting approximations

Table 3: Timings (in minutes) of the individual steps of a DF-LMP2 gradient calculation for some exemplary
test molecules. The calculations were performed on an AMD Opteron 2.0 GHz processor machine.

molecule Zn(II)
u� complex (MeOH)�� pregnanediol indinavir

basis TZVP AVDZ VTZ(f/P) VTZ(f/P)�êë 1114 1312 1014 1773�êCD(MP2) 2349 3776 2943 5055�êCD(JK) 3599 4448 2897 4965
DF-HF 461 251 109 375
DF-LMP2 155 75 57 376
LMP2 iter. 144 32 41 285

DF-LMP2 GRD 286 341 155 526
Z-CPHF 175 177 77 231

DF-HF GRD 134 91 54 163
TOTAL 1036 758 375 1440

inflicted by density fitting are clearly negligible, as was demonstrated in Ref. [35]. Some
examples of molecular systems for which geometry optimizations have been performed,
are shown in Figure 7. Table 3 compiles the corresponding timing results. Evidently, the
correlation-specific parts of the gradient do not dominate the overall cost of the calculation.
The Hartree-Fock-specific parts turn out to be roughly as expensive. This implies that for a
given AO basis set size a DFT gradient based on a hybrid functional is not much faster than
the DF-LMP2 gradient, even when employing density fitting aswell. This is particularly
interesting for applications in the field of intermolecularcomplexes and clusters, where
DFT has severe shortcomings due to its inability to describedispersive forces. The new DF-
LMP2 gradient has recently been used in a combined experimental and theoretical study on
predetermined helical chirality in pentacoordinate Zinc(II) complexes [61]. One of these
complexes is shown in Figure 7. The five coordinating atoms inthe ligand are represented
by one pyridine nitrogen atom N�EFGH GIJ, two oxazoline nitrogen atoms N

ç��Kç �GIJ , and two
further atoms, denoted by X. Experiment and theory agree that, depending on the choice of
X, the Zn complex has either aL � (X=O) or a

u� (X=S) conformation. Furthermore, there
is agreement that the

u� conformer has perfect C� symmetry, whereas the symmetry of theL � conformer is distorted. This is also evident from Table 4, which compares experimental
and theoretical values of the most relevant geometrical parameters of these two conformers.
As can be seen, there is good agreement between the X-ray and the theoretically predicted
structures. It is unlikely that calculations at that level would have been possible with any
other program currently available.
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Table 4: Comparison of selected bond lengths and angles of theM� (X=O) ands � (X=S) conformers of the
pentacoordinate Zinc(II) complex studied in Ref. [61].Theexperimental values were determined by X-ray
structure analysis. The theoretical values were obtained by performing geometry optimizations using the
analytic DF-LMP2 gradient program. The TZVP basis [62] withthe related fitting basis sets [63] was used.
For Zinc a quasi relativistic energy-adjusted pseudopotential based on the Ne-like Zn��N core together with
the related 6s5p3d1f AO basis [64] was employed. All values are given inÅ and degrees.L � (X=O)

u� (X=S)
X-ray DF-LMP2 X-ray DF-LMP2

N�EFGH GIJ–Zn 2.03 2.05 2.10 2.12
N
ç��Kç �GIJ �–Zn 1.96 1.97 1.98 2.00

N
ç��Kç �GIJ�–Zn 1.95 1.96 1.98 2.00

X �–Zn 2.22 2.23 2.53 2.55
X�–Zn 2.28 2.25 2.53 2.55O

(N�EFGH GIJ,Zn,N
ç��Kç �GIJ �) 114 115 110 110O

(N�EFGH GIJ,Zn,N
ç��Kç �GIJ�) 116 116 110 110O

(N�EFGH GIJ,Zn,X�) 77 76 84 83O
(N�EFGH GIJ,Zn,X�) 76 75 84 83O
(X �,Zn,X�) 153 150 169 167

4.3 DF-LCCSD

As already pointed out in section 3.2, the integral transformations constitute the most se-
vere bottleneck in local coupled-cluster calculations, despite linear scaling algorithm [11]
Density fitting approximations are therefore particularlyuseful in LCCSD. In a first step,
such methods been implemented for the most expensive integral class, namely those in-
tegrals involving four PAOs (4-external integrals) [65]. Speedups by up to two orders of
magnitude were achieved in this step. Similar to the case of DF-LMP2, local fitting do-
mains can be introduced to restore the� #� $ scaling behavior of the parental LCCSD
method, as is shown in Figure 8. Furthermore, even though thescaling with respect to the
number of basis function per atom, i.e., the basis set size, cannot be reduced from quartic
to cubic as in the case of DF-HF and DF-LMP2, the computational speedups due to DF
increase substantially when larger basis sets are used.

Very recently, our program has been extended such that density fitting is employed for all
types of integrals needed in coupled cluster theory [66]. Table 5 shows some preliminary
timings for the (gly)J test case. The times for the integral transformations are reduced by a
factor of 10-20 if full fitting domains are used, and up by a factor of 34 (for the 0-2 external
integrals) with local fitting domains. In the LCCSD without density fitting, the transformed
3- and 4-external integrals are stored on disk. Due to the useof domains, the number of
these integrals scales linearly with molecular size, and the necessary contractions with the
amplitude vectors and matrices in each iteration are very fast. However, in each iteration
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Figure 8: CPU times (in seconds on Athlon/1.2 GHz) for the calculation of the 4-external integrals as a
function of the chain lengthy for poly-glycine peptides (Gly)w , y z ~ } } } ~P, The cc-pVDZ orbital basis set
together with the corresponding MP2 fitting basis of Weigendet al. [49] was employed. In DF-LCCSD the
full fitting basis and in LDF-LCCSD local fitting domains wereused.

an additional Fock-like operatorG(E) must be computed in the full PAO basis�� #Q $�� � � *� *¢ �) #� � &ïE$ � #�ï &�E$� N�¢ � (30)

Due to the long-range nature of the Coulomb operator, domains cannot be used for the
indices� % � in the first term without introducing significant errors [11]. This operator is
therefore computed in the AO basis, and the time is the same asfor evaluating a Fock
matrix. In the density fitted case, this operator can be computed using the same techniques
as described in section 4.1, and this removes the main bottleneck in the iteration time.

In the density fitting case one has furthermore the option of either store the transformed
3- and 4-external 4-index integrals as in the standard case,or to store the smaller sets of 3-
index integrals#� � &£ $, #� E &£ $ (and/or the corresponding fitting coefficients) and assemble
the 4-index integrals on the fly in each iteration. The lattercase is faster in the transfor-
mation step but requires significantly more time per iteration. The two different cases are
shown in Table 5 as well. Clearly, overall, storing the 4-index quantities is advantageous,
provided there is enough disk space available.

The errors introduced by the density fitting approximation are demonstrated in Table 6. It
is found that the errors for DF-LCCSD are even smaller than for DF-LMP2, despite the fact
that optimized MP2 fitting basis sets of Weigend et al. [52] have been used. This is due
to a fortuitous error cancellation: While the errors at the LMP2 level are positive (relative
to the result without density fitting), the errors caused by fitting of the 4-external integrals
are negative. In order to keep the latter error small, we found it necessary to use a larger
fitting basis than for the 0-3 external integrals. This is dueto the fact that in the 4-external
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Table 5: CPU times for LCCSD calculations for (gly)�, cc-pVTZ basis
±
, 706 basis functions, 96 correlated

electrons

Step LCCSD DF-LCCSDR HS DF-LCCSDR H

Integral evaluation and transformation:

0-2 external integrals 11280 496 328
3 external integrals 12370 838 1718
4 external integrals 33257 1420 1628
Total transformation 56907 2754 3674

Times per iteration:
OperatorG(E) 1570 140 100
Contractions with 3-external integrals 30 531 30
Contractions with 4-external integrals 40 1233 40
Residual 52 52 52
Total time per iteration 1692 1956 221

Total time (12 iter.) 76002 26433 6567

a) CPU-times in seconds on AMD Opteron 2.0 GHZ.
b) cc-pVTZ/MP2 fitting basis [52] for the 0-3 external integrals;

cc-pVQZ/MP2 fitting basis [52] for the 4-external integrals.
c) Using the full fitting basis for the 0-2 external integrals.

The 3-index integrals or fitting coefficients are stored on disk,
and the 3,4-external 4-index integrals are assembled in each iteration.

d) Using local fitting domains for 0-2 and 4 external integrals andG(E).
The time for computing the 4-external integrals without local fitting domains is 2615 seconds.
Robust fitting with domains extended by one shell of neighboring atoms (see text)
is used for the 0-2 external exchange integrals.
All 4-index integrals are precomputed and stored on disk.

case only products of two PAOs are fitted, and this requires fitting functions with higher
angular momenta than for the other integral types, in which at least one occupied orbital is
involved.

In LCCSD larger domains are needed for the transformed integrals than in DF-LMP2, and
therefore also larger fitting domains are required if local fitting is performed. It turns out,
however, that the fitting domain sizes can be much reduced if robust fitting is performed (cf.
section 4.2). Table 6 shows the errors of LMP2 and LCCSD correlation energies caused by
local fitting of the 0-2 external integrals, as compared to a calculation with the full fitting
basis. The local fitting domains for each orbitalE include all fitting functions at the atoms
belonging to the standard orbital domain�E�; in addition, this domain was extended by the
functions at 1 or 2 shells of neighboring atoms (denoted ”Ext.” in the Table). It can be seen
that with an average number of only 334 fitting functions per orbital the error amounts
only to 0.06 mH with robust fitting. Using the asymmetric fitting procedure without robust
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Table 6: Effect of robust local fitting on LMP2 and LCCSD correlation energies for (gly)�, cc-pVTZ basis
±

Fitting Ext.R � �T?: � UìV �Sñ�� u� UìV�Sñ�� � U11WXSñ�� u� U11WXSñ��
none -3.219946 -0.000224 -3.298234 0.000067

non-local 1797 -3.219723 0.0 -3.298301 0.0

asymmetric 1 334 -3.216307 0.003416 -3.295158 0.003143
asymmetric 2 565 -3.219358 0.000364 -3.297971 0.000329

robust 1 334 -3.219655 0.000068 -3.298251 0.000050
robust 2 565 -3.219707 0.000016 -3.298297 0.000004

a) cc-pVTZ/MP2 fitting basis [52] for the 0-3 external integrals; cc-pVQZ/MP2 fitting
cc-pVQZ/MP2 fitting basis [52] for the 4-external integrals.YZSñ�� is the energy difference to the density fitted result with thefull fitting basis.

b) domain extension for fitting basis, see text.

fitting as outlined in section 4.2, the error is more than 50 times larger. It can also be seen
that the errors are of very similar size for LMP2 and LCCSD; thus, despite the fact that
robust fitting is not used for the 2-external Coulomb integrals #� � &E' $, it appears that the
local fitting does not introduce extra errors in the LCCSD. The extra effort for the robust
fitting is by far overcompensated by the reduction of the fitting domains. More details of
our method will be presented elsewhere [66].

5 Parallelization

As part of the HPC-Chem project a number of programs inMOLPRO were parallelized or
the previously existing parallelization was improved. Newly parallelized were the integral-
direct local transformations, the LMP2 and CCSD programs, and the density fitting Hartree-
Fock program. Additional work was done on the MCSCF and MRCI programs. The
infrastructure was extended and generalised to support different communication libraries
(TCGMSG, MPI) and network protocols (Myrinet, TCP-IP).

The parallelization inMOLPRO is based on the Global Array (GA) Software developed
at Pacific Northwest Laboratories (seewww.emsl.pnl.gov/docs/global/). The
GA library provides facilities to create, write, and read GAs, which are distributed over
the compute nodes and can be used as a shared memory device. Access is one-sided, i.e.,
each processor can asynchronously read or write data from/to parts of the GAs which are
located on remote nodes. The GA software allows to use distributed and shared memory
machines in the same way, but of course it has to be taken into account in the algorithms
that accessing data via the network is slower than from localor shared memory. In order
to minimize communication, a symmetric coarse grain-parallelization model is used, and
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Figure 9: Elapsed times (upper pannel) and speedups (lower panel) of direct Hartree-Fock calculations for
progesterol using the cc-pVTZ basis set on a PC cluster (PIII/933 MHz, Myrinet)
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data are replicated on all nodes if sufficient memory is available. The tasks are allocated to
processors dynamically using a shared counter.

Some programs, as direct Fock-matrix evaluation, are rather easy to parallelize, since the
amount of data to be communicated is minimal. However, this is not the case in the integral
transformations or in the CCSD program. The transformations involve sorting steps, and in
the CCSD the amplitudes are combined with all transformed integrals in a non-sequential
way. Therefore, the communication requirements in these programs are much larger than in
HF or DFT. Furthermore, many data must be stored on disk and nevertheless be accessible
from all CPUs. In order to minimize the communication and I/Ooverheads,MOLPRO uses
various different file types: (i) exclusive access files (EAF), which are local to a particular
processor and can only be read from the processor to which they belong; (ii) shared files
(SF), which can be read from all processors. However, all processors must be synchronized
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Figure 10: Elapsed times (upper panel) and speedups (lower pannel) of LMP2 calculations for progesterol
using the cc-pVTZ basis set on a PC cluster (PIII/933 MHz, Myrinet)
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when I/O takes place, and thus the processors cannot performthe I/O independently. In
order to eliminate the latter restriction, global files (GF)were implemented by the Jülich
group as part of the HPC-Chem project. Global files behave like GAs but reside on disk.
One-sided access from any processor is possible. It is also possible to distribute the file
with a predefined fragmentation over the processors, which can be used in the algorithms
to further reduce the communication. Finally, files can alsobe mapped to GAs so that all
data reside in the distributed memory. This can be useful if alarge amount of memory
is available and I/O is a bottleneck. A typical usage of EAF files is the storage of the 2-
electron integrals in conventional calculations. The integrals are evenly distributed over all
nodes, and each node processes its own subset. On the other hand, shared or global files are
used to store the amplitudes and transformed integrals, since these must often be accessed
in a random manner.
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Figure 11: Elapsed times (upper panel) and speedups (lower panel) of CCSD calculations for 1-butene (� �
symmetry, 168 basis functions) on a PC cluster (PIII/933 MHz, Myrinet)
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Figures 9 and 10 shows timings of direct HF and LMP2 calculations, respectively, on the
PC cluster funded by the HPC-Chem project. This cluster contains 8 dual processor nodes.
If only one processor per node is used, the speedup is almost linear. Some degradation
is observed if 2 processors per node are used, since the memory bandwidth is insufficient
for two processors. Furthermore, some global array operations, like global summations or
broadcasting, are performed via one CPU (usually CPU 0), andthis leads to a communica-
tion bottleneck in this node if many CPUs are used.

Figure 11 shows timings for conventional CCSD(T) calculations as function of the number
of processors. In this case significantly more communication is needed than in the direct
LMP2 calculations. Nevertheless, the speedup is very satisfactory as long as only one
processor per node is used. The performance gets much worse if two processors per node
are used (not shown). With 16 processors, the speedup is onlyabout 10. To a large extent
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this is due to poor memory bandwidth of this machine. This canalso be seen from the facts
that (i) running two similar jobs on one node increases the CPU time of each calculation
by a factor of 1.5-1.8, and (ii), running a parallel job using2 processors on a single node
leads hardly to any speedup, despite the fact that shared memory is used and no inter-node
communication is required. Thus, for memory intensive applications like CCSD(T) it is not
advantageous to use dual CPU compute nodes. It should be noted, however, that with more
recent hardware (e.g. AMD Opteron) this memory bottleneck is not observed any more,
since in these machines each CPU has independent memory access. Unfortunately, at the
time of writing this report, no detailed benchmark results for such machines are available.

6 Conclusions

The work reviewed in this article has shown that local correlation methods combined with
density fitting approximations have extended the applicability of high-levelab initio meth-
ods to much larger molecular systems than could previously be treated. Local approxima-
tions lead to linear scaling of the computational cost as a function of the molecular size for
all popular single-reference electron correlation methods like MP2-MP4, QCISD(T), and
CCSD(T). While the absolute cost of the original linear scaling methods was still relatively
large if good basis sets were used, density fitting approximations have made it possible to
reduce the computer times by additional 1-2 orders of magnitude. This applies in partic-
ular to the integral transformations, which constituted the main bottleneck. The speedup
of the correlation treatments has lead to the situation thatLMP2 calculations with density
fitting took only a small fraction of the time needed for the preceding direct Hartree-Fock
calculation. Therefore, additional work has been devoted to speed up the Fock matrix con-
struction. It has been shown that by localising the orbitalsin each iteration and applying
local density fitting approximations a speedup of 1-2 ordersof magnitude (depending on
the basis set quality) can be achieved. The new methods have also been parallelized, which
further reduces the elapsed times. All methods described inthis work have been imple-
mented in theMOLPRO package ofab initio programs and will be made available to the
users of this software in the near future.
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[7] M. Schütz, G. Hetzer, and H.-J. Werner,J. Chem. Phys.111, 5691 (1999).
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[49] F. Weigend, A. Köhn, and C. Hättig,J. Chem. Phys.116, 3175 (2002).
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[52] F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs,Chem. Phys. Lett.294, 143
(1998).

[53] J. W. Mintmire and B. I. Dunlap,Chem. Phys. Lett.25, 88 (1982).

[54] B. I. Dunlap,J. Chem. Phys.78, 3140 (1983).

81



Local Electron Correlation Methods with Density Fitting inMOLPRO
University of Stuttgart

[55] F. R. Manby and P. J. Knowles,Phys. Rev. Lett.87, 163001 (2001).

[56] F. R. Manby, P. J. Knowles, and A. W. Lloyd,J. Chem. Phys.115, 9144 (2001).

[57] H.-J. W. R. Polly, F. R. Manby, and P. Knowles,Mol. Phys.,(2004), in press.

[58] M. W. Feyereisen, G. Fitzgerald, and A. Komornicki,Chem. Phys. Lett.208, 359
(1993).

[59] B. I. Dunlap,Phys. Chem. Chem. Phys.2, 2113 (2000).
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[62] A. Schäfer, C. Huber, and R. Ahlrichs,J. Chem. Phys.100, 5829 (1994).
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1 Introduction

The TURBOMOLE quantum chemistry program package in its current version allows for
the treatment of electronic ground states at the Hartree-Fock (HF), Density Functional
Theory (DFT), second-order Møller-Plesset perturbation theory (MP2) and Coupled Clus-
ter Theory (CC2) level of theory including ground state properties (structure constants,
vibrational frequencies, NMR chemical shifts). Further included are methods for the treat-
ment of electronic excited states by linear response techniques at DFT, HF and CC2 level of
theory. Specific to TURBOMOLE is the emphasis on integral-direct implementations of the
available methods, combined with fast integral evaluation(RI-� and MARI-� techniques)
and the exploitation of the full finite point group symmetry.

This part of the HPC-Chem project aims at further extending its applicability to very large
systems by means of parallelization. In view of the fast methodological development - as
exemplified by the other contributions to this report - parallelization efforts should separate
the infrastructure required for parallel optimization from the actual code of the quantum
chemical (QC) methods and supply only a (limited) set of library routines supporting main-
tenance, parallelization or re-parallelization of existing code with little effort. Discarding
the master-slave concept greatly simplifies parallelization while minimizing the differences
between serial and parallel QC codes. Finally, machine-independence is advantageous in
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view of the short life cycles of current hardware. Anticipating the more detailed discus-
sion of efficiency, functionality and performance of the serial code in chapter I it is evident
that (easily parallelizable) integral evaluation is of diminishing importance. This does not
exactly facilitate parallelization. Moreover, parallel code directly derived from a serial
implementation usually does not simply scale to arbitrary problem sizes: memory require-
ments per processor might be excessive and switching to distributed data might not be
trivial and collide with parallel efficiency.

Linear algebra routines have to be replaced in many cases by parallel versions because
either the size of the matrices enforces switching to distributed data or cubic scaling re-
quires parallelization. Specific cases may force the replacement by alternative algorithms
with improved performance either due to better parallel scalability or more favorable cache
optimization.

For parallel computer systems I/O poses a potentially serious problem and should - when-
ever possible - be completely avoided. As (distributed) memory availability scales linearly
with the number of processors, shortages in distributed memory are likely to be alleviat-
able. This does not appear to be the case now or in future for secondary storage media. In
addition storage requirements can be reduced by data compression.

The exploitation of symmetry largely reduces the computational cost (integral evaluation
is sped up by approximately the order of the point group
¤ , some linear algebra tasks
by 
�¤ and memory demand is down by a factor of
¤ ) at the expense of somewhat more
complicated load-balancing and data access. A key ingredient for good performance is
systematic, dense data access which can be taken advantage of by the communication
routines. TURBOMOLE very efficiently implements symmetry for integral evaluation and
data storage. An exception comprises the symmetry redundant storage of the Fock and
density matrices in CAO basis.

In the subsequent sections, these aspects are discussed along with reasonable solutions in
some detail. For a brief introduction to the RI-� and MARI-� methods refer to sections I.3
and I.4, respectively.

2 General considerations

This article primarily deals with the parallelization of the RIDFT and RDGRAD modules
required for structure optimization at DFT level with non-hybrid functionals using the RI
method (cf. section I.3). With few exceptions all details also apply to the DSCFand GRAD

modules which furnish the basis for geometry optimization at DFT and HF level of theory
and share most computational steps with their RI counterparts. The latter handle addition-
ally the auxiliary basis set, the associated integrals, andcompute Coulomb contributions to
the Kohn-Sham matrix differently.
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General considerations

TURBOMOLE is a collection of independent specialized modules which communicate via
files. The input is set up interactively by the module DEFINE and the calculation is carried
out by means of the JOBEX script, which executes the individual modules in the correct
order (Figure 1).
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Figure 1: Schematic flow chart of the TURBOMOLE package (for details see text)

The master-slave concept is discarded and dynamic (bag of tasks) and static load-balancing
based on the data distribution is implemented. Dynamic load-balancing is mainly used for
integral evaluation since the computational costs associated with the integral batches can-
not be accurately estimated. Dynamic load-balancing is most efficient in combination with
the replicated data approach, where the communication loadis independent of the num-
ber of tasks. However, memory limitations force dynamic load-balancing with globally
distributed data imposing additional constraints to reduce the communication overhead.
Either fully encapsulated separate parallelized tasks (such as linear algebra) are used or
parallelization is restricted to the highest possible level in order to avoid instabilities due
to excessive code changes and to retain a maximum overlap between serial and parallel
codes. Despite its computational simplicity the RI based DFT does not have one domi-
nantly CPU time consuming subtask, so that parallelizationrequires more effort in order to
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achieve scalability. All timings refer to the Jülich multiprocessor system, a cluster of IBM
eServer p690 with 32 Power4 CPUs (1.7 GHz) per SMP node connected with a high-speed
network. Reproducibility of performance data is limited onSMP systems to some�5-10%
even for serial codes such as matrix multiply. Since computations have not been carried
out with exclusive access, performance depends on other jobs running simultaneously.

3 Communication libraries

The parallel implementation of TURBOMOLE primarily utilizes several public domain
communication and mathematical libraries complemented bya set of special-purpose rou-
tines.

The Global Array toolkit [1] provides distributed multi-dimensional arrays along with
one-sidedtransparent access to the distributed data, i.e. there is noneed for cooperative
communication calls between the individual processes (pair-wise send and receive calls).
This toolkit is of particular use for dynamic load-balancing avoiding the master-slave con-
cept. This feature is not yet available with the current MPI-1 standard, while vector-specific
implementations may provide some features of the future MPI-2 standard. Other features
are easy control of the data distribution over the processes, the ease of data access and the
provision for taking advantage of data locality by the user’s code. The toolkit’s communi-
cation library is interfaced to MPI, specific network protocols (quadrinet, myrinet) as well
as to the mixed usage of shared memory and MPI (similar to TURBOMPI [2]) and runs on
a variety of machines.

BLACS [3] is the basic communication library usually implementedon top of MPI used
by the parallel linear algebra package ScaLAPACK. It is not very useful with quantum
chemical program packages as the usage is tedious and does not offer much advantage
over the direct use of MPI, here.

Compared to the GA toolkit the widely usedMPI-1 standard lacks the one-sided access to
the distributed data forcing the master-slave concept or static load-balancing. The lack of
more complex data structures and the tedious implementation of the basic library utilities
makes the ready-to-use infrastructure available with the GA toolkit preferable. However,
the possibility to create process subgroups and carry outseveral parallel tasks simultane-
ouslymakes a limited use of MPI based communication valuable. Additionally, certain
data redistributions are very efficient with MPI.

TheScaLAPACK [5] andPBLAS [4] implementations of parallel linear algebra are based
on the BLACS communication library. The block-cyclic distribution of one- and two-
dimensional matrices is - however - not only extremely inconvenient but also incompatible
with the algorithms used in quantum chemistry. Since they appear to be very favorable in
the realm of linear algebra and regarding the large number ofparallel routines available
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with ScaLAPACK and PBLAS, a set of MPI based routines interface the BLACS based
block-cyclic distribution of matrices and the corresponding dense GA data structures.

The interface library comprises a set of special routines and utilities for a variety of tasks
occurring in the context of parallelization. It is also designed to be implemented in a serial
and parallel version so that serial and parallel code are as close as possible (somewhat in
the spirit of OpenMP, though not restricted to SMP architectures) and simplify code main-
tenance and development. It also includes extensions for simple data-parallel algorithms
and for shared memory usage on clusters of SMP nodes.

4 Data structures

As in other codes, TURBOMOLE stores two-dimensional square matrices as vectors with
column-major labeling (FORTRAN notation, Figure 2a). For symmetric matrices only the
upper half matrix is stored (Figure 2b).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Figure 2a

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Figure 2b

Figure 2: Storage of non-symmetric (Figure 2a) and symmetric (Figure 2b) two-dimensional square matrices
as vectors. The numbers are the vector element indices.

In the presence of non-trivial symmetry, block-diagonal matrices occur with elements in
the off-diagonal blocks vanishing. Each diagonal block is stored as a vector and the vectors
of subsequent diagonal blocks are concatenated (Figure 3).

These arrays are stored in distributed manner as vectors or as full two-dimensional matrices
depending on the access pattern of the algorithm. The two-dimensional matrix may be
distributed over the processors by rows, columns or blocks (Figure 4).

The global data structures are accessed (i) by retrieving a copy of any part of the distributed
data and (ii) by direct pointer-access to the local portion of the distributed data that a given
process owns.
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Figure 3: Storage of two-dimensional block-diagonal non-symmetric (Figure 3a) and symmetric (Figure 3b)
matrices as one-dimensional vectors.
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Figure 4: Distribution of a two-dimensional array over 4 processes by blocks (Figure 4a), by columns (Figure
4b) and by rows (Figure 4c).

ScaLAPACK relies on block-cyclic (BC) data distributions of two-dimensional matrices.
A process grid is constructed such that the product of process rows and process columns
equals the total number of processes and the grid is as close to square shape as possible
(Figure 5a). The elements of the initial matrix are grouped into subblocks (Figure 5b) with
a typical size of 50. The optimum value depends upon the specific task. These subblocks
are distributed in cyclic manner over process rows and process columns (Figure 5c). The
resulting distribution guarantees that no process owns only a continuous part of the initial
matrix thereby optimizing static load-balancing. The MPI based routines for conversion
from/to BC data distributions introduce a negligible overhead compared to the time spent
in the linear algebra routines.
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Figure 5: Size of the local matrix associated with each process (Figure 5a), subblock formation (Figure
5b) and block-cyclic distribution of the subblocks (Figure5c). The numbers indicate the global consecutive
numbering of the matrix as in Figure 2.

5 Parallel linear algebra

A number of simple algebraic operations on distributed data(e.g. scalar products of vec-
tors, traces of matrices or matrix-matrix products, etc.) are embarrassingly parallel, scale
ideally to an arbitrary large number of processes and require little or no interprocess com-
munication. Point group symmetry does not impose any restrictions.

For other important operations (e.g. similarity transforms, standard eigenproblem solver,
Cholesky decomposition) use is made of the ScaLAPACK parallel linear algebra package.

Point group symmetry gives rise to block-diagonal matrices(Figure 3) so that the individ-
ual blocks can be treated independently. The resulting saving factor amounts to approxi-
mately the order of the point group squared, for the serial code. Parallelization schemes
include (i) executing each block in parallel on all processes, (ii) executing all blocks si-
multaneously serially, and (iii) executing all blocks simultaneously and in parallel. The
speedup in scheme (i) is limited by the block dimension and degrades with increasing
symmetry. Scheme (ii) favors high symmetry cases and is memory intensive. The imple-
mented scheme (iii) uses multi-level parallelism by dividing the total number of processes
into a number of subgroups and each of these subgroups is assigned one and possibly more
blocks to operate on.

The three most important elementary linear algebra operations are Cholesky decomposi-
tion, similarity transform and the symmetric eigenvalue problem, each with cubic scaling.
Figure 6 illustrates the approximate scaling that can be achieved for large problem sizes
with no symmetry. Whereas Cholesky decomposition and similarity transform come close
to ideal scaling this does not apply to the eigensolver.
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Figure 6: Parallel performance of important linear algebraoperations (dotted line illustrates ideal scaling).

6 Utilities: parallel I/O and data compression

The Global Array toolkit has been extended by a Global I/O (GIO) library, which supports
one-sided transparent access to data which are distributedover the local hard disks of the
individual nodes of a PC cluster. This was primarily intended for supporting the MOLPRO
package, where the large amount of data which are generated during calculations with par-
allel electron correlation methods cannot be kept in memory. Data access and control over
the data distribution mimic the global arrays in memory: blocked distribution, program
control over the data distribution, record based and non-continuous data access.

Each GIO file consists of several records. The size and the distribution of data in a record
over the nodes can be fixed individually for each record. The access to data on remote hard
disks is one-sided and requires no details about the distribution.

This library extension has been used for the parallelization of MOLPRO. The developers
group of the Global Array toolkit has obtained the GIO extensions and may choose to
incorporate it into the official release.

The data compression scheme [6] relies on the assumption of aconstant absolute error so
that numbers are stored only with that many bits that are necessary not to exceed the error
bound. This results in a substantially better control over the errors compared to storing
with a fixed reduced mantissa length. The compression factorincreases with a decreasing
numerical range of the input data. The initial idea to use compression for integral storage
in memory, however, was abandoned because the integrals yield only a low compression
factor of two to three. Moreover, the recent advances in the electronic structure codes make
integral evaluation less and less critical, so that compression schemes may be rather applied
to more suitable quantities such as the DIIS error matrices.In context of the DSCF code,
the compression of the difference density matrices and difference Fock matrices might be
a useful target.
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7 The modules RIDFT and RDGRAD

In Figure 7 the flow charts for the RIDFT and RDGRAD modules are displayed. Whereas
RIDFT involves the (iterative) wavefunction optimization step,RDGRAD computes the gra-
dient for a previously optimized wavefunction. The steps indicated in the flow charts may
become time-consuming and enforce parallelization subject to point group symmetry and
size of the molecule. Additional minor steps are also parallelized as they operate on dis-
tributed data. Parallelization is driven by the demand for reduced wall clock timings and
the accommodation of memory requirements. Subsequently, the individual steps are de-
scribed in more detail as far as conceptional changes and parallelization are concerned.

RIDFT RDGRAD
Generation & Orthonormalization

of the initial MOs

?
Computation & Cholesky

decomposition of PQ matrix

?
Computation of S, T & V integrals

?
Generation of Density matrix

& transformation into CAO basis

?
Computation of Coulomb contribution

RIJ & MARIJ

?
Computation of Exchange contribution

Grid point generation & quadrature

?
Transformation of Fock matrix into SAO basis

?
DIIS convergence acceleration

?
Transformation of full/partial
Fock matrix into MO basis

?
New set of MOs by

(i) solving eigenvalue problem
(ii) orbital rotation scheme

r

-r

?

not converged
converged

wavefunction analysis

Computation & Cholesky
decomposition of PQ matrix

?

One-electron gradient integrals

?

Generation of Density matrix
& transformation into CAO basis

?

Computation of Coulomb contribution
(RIJ & MARIJ)

?
Computation of Exchange contribution

Grid point generation & quadrature

Figure 7: Schematic flow chart of the RIDFT and RDGRAD modules.

The clusters and molecules chosen to demonstrate the current performance are collected
in Figure 8: the vanadiumoxide clusters (���� ����, ��� �����, ��� ����) illustrate the impact of
symmetry; zeolites represent unsymmetric cage structures; small enzymes (BPTI, Barnase)
cover aspects from biochemical applications.
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V240 ball: ���������� , 840 atoms, PBE
TZVP 19320/38880

V80 tube: �mR� �RR�J� , 280 atoms, PBE
TZVP 6440/12960

V80 sheet: �mR� �RR� �, 280 atoms, PBE
TZVP 6440/12960

BPTI: C�mJHJ�mNmJOlkSl
C�, 892 atoms, B-P86

SVP 8574/20323

Barnase: CttRHmk �N�t �O��m
C�, 1710 atoms, B-P86

SVP 16371/38881

Zeolite: � �k�� � ��� Jm� �, 360 atoms, B-P86
SVP 4992/12216

Figure 8: Molecules and clusters used for evaluation purposes: brutto formula, point group symmetry, num-
ber of atoms, exchange-correlation functional, basis set,basis set size/auxiliary basis set size.

7.1 Generation and orthonormalization of the molecular orbitals

The iterative wavefunction optimization process begins byconstructing a density matrixD
from an initial set of occupied molecular orbitals (MOs)C:

./- � ñSS*�È� )8/�8- � (1)

The Kohn-Sham (KS) matrix is formed by contracting the density with the integrals and
adding the exchange-correlation contribution which is also a function of the density
(cf. I.3). After application of convergence acceleration schemes (direct inversion of itera-
tive subspace (DIIS), level shifting, damping) the eigenvalues and eigenvectors of the KS
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matrix are computed, which in turn serve to compute an improved density matrix and the
optimization cycle is repeated until energy and/or densityare converged. The initial MOs
are either obtained from a previous calculation of the same system at a nearby geometry
or by projection from a more approximate, faster Extended H¨uckel Theory (EHT) calcu-
lation. The subsequent formalism requires orthonormal MOsand it is advantageous for
convergence control to have them spanning the full functionspace of the basis. In geom-
etry optimizations the start MOs taken from a previous calculation at a nearby geometry
must be re-orthonormalized. Traditionally this proceeds by Schmidt orthonormalization
which does not parallelize and is rather slow.

The alternative is a Cholesky decomposition based scheme which is faster, scalable and
shares the advantages of the traditional approach: (i) transform the overlap matrixS from
atomic orbital (AO) into the MO basis using the current approximate MOs

Ý8, (ii) compute
the Cholesky decomposition thereof, and (iii) multiply theapproximate set of MOs by the
inverse ofU to the right. The orthonormality condition is expressed as

8� =� � � (2)

whereI denotes the unit matrix. Ý8� = Ý8 � � � � (3)# Ý8� ,�$� = # Ý8� ,�$ � � (4)

All steps are available with ScaLAPACK/PBLAS. This procedure also serves for interme-
diate re-orthonormalization of the MOs in order to reduce the accumulation of round-off
errors. In fact, this scheme is quite similar to the re-orthonormalization routine already
available in TURBOMOLE, which relies on perturbation theory and tolerates small devi-
ations from orthonormality only. On the other hand, starting with the projected occupied
orbitals from an EHT calculation a full orthonormal basis isdesired without corrupting the
EHT orbital guess. Supplementing the missing virtual MOs byrandom numbers, which
serve as a non-linear dependent virtual orbital guess, the same procedure is applicable as
well. Performance data are given in Table 1.

Strictly, the SCF scheme does not necessarily require to construct a full set of orthonormal
MOs which resemble the canonical KS orbitals: the standard procedure for the general
symmetric eigenvalue problem constructs an orthonormal basis by Cholesky decomposi-
tion of the overlap matrix in AO basis (cf. section II.5, [13]). However, experience indicates
a less favorable convergence behavior.
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cluster point MOs wall clock time[s]
groupR (total/occ) 4�� 8�� 16�� 32�� 48�� 64�� 72��

V240 ball I	(120) 19320/5160 - - 0.6 0.4 0.2 0.1 -
V80 tube CJ	(8) 6440/1720 6.4 2.1 1.2 0.7 - - -
V80 sheet C�(2) 6440/1720 49 19.0 11.3 6.2 5.1 - -

Zeolite C�(1) 4992/1560 60 30 17.2 9.5 - - -
BPTI C�(1) 8574/1734 - 185 84 45 36 28.4 -

Barnase C�(1) 16371/3271 - - - - 233 - 159± pw : p CPUs distributed symmetrically overy SMP nodes.� Order of point group in parentheses.

Table 1: Performance data for the Cholesky based orthonormalization procedure.

7.2 Computation and Cholesky decomposition of the PQ matrix

In the RI-� method the electron density is expanded in terms of an atom-centered auxiliary
basis set. Its size is roughly twice the size of the basis set used for expansion of the
electronic wave function from the outset and can reach dimensions beyond 40000. The
elements of the PQ matrix contain the scalar products� B &F C defined as (cf. section
I.3.3.2) � B &F C � � B #��$F #�� $ &� � � �� &,��� (5)

As only the totally symmetric component of the PQ matrix is required, symmetry reduces
memory demands by? 
�¤ and computational effort by? 
�¤ . Especially for low-symmetry
cases it is important that the PQ matrix remains distributedthroughout so that its size is
no longer the limiting factor. The+ #� �9
�¤ $ serial evaluation of the PQ matrix elements
is except for large processor numbers faster than the Cholesky decomposition, which is
carried out with ScaLAPACK (for performance see Figure 6).

7.3 Evaluation of one-electron integrals

The one-electron integrals (overlap, kinetic energy, electron-nuclear attraction, and effec-
tive core potential; COSMO solvent integrals are excluded here as they have to be recal-
culated in each SCF iteration) are computed very much in linewith the old master-slave
implementation but using distributed memory, instead. Thecomputational effort for evalu-
ating these integrals (+ #� �9
¤ $) is negligible compared to the previous setup step for the
RI-� method.

7.4 Transformation of operators between different representations

Operators are represented by matrices which are frequentlytransformed between different
basis sets (CAO, SAO, MO) in order to use the most favorable representation for a given
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task. Whereas symmetry for operators in SAO and MO representations gives rise to dense
block-diagonal matrices, in CAO representation the matrixcan be decomposed into groups
of symmetry related scattered submatrices. Although it would be sufficient to store the
symmetry independent submatrices, only, TURBOMOLE chooses to keep the full matrix and
to compute the symmetry-nonredundant contributions. Symmetrization thereafter leads to
the symmetry-correct representation:� ¿ � 8� �8 (6)

As the transformation and operator matrices (C and O, respectively) are dense block-
diagonal for the SAO and MO representations the similarity transformation is of order+ #� � 9
�¤ $ carried out by standard PBLAS routines. In fact the similarity transform is be-
coming more expensive than integral evaluation for Barnase(� � �

>�), but scalibility
and GFLOP rate is good (cf. Figure 6).

The transformation between SAO and CAO representation, however, involves very sparse
transformation matricesC which contain at most
¤ non-zero elements per row and col-
umn, respectively, disregarding the transformation between cartesian and real spherical
harmonics basis functions. The sparse matrix-multiply hasbeen adapted for the use of dis-
tributed data and optimized for better cache usage. The scalability is limited as the static
load-balancing tied to the data structure is rather poor. For very large high symmetry cases
(V240 ball) these operations are particularly problematic.

7.5 The Coulomb contribution to the Kohn-Sham matrix

The construction of the Coulomb part of the Kohn-Sham matrixfollows the formulae given
in section I.3 which is evaluated by parts: beginning with the contraction of the three-index
integrals¡/- H> and the density matrix in CAO basis,� �5�> � */- ¡/- H>0/-

(7)

the resulting total symmetric component of the� �5�> vector is transformed to SAO basis.� ¿�5� � #B F $,�� �5� (8)

The multiplication by the inverse PQ matrix follows the standard scheme avoiding its ex-
plict formation [13]: starting with the Cholesky decomposition of the PQ matrixU, two
sets of linear equations are solved. This step is implemented serially on a distributed upper-
triangular packed matrixU in order to minimize memory consumption. After backtrans-
formation of� ¿�5� into CAO basis and contraction with the integrals the Coulomb contri-
bution to the KS matrix is obtained.� �5�/- � *> ¡/- H>� ¿�5� (9)
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For the multipole accelerated RI-� technique (MARI-� ) integral evaluation is split into a
near-field part using standard methods to evaluate¡/- H> and a far-field part which uses the
multipole approximation to evaluate the integrals and contract them with0/-

and� ¿�5� ,
respectively.

KS and density matrices are kept distributed by columns and rows, respectively. Provided
tasks are defined over shell pairs#4 % 3 $ such, that large, non-overlapping, densely stored
stripes of these matrices are accessed, only, the total communication load is almost in-
dependent of the number of processors and does not limit the scalability. This strategy
implies minimizing the number of independent tasks while maintaining an acceptable load
balance. This is achieved in a two-step procedure based on assembling tasks according to
rough cost estimates for integral evaluation and obtainingmore accurate timings during the
first SCF iteration cycle which is used for re-optimization of the task definitions. Due to
the constraint of minimizing the communication load perfect load-balancing is not possible
here.

cluster point MOs wall clock time[s]
groupR (total) 4�� 8�� 16�� 32�� 48�� 64�� 72��

V240 ball I	(120) 19320 - - 6.9 6.1 6.0 6.2 -
V80 tube CJ	(8) 6440 40 19.1 9.8 5.4 - - -
V80 sheet C�(2) 6440 172 81 44 20 16 - -

Zeolite C�(1) 4992 107 48 27 13 - - -
BPTI C�(1) 8574 - 199 103 52 44 31 -

Barnase C�(1) 16371 - - - - 126 - 98± pw : p CPUs distributed symmetrically overy SMP nodes.� Order of point group in parentheses.

Table 2: Construction of the Coulomb part of the KS matrix

Large high-symmetry cases (V240ball) scale to a very limited number of processors, only,
which is in view of the negligible computational effort of little importance. All of the
examples yield a reasonable parallel scaling (Table 2).

7.6 The exchange contribution to the Kohn-Sham matrix

The evaluation of the exchange-correlation functional is carried out by numerical quadra-
ture. The symmetry-nonredundant grid point generation andsorting of the grid points as
to allow for fast evaluation and efficient contraction with (a small number of ) density ma-
trix elements contributes to the startup time. Both grid point generation and sorting are
executed in parallel.

Although the evaluation of the exchange-correlation functional is approximately linear
scaling, it suffers from two serious drawbacks affecting parallelization: (i) the reorder-
ing of patches of density and KS matrices permits fast quadrature but amounts essentially
to random access to the original matrix elements rendering it incompatible with the notion
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of distributed data and - for large matrix dimensions - produces large numbers of cache
misses. (ii) The computational effort per batch of grid points is - due to the data access -
not reproducible, which rules out dynamic load-balancing with a small number of tasks as
required for distributed data usage.

Since for large cases it is not possible to keep both density and KS matrices replicated, as
reasonable compromise the density matrix is kept replicated once per SMP node reducing
memory consumption while maintaining direct fast simultaneous access by all processes.
The KS matrix is kept distributed with a local buffering mechanism for adding individual
contributions. For efficient buffering, tasks are constituted by a large number of spatially
close grid points. As communication overhead still may amount to 50% of the total wall
clock time, load-balancing is far from optimum (Table 3). Some improvement can be
expected from the direct use of MPI in the buffering mechanism, as it is better suited
for the kind of data distributions occurring there. Still better, though dependent upon the
topology of the molecule, is a reordering of the initial density and Fock matrices such that
small dense patches of the matrices are accessed only with little redundancy.

cluster point MOs gridR wall clock time[s]
group

S
(total) 4�� 8�� 16�� 32�� 48�� 64�� 72��

grid construction
V240 ball I	(120) 19320 2 - - 2.7 2.8 2.8 3.0 -
V80 tube CJ	(8) 6440 2 4.5 2.6 1.6 1.3 - - -
V80 sheet C�(2) 6440 2 21 13 5.3 3.5 3.0 - -

BPTI C�(1) 8574 2 - 151 65 38 31 24 -
BPTI C�(1) 8574 4 - - 277 155 121 88 -

Barnase C�(1) 16371 2 - - - - 119 - 85
Barnase C�(1) 16371 4 - - - - 468 - 324

quadrature
V240 ball I	(120) 19320 2 - - 12.0 9.6 9.8 9.8 -
V80 tube CJ	(8) 6440 2 22 12 8 4.5 - - -
V80 sheet C�(2) 6440 2 82 42 20 12 10 - -

BPTI C�(1) 8574 2 - 98 40 23 18 14 -
Barnase C�(1) 16371 2 - - - - 43 - 31± pw : p CPUs distributed symmetrically overy SMP nodes.� Larger numbers indicate finer grid. 

Order of point group in parentheses.

Table 3: Construction of the exchange part of the KS matrix

7.7 DIIS convergence acceleration

The DIIS (direct inversion of iterative subspace) technique by Pulay [7, 8] is an efficient
extrapolation procedure for the convergence accelerationof the SCF scheme. The most
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CPU time intensive step involves the formation of the so-called error matricese:¡ �  .= � =.  (10)

The error and KS matrices of previous iterations up to the maximum subspace dimension
(usually 4) are stored in distributed memory. Storage requirements can be reduced by
compressing the error vectors, since with forthcoming convergence the entries are becom-
ing vanishingly small. Specifically on PC clusters storing and retrieving data from disk
may be worthwhile and the GIO extensions might prove useful.The computational effort
is somewhat higher than for the similarity transform with quite similar scaling behavior (cf.
Figure 6). For symmetric problems execution time rapidly vanishes due to the+ #� �9
�¤ $
dependence.

7.8 Wavefunction optimization

7.8.1 Standard SCF procedure

The standard SCF procedure in TURBOMOLE starts by generating an initial density ma-
trix, computing the KS matrix thereof, invoking DIIS extrapolation, and transforming the
resulting KS matrix into an orthonormal basis using the MOs of the previous iteration. Af-
ter applying level shift (i.e. increasing the HOMO-LUMO gap) and damping (i.e. scaling
the diagonal KS matrix elements), the eigenvalue problem issolved and the eigenvectors
are used to compute the new density matrix and the cycle starts again (cf. Figure 7).

In section II.5 a slightly different scheme has been discussed. As the density matrix de-
pends only on the occupied MOs (typically 10 to 30% of the total number of MOs) only
as many eigenvectors with the lowest eigenvalues must be computed as there are occupied
MOs. The intermediate orthonormal basis is obtained by Cholesky decomposition of the
overlap matrix. The DIIS convergence acceleration remainsunaffected. However, level
shifting and damping theKS matrix is impossible. Instead, some additional control over
the convergence is exercised by averaging new and old density matrices. The standard SCF
procedure in TURBOMOLE seems to be more robust, so that it is the preferred scheme, as
long as CPU time consumption for the eigensolver does not become prohibitive.

7.8.2 Rotation based SCF procedures

Alternatives to the standard SCF procedure are motivated bythe unfavorable cubic scaling
of the eigensolver and the insufficient stability of the iterative scheme. The cubic scaling
renders attempts for linear scaling of DFT or HF impossible.It can be improved only by
taking advantage of the specific structure and properties ofthe KS matrix. Hence, standard
eigensolvers aiming at the solution of the general problem are probably not the ultimate
solution to the problem. The KS matrix is sparse in terms of a large number of small though
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non-vanishing entries whereas sparse linear algebra relies on matrices with a small number
of non-zero elements and is thus not readily applicable. Approximate diagonalization may
be achieved by deleting elements below a given threshold andtransforming the matrix to
block-tridiagonal form which is passed to a special block-tridiagonal divide-and-conquer
eigensolver [20]. So far it is not yet clear whether this approach can compete in terms of
efficiency and economy with standard parallel eigensolvers. Moreover, it does not address
the stability problem of the standard SCF procedure.

An alternative to the numerically not well understood standard SCF procedure is a direct
minimization of the total electronic energy with respect tothe MO coefficients subject to
the orthonormalization constraint. The number of non-redundant coefficients is the number
of unoccupied times occupied MOs. Thus, the number of independent parameters to be op-
timized for large systems reaches easily��l! The fact that the standard procedure works for
such a large number of parameters at all indicates that the optimization problem is simpler
than the sheer number of parameters suggests. Rotation based SCF procedures incorporate
the orthonormalization constraint mostly by using an exponential parametrization8nh¢ � 8ñW
� � 8ñW
 ÐÖ× #£ $ % £ � � � ��� � � � (11)

whereC is the MO coefficient matrix and the antisymmetric matrixA collects the non-
redundant parameters in the off-diagonal blocks. The matrix elements ofA are in general
a function of the matrixC. The various number of schemes that have been suggested over
about 25 years, differ essentially in (i) the computation ofthe first and second derivatives
of the energy with respect to the matrix elements ofA, (ii) the evaluation of the matrix
exponential, and (iii) the optimization scheme (conjugategradients, Newton-Raphson etc.).

In the orbital transformation method by Hutter et al. [9, 10]the exponential is evaluated
exactly. Thus, the analytic gradient and the orthonormality constraint is obeyed exactly for
an arbitrary choice of the reference point. Moreover, this method requires matrix opera-
tions over the occupied MOs, only. A minor disadvantage of this procedure is the rather
complicated expression for the energy gradient and the lackof the second derivative. More
important, the convergence rate depends on the preconditioner of the conjugate gradient
optimization with no recipe for its improvement. For dense matrices, the scaling is still
cubic with a reduced prefactor. Further reductions are feasible, if the involved matrices are
sparse enough for efficient use of sparse matrix multiply.

In standard second-order SCF methods [11] gradient and Hessian are evaluated by Taylor
expansion aboutA=0, which yields simple expressions in terms of Fock matrix entries and
two-electron integrals in the MO representation for gradient g and HessianH [12]. The
new parameter setA is computed and the matrix exponential is approximated in a linear
expansion. £ � ��,¤¥

(12)ÐÖ× #£ $ ? � � £ (13)
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Consequently the orthonormality ofC is not preserved and requires orthonormalization
(+ #� � $). The initial Hessian is updated during the subsequent iteration cycles by BFGS
[13]. Since only Hessian gradient products are required theexplicit construction of the
Hessian can be avoided [14]. These second order schemes require a good set of start
orbitals usually obtained from a few iterations with the standard SCF procedure which is
not guaranteed to succeed.

In summary, a scheme is required, that is simple enough to be readily parallelized, has
modest (distributed) memory requirements, exploits the potential sparsity combined with
well-controlled convergence behavior, and overcomes the problem of ”good” start orbitals.

Expanding the orbital exponential approximately in terms of products of orthonormality
preserving Givens rotation matricesG

ñ� which depend on the off-diagonal matrix element
Añ� only, yields ÐÖ× #£ $ ? ¦ñ� �ñ� � (14)

This bears close relation to the Jacobi procedure for matrixdiagonalization [13], Pulay’s
pseudo block-diagonalization scheme [15], and the parametrization of the energy by means
of Givens rotation matrices [16]. The quality of this approximation goes beyond the linear
approximation in Eq. 13 above. The individual matrix elementsAñ� are given by£ ñ� � �  ñ� �� �  ññ � #îî &@@ $ � 
 #î@ &î@ $ ? �  ñ� �� �  ññ � 6 (15)

where
î

and@ refer to the index of an occupied and unoccupied (virtual) orbital, respec-
tively. The approximative term to the right is an approximation to the diagonal Hessian
supplemented by a level shift parameter6. This approximation holds for a sufficiently
large HOMO-LUMO gap and assumes the analytic Hessian to be diagonally dominant ex-
cept for a small region with non-negligible off-diagonal elements. The level shift parameter
serves to keep the Hessian positive definit and to restrict the step-length&&£ &&. For 6 � �
this expression is similar to the pseudo block-diagonalization [15] which is numerically
less stable than the standard SCF procedure, as presented inmore detail in section II.5.2.

The Givens rotations are trivial to implement in parallel given row-wise distribution of
the MO coefficient matrix over the processes. The maximum number of operations is7
ñSS #� � 
ñSS $� § � � . Since only rotations above a certain threshold are actually con-
sidered, the number of operations drops rapidly (case dependent) under 10% of the max-
imum value with forthcoming convergence. This procedure isin fact no more expensive
than a dense matrix multiply for the full matrix. Additionally, it is sufficient to transform
the off-diagonal block plus the diagonal matrix elements saving some additional 40% for
the similarity transform. As a reasonably diagonal dominant KS matrix is required, start-
ing from scratch one iteration with the standard SCF procedure must be carried out. In
geometry optimizations the orthonormalized MOs of a nearbygeometry may be directly
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used. As in any other rotation based scheme, the optimized MOs are not in the canonical
form, i.e. they are not eigenvectors of the KS matrix. Depending upon the later use of the
MO coefficients a final full or partial diagonalization is necessary.

The crucial ingredient for stable SCF convergence is the (dynamic) computation of6. The
Hessian matrix is decomposed into a (large) diagonally dominant part, which is assumed to
be a reasonably accurate approximation to the analytic Hessian, and the remaining critical
part that is of limited use only. The level shift6 serves the purpose to maintain the curvature
almost everywhere and to increase the curvature for the critical part. There is a subtle
difference to the trust region minimization method [17]: inthis technique the level shift
parameter6 is adjusted such as to remain within the trust region of convergence. It is
increased or decreased depending upon the ratio of actual and predicted energy changes.
Here, the Hessian approximation may be that poor, that the feedback mechanism fails.
Instead6 is determined by bisection such that the step-length&&£ && remains below a given
value and the diagonal Hessian remains positive definite. The maximum step-length is
dynamically adjusted via a feedback mechanism coupled to the readily available quantities:
energy changes, norm of the DIIS error matrices (indicatingthe vicinity to a minimum),
and the gradient. The procedure readily applies to closed shell and unrestricted KS and
requires some modifications for open shell HF as outlined by [9]. Regarding UHF/UKS
the Hessian has large off-diagonal elements connectingÒ and ¨ terms [18]. Hence, we
may expect this procedure based on diagonal Hessian approximation to work less well for
UHF/UKS.

It is important to stress, that this scheme crucially relieson DIIS extrapolation. M. Krack
pointed out, that DIIS is not reliably converging with smallHOMO-LUMO gaps or bad
initial orbitals. The answer to this apparent contradiction is that DIIS is an extrapolation
procedure which depends on the input data and the standard SCF procedure tends to some-
what uncontrolled strong changes in the resulting KS matrixthat DIIS cannot cope with:
poor input, poor extrapolation. Hence, the sole task for theeigensolver or any substitute
thereof is to provide adequate input for the extrapolation procedure.

Tests on a variety of systems reveal three remarkable properties: (i) On systems which
exhibit no problem to the standard procedure, the suggestedprocedure works as well. (ii)
For difficult systems (small HOMO-LUMO gap, bad starting orbitals, root flipping) the
scheme does not suffer from wild oscillations or poor convergence but instead shows a
smooth robust convergence. (iii) Close to the minimum the convergence rate slows down.
Thus, the startup problems of most second-order SCF methodsare nicely overcome, but
problems arise where they are normally expected to succeed.While for second-order SCF
procedures relying on BFGS updates the Hessian ideally converges to the analytic Hessian
close to convergence, this does not apply to procedures relying on (modified) diagonal
approximations to the Hessian, which may produce a few completely wrong entries for
small HOMO-LUMO gaps. Hence, the step vector will point intothe wrong direction and
- with no adequate input - DIIS cannot overcome this deficiency. A remedy to this problem
is to incorporate corrections for the missing two-electronMO integrals (cf. Eq. 15).
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cluster point MOs wall clock time[s]
group (total) 4�� 8�� 16�� 32�� 48�� 64�� 72��

divide-and-conquer eigensolver & full similarity transform
Zeolite C� 4992 120 64 40 26 - - -
BPTI C� 8574 - 367 168 105 89 78 -

Barnase C� 16371 - - - - 592 - 406
orbital rotation & partial similarity transform

Zeolite C� 4992 50 27 17 11 - - -
BPTI C� 8574 - 198 74 51 35 29 -

Barnase C� 16371 - - - - 124 - 96± pw : p CPUs distributed symmetrically overy SMP nodes.

Table 4: Eigenvalue problem including transformation intothe orthonormal basis.

Symmetric clusters have been excluded from Table 4 as the computational effort scales
with + #� �9
�¤ $ and thus, are in most cases not very relevant. For symmetric systems, the
parallel scalability is not improved uniformly for a smaller number of processors as a con-
sequence of the multilevel parallelism used. The timings for the rotation based procedure
are a linear function of the number of Givens rotations actually carried out, which depends
on the molecule and the convergence characteristic. Since the rotations are BLAS level 1
routines, they achieve less than 1 Gflops, compared to 1 to 2 Gflops for the eigensolver.
Also note that for the orbital rotation based scheme more than half of the time is spent on
the partial similarity transform. Comparing the eigensolver and the orbital rotations, only,
the latter is typically faster by a factor of 3 to 20.

7.9 Gradients

The evaluation of the one-electron and two-electron integral contributions to the gradient
of the energy with respect to displacement of the nuclear coordinates closely follows the
scheme outlined for the RIDFT module with regard to parallelization. Some additional
routines such as the calculation of the integral derivativeestimator have been parallelized
as well. Scalability and memory requirements thus closely mimic those of the RIDFT

module (Table 5).

Highly symmetric compounds (V240ball) display short execution times at poor paral-
lel scaling: 80% of the one-electron contribution goes intotransformation of density and
energy-weighted density matrices from SAO into CAO representation. The remaining
overhead primarily arises from the serial preparation of symmetry tables and transforma-
tion coefficients. The other extreme are large unsymmetric compounds (Barnase) which
scale reasonably with the primary contributions by one-electron and exchange contribu-
tions. The latter are dominated by grid construction (80%).The general overhead con-
tributing to the total execution time stems almost solely from the computation of the PQ
matrix and its Cholesky decomposition.
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cluster point MOs grid wall clock time[s]
groupR (total) 4�� 8�� 16�� 32�� 48�� 64�� 72��

one-electron contributions
V240 ball I	 (120) 19320 4 - 124 89 60 41 40 -
V80 tube CJ	(8) 6440 4 69 37 21 11 - - -
V80 sheet C�(2) 6440 4 311 159 93 47 - - -

BPTI C�(1) 8574 4 - - 474 263 211 143 -
Barnase C�(1) 16371 4 - - - - 874 - 593

Coulomb contribution
V240 ball I	 (120) 19320 4 - 52 40 31 34 34 -
V80 tube CJ	(8) 6440 4 79 38 21 13 - - -
V80 sheet C�(2) 6440 4 317 159 82 40 - - -

BPTI C�(1) 8574 4 - - 194 91 74 53 -
Barnase C�(1) 16371 4 - - - - 201 - 151

exchange contribution
V240 ball I	 (120) 19320 4 - 21 17 18 17 18 -
V80 tube CJ	(8) 6440 4 73 39 20 14 - - -
V80 sheet C�(2) 6440 4 277 123 72 41 - - -

BPTI C�(1) 8574 4 - - 405 236 175 131 -
Barnase C�(1) 16371 4 - - - - 589 - 407

total timings
V240 ball I	 (120) 19320 4 - 293 248 213 201 207 -
V80 tube CJ	(8) 6440 4 229 121 71 50 - - -
V80 sheet C�(2) 6440 4 943 472 279 155 - - -

BPTI C�(1) 8574 4 - - 1235 701 574 434 -
Barnase C�(1) 16371 4 - - - - 2117 - 1549± pw : p CPUs distributed symmetrically overy SMP nodes.� Order of point group in parentheses.

Table 5: Construction of the exchange part of the KS matrix

7.10 Total performance

The effective speedup that can be achieved is considerably case dependent and closely re-
lated to the memory access pattern. As the IBM SMP cluster at the Research Centre Jülich
is very sensitive to cache misses applications involving large matrices display variations in
execution times. Hence, absolute speedup values are of little value, especially as they are
only qualitatively transferable among different parallelcomputer systems. Thus, aspects
of practical relevance and better transferability are focussed on. Figure 9 summarizes the
parallel scalability of the RIDFT (wall clock time per SCF iteration) and the RDGRAD mod-
ule. With increasing order of the point group scalability typically decreases as symmetry
related overhead increases.

In Table 6 the total timings of RIDFT and RDGRAD are decomposed into the major contri-
butions: overhead due to symmetry treatment (preparation of transformation coefficients,
CAO-SAO transformation), grid construction, and linear algebra. The effect of symmetry
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Figure 9: Parallel performance the RIDFT (wall clock time per SCF iteration) and the RDGRAD module.

is immediately apparent: high symmetry results in negligible effort for integral evaluation,
quadrature and linear algebra contrasted by substantial (either serial or not well load bal-
anced) contributions of symmetry-related operations and transformations. Large unsym-
metric clusters spend more than 75% of the execution per SCF iteration in linear algebra
using the standard scheme, which can be approximately halfed using the sketched orbital
rotation based scheme, the remainder being almost exclusively due to matrix multiply.

Since matrix multiply is an operation of order+ #� �9
�¤ $ whereas integral evaluation and
quadrature scale at most with order+ #� ��t $ it is immediately apparent that unsymmetric
clusters with basis set sizes of 40000 will spend almost all the execution time in matrix
multiply. The use of symmetry greatly reduces this computational burden: even with point
group�� of order 2 linear algebra execution times go down by a factor of 4. Hence, the
possibility exploiting point group symmetry whenever possible must not be lightheartedly
discarded.

cluster point MOs © �n wall clock time [s]
groupR (total)

RIDFT startup
S

SCF iteration

V240 ball I	(120) 19320 ª« � 177 (43%, 2%,¬1%) 58 (1%, 29%)
V80 tube CJ	(8) 6440 ­® � 13 (7%, 12%, 10%) 23 (18%, 2%)

BPTI C�(1) 8574 ª« � 214 (¬1%, 18%, 37%) 235 (58%,¬1%)
Barnase C�(1) 16371 ¯°� 857 (¬1%, 14%, 47%) 1095 (75%,¬1%)

RDGRAD gradient
h

V240 ball I	(120) 19320 ª« � 213 (57%, 4%,¬1%)
Barnase C�(1) 16371 ¯°� 2117 (¬1%, 22%, 8%)± p w : p CPUs distributed symmetrically overy SMP nodes.� Order of point group in parentheses. 

Time spent on symmetry treatment, grid construction (grid 2) and linear algebra in parentheses.±
Time spent on linear algebra and symmetry treatment in parentheses (standard scheme).²
Time spent on symmetry treatment, grid construction (grid 4) and linear algebra in parentheses.

Table 6: Percentage of wall clock time spent in linear algebra, grid construction and symmetry treatment,
respectively.

104



The modules DSCFand GRAD

The evaluation of the gradient requires larger grids as compared to the SCF iterations so
that grid construction is computationally more intensive.Overhead due to symmetry treat-
ment is somewhat higher as the CAO-SAO transformation of thedensity and the energy-
weighted density are necessary. Linear algebra is of littleimportance for the gradient code.

8 The modules DSCF and GRAD

In fact, almost everything can be taken over from RIDFT and RDGRAD to these modules.
Density and possibly KS matrix are replicated once per SMP node during the evaluation
of Coulomb and exchange contribution. On systems with a large amount of memory, this
is still the most economic solution. Additionally, difference density and KS matrices are
stored in distributed memory to avoid I/O. These quantitiesshould be attractive targets for
compression. If memory becomes scarce, switching to distributed data storage (quadrature
is treated identical to RIDFT) and separate calculation of Coulomb and exchange contri-
butions offers a simple road to reduce communication at the expense of at most doubling
the integral evaluation costs. For the use of a very large number of processors, switching
from dynamic to static load-balancing is presumably the only way to keep communication
demand within bounds. Overall scaling is much better than for RIDFT with the MARI-�
method since Coulomb and exact HF exchange evaluation may take orders of magnitude
longer.

9 Summary and outlook

The modules RIDFT, RDGRAD, DSCF AND GRAD have been parallelized with no restric-
tion of the symmetry treatment. Tests on molecules with up to1710 atoms and up to? )���� basis functions (? 
���� auxiliar basis functions) have been carried out. Geom-
etry optimizations applied to research problems in the fieldof nano-structured compounds
[21] are being carried out. A simple parallelizable orbitalrotation scheme has been sug-
gested, which overcomes convergence with the standard SCF scheme while being substan-
tially faster than the conventional procedure, although still of cubic scaling. Linear algebra
operations and in particular matrix multiply are dominating the execution time in RIDFT

for the largest unsymmetric molecule. Although exploitation of symmetry greatly reduces
the associated computational effort, the cubic scaling of matrix multiply will render calcu-
lations for much larger problem sizes computationally veryexpensive. Most linear algebra
is closely related to the wave function optimization step, so that future efforts in quan-
tum chemistry will involve exploring efficient schemes minimizing the number of general
matrix multiplications.
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1 Introduction

In several scientific applications such as molecular dynamics [1] and plasma physics [2] the
evaluation of a pairwise potential is required. Very often this is the most time-consuming
step in a calculation. The direct method to evaluate these potentials scales quadratically
with the number of particles� which places a severe restraint on the size of systems
which can be treated. Many methods have been proposed to avoid the quadratic scaling
[3]. Unfortunately, all these methods lead to unpredictable errors because they rely upon
not generally applicable approximations [4]. In particular cut-off approaches show errors
which often can not be accepted due to the significance of the long range charge-charge
interaction. It is highly desired to avoid the order� � scaling. One of the methods to
achieve linear scaling is Greengard’s [5] Fast Multipole Method (FMM). The purpose of
the FMM is to group together remote charges such that a collection of distant charges can
be treated as one single charge. The Fast Multipole Method expands local charges in mul-
tipole expansions. The multipole expansions of several particles about a common origin
can be summed to represent a collection of point charges by just one multipole expansion.
The collections of point charges are grouped in boxes which form the FMM tree. The
FMM is a computational scheme how to manipulate these expansions to achieve linear
scaling. The Fast Multipole Method can be applied to the evaluation of� ,n #
 C �$ pair-
wise interactions. Unfortunately, the FMM is not free of parameters. The computation time
and the accuracy depend on three parameters, the length of the multipole expansions, the
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depth of the FMM tree, and finally the separation criteria - the number of boxes between
two boxes which can interact via multipoles. It is very inconvenient to set the parame-
ters by an user-request. In addition, the three parameters are not independent among each
other. One can define a function

 #� % 0 %³ �$ � �, where
�

is the length of the multi-
pole expansions,0 is the depth of the FMM tree, and³ � is the separation criteria. The
computation timeN depends not only on

� % 0 , and³ �. The requested threshold and the
kind of distribution, homogeneous or heterogeneous distributed particles have also an im-
pact on the computation time. In our FMM implementation we minimize the computation
time N � N #� % 0 %³ � % ( E
� î �E�N� E´ïNEî
 % NÛ�`�ÛîZ�$. � % 0 , and³ � are the variables,
the( E
� î �E�N� E´ïNEî
 and theNÛ� `�ÛîZ� are the constants. With this approach we have
found a reasonable solution of the problem on separating theparticles in near and far field.

Within the framework of the HPC-Chem project [6] our implementation of the FMM to
treat point charges in a very efficient way is the first step towards the CFMM (Continuous
Fast Multipole Method) to calculate charge distributions arising in Density Functional and
Hartree Fock calculations. The ideas of FMM can be applied tothe evaluation of Electron
Repulsion Integrals (ERI’s). The computation of the ERI’s is in general a step which
requires+ #
J $ work regarding the number of basis functions
. By several computational
techniques [7] the scaling could be improved significantly to + #
� $. The use of CFMM
gives the possibility to make a further improvement in scaling, from+ #
� $ to + #
$. The
Coulomb interaction of two charge distributions decreasesexponentially with increasing
separation, and the two distributions then interact as classical point charges.

2 Theory

The basics of our FMM implementation are described by C. A. White and M. Head-Gordon
[8, 9]. In addition, a new scheme of estimating the FMM errorsand an approach to evaluate
the Wigner rotation matrices [9, 10] more stable for higher multipole moments have been
implemented.

A. Factorization of inverse distance

The inverse distance between two point charges located atµ � #¶ % Ò % ¨ $ and
/ � #�% _ % �$

can be written as an expansion of the associated Legendre polynomials.�&/ � µ & � ·*WÈR BW #Qî� #� $$ ¶ W� We � (1)

�&/ � µ & � ·*WÈR XÈW*XÈ,W #Z � &D &$#Z � &D &$ ¶ W� We � B WX #Qî� #Ò $$B WX #Qî� #_ $$Qî� #D #¨ � �$$ (2)
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�&/ � µ & � ·*WÈR XÈW*XÈ,W #Z � &D &$#Z � &D &$ ¶ W� We � B WX #Qî� #Ò $$B WX #Qî� #_ $$`,�X �¸ ,a� (3)

The expansion converges under the condition¶ � �. � is the angle between the two vectorsµ and
/
. Eq. (2) and Eq. (3) represent a complete factorization of aninteraction of two unit

charges. On the basis of Eq. (3) one can define moments of a multipole expansion.ö is the
particle charge. ¹ WX � ö+ WX � ö¶ W �#Z � &D &$ B WX #Qî� #Ò $$`,�X ¸ (4)

Based on Eq. (3) one can also define the coefficients of a Taylorexpansion.4 WX � öd WX � ö �� We � #Z � &D &$BWX #Qî� #_ $$`�Xa
(5)

Combining Eqs. (3), (4), and (5) together a factorization ofthe inverse distance can be

written in a compact form. �&/ � µ & � ·*WÈR W*XÈ,W ¹ WX 4 WX (6)

The moments of a multipole expansion and the coefficients of aTaylor expansion about a

common origin can of course be summed.

B. Translation operators

Essential to the FMM are the three operators to translate multipole expansions and Taylor
expansions in space. The first operator,

£
, is used to shift a multipole expansion fromµ toµ � º. ¹ WX #µ � º $ � W*bÈR b*cÈ,b £ WXb c #º $¹ b c #µ $ (7)

The operator
£WXb c is given by £ WXb c � + W,b HX ,c (8)

The second operator,
7

, transforms a multipole expansion into a Taylor expansion.4 WX � ·*bÈR b*cÈ,b 7 WXb c ¹ b c (9)
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The operator
7 WXb c is given by 7 WXb c � dbeW HceX (10)

The third operator,� , translates a Taylor expansion of a point
/

about the origin to a Taylor

expansion of
/

about a pointµ.4 WX #/ � µ $ � ·*bÈR b*cÈ,b � WXb c #µ $4b c #/$ (11)

The operator� WXb c is given by � WXb c � +b ,W Hc,X (12)

3 The Fast Multipole Method

The FMM consists of several parts. First all particles are enclosed by a box with coordi-
nate ranges [0,1]x[0,1]x[0,1]. The parent box which contains all the particles is divided in
half along each Cartesian axis to yield a set of 8 smaller child boxes. The child boxes are
subdivided again (Figure 1). The depth of the tree is determined so that the computation
time becomes a minimum by achieving an error in the energy which is less or equal to a
requested threshold. The particles are sorted by box numbers using the radix sort algo-
rithm [11] which scales linearly. In addition to scaling andsorting the FMM consists of
four passes schematically shown in Figure 2. In Pass 1 the charges contained within each
lowest level box are expanded in multipoles about the centerof the box. The multipole ex-
pansions are translated to the center of the parent boxes (Figure 3). In Pass 2 the multipole
expansions are transformed into Taylor expansions. The twoboxes must be separated by
at least one box on the current tree level, but only provided that parents of the two boxes

x

y

z

1

1

1

0

Figure 1: The particle space is divided in child boxes along the Cartesian axes
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Figure 2: Schematic view on one dimensional FMM with parameter» ¼ = 1

are not separated on the next higher tree level. Pass 2 is by far the most time-consuming
step of the FMM (Figure 4). In Pass 3 the parent’s Taylor expansions are translated to
the centers of the parent’s children. At the end of Pass 3 eachlowest level box contains a
Taylor expansion of all far field interactions (Figure 5). InPass 4 for each lowest level box
the multipole expansion and the Taylor expansion are multiplied. The sum over all lowest
level boxes gives the far field energy. Finally, in Pass 5 the remaining near field energy is
computed by the direct method.
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Figure 3: Calculation and shifting of multipole moments (Pass 1)
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Figure 4: Transformation of multipole moments to Taylor coefficients (Pass 2)

3.1 The Wigner rotation matrices

The conventional Fast Multipole Method requires+ #� J $ work with regard to the length of
the multipole expansions

�
. + #� � $ scaling can be achieved by performing the translations

in three steps. First the moments of a multipole expansion orthe coefficients of a Taylor
expansion are rotated about the z-axis and y-axis such that the phase factors in Eq. (4) and
Eq. (5) vanish and the associated Legendre polynomialsBWX degenerate to the Legendre
polynomialsBW. In the second step the translations are performed.¹ WX � W*bÈX ¶ W,b#Z � ' $ [¹ b X (13)
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Figure 5: The Taylor expansions are shifted to the centres ofthe child boxes4 WX � ·*bÈX #' � Z$ [�b e We � ¹ b H,X (14)4WX � ·*bÈW ¶b ,W#' � Z$ [4bX (15)

Finally, the translated multipole moments and the Taylor coefficients are rotated back using
the inverse rotation matrices. The rotation about the z-axis is simply a complex multiplica-
tion. The only difficult portion is the determination of the Wigner rotation matrices

�WcX #_ $
which correspond to the rotation about the y-axis. The analytical calculation of the

�WcX #_ $
requires+ #� J $ work and is numerically instable.�Wc X � �)W #Z � D $[ #Z � D $[#Z � ( $ [ #Z � ( $ [ #� � �EG 
 #( $Qî� #_ $$ ½c ½ #�E
 #_ $$X , ½c ½

M W,X*nÈR #��$W,X ,n �Z � (
 � � Z � (Z � D � 
� #� � Qî� #_ $$n #� � Qî� #_ $$W,X ,n (16)�WX c � #��$ceX �Wc X (17)Z ¾ � % ( � �Z % ���% Z % &( & § D § Z (18)�Wc X � #��$ceX �W,c ,X (19)Z C � % D � �Z % ���% Z � � % ( � �Z % ���% � #D � �$ (20)
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The essential recursion relation we will use to determine the rotation matrices is given by

White [9] and Edmonds [10].�Wce �X � ( � D¿ Z #Z � �$ � ( #( � �$ �E
 #_ $� � Qî� #_ $ �Wc X� Z #Z � �$ � D #D � �$Z #Z � �$ � ( #( � �$ �Wc X ,� (21)

�WRX � #Z � D $[#Z � D $[B WX % D ¾ � (22)�WRX � #��$X #Z � &D &$ [#Z � &D &$ [B W ½X ½% D � � (23)

Unfortunately, Eq. (21) becomes instable in case of higher moments. We have combined

Eq. (21) with a second recurrence to overcome the numerical instabilities.�Wc X ,� � Z #Z � �$ � ( #( � �$Z #Z � �$ � D #D � �$ �Wce �X� ( � D¿ Z #Z � �$ � D #D � �$ �E
 #_ $� � Qî� #_ $ �Wc X (24)�Wc W � �)W #)Z$ [#Z � ( $ [#Z � ( $ [ #�E
 #_ $$W,c #� � Qî� #_ $$c (25)

In addition to the two recurrences the error accumulations are evaluated for both of the
recurrences to decide which recursion relation is more accurate for a given component
of the rotation matrix. Both of the recursion relations should be used only forQî� #_ $ ¾�. In case ofQî� #_ $ � � addition theorems can be used given by Edmonds [10]. The
combination of the two recurrences show a significant improvement of accuracy. Table 1
shows the absolute errors for_ � À� .

3.2 Error estimation

The error estimation by White and Head-Gordon [8] gives an upper limit for the error but
is often not practical. We have used a different approach. The FMM has two error sources,
the truncation of the multipole expansions and the truncation in the transformation of the
multipole moments to Taylor coefficients. The errors dependon the three parameters of
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First recursion relation Both recursion relations¹ ��)� M ��,�t ���� M ��,���� 
 �

 M ��,�J ) �>� M ��,���¹ ��
¹ M ��,�� > �7� M ��,��)� ���� M ��,�R ��¹� M ��,�t)¹ ��
¹ M ��,m 
 �)> M ��,�t
� ���> M ��,� 
 ��� M ��,�J
¹ � �
7 M ��,t ��
� M ��,��7� � ��� M ��,� ��
¹ M ��,��7¹ ¹ �¹) M ��,� 7 �7� M ��,��¹� ���� M ��� 
 ��
 M ��,��¹¹ � �

 M ��� ��)> M ��,�R
� ��¹7 M ��� 
 ��7 M ��,�R
¹ � �>� M ��l 7 ��
 M ��,k

Table 1: Maximum absolute errors in computation of theÁÂÃÄ
the FMM, the depth of the tree, the separation criteria, and the length of the multipole
expansions. The distribution is defined by the charges and positions of the particles. The
separation criteria should be 1 to take full advantage of theFMM approach. The remaining
parameters, the depth of the tree0 and the length of the multipole expansions

�
can

be optimized such that the computation timeN is minimal and the energy error
u� is

not greater than an user-requested absolute error
u

. The floating-point operations can be
computed separately for the near and far field part.

: N:0 � � (26)

: N:� � � (27)u� #0 % � $ § u
(28)

In general the solutions of Eqs. (26), (27), and (28) are non-integers. The length of the
multipole expansion

�
must be an integer. The next larger integer is taken. The depth

of tree0 need not be an integer. Table 2 shows the number of multipolesdepending on

requested thresholds.
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Req. abs. error Abs. error L Depth��,� � �7> M ��,� � �� ����,� � ��� M ��,� 
 � �)��,J � ��� M ��,J ¹ 
 �¹��,t � �)
 M ��,t > ¹ ����,� � �
� M ��,� �� ¹ �7��,l � �>
 M ��,l �
 ¹ ����,m � �)� M ��,m �> 7 ����,k � �)� M ��,k )� 7 �>��,�R � �

 M ��,�R )¹ 7 �
��,�� � ��
 M ��,�� 
� 7 �7��,�� � �
� M ��,�� 
7 7 �
��,�� � �

 M ��,�� 
� 7 �)
Table 2: Number of multipole moments depending on requestedabsolute errors

3.3 Implementation issues

Our FMM implementation is designed to evaluate systems consisting of billions of point
charges. Heterogeneous distributions can be treated in thesame efficient way as homoge-
neous distributions. The parameters of the FMM are determined such that the computation
time is minimal depending on a requested threshold of the energy. All empty boxes on the
tree are completely neglected. Any arrays in the dimension of all boxes are avoided. The
maximal depth of the trees depends only on the integer length. Logical bit operations are
used for box numbering. A logical right shift by three positions of a box number results
in the number of the parent box. A logical left shift by three positions of a box number
gives the number range of all child boxes (Figure 6). Our FMM implementation is fully
based on spherical coordinates. We have made the first approach in parallelizing our FMM
implementation. An efficiency of more than 90Å up to 16 CPU’s have been seen. In the
parallel version Pass 3 is avoided because it can not be parallelized efficiently. It is easily
possible to shift the work which is done in Pass 3 to Pass 4. Allthe four passes of the FMM
are parallelized. Our parallelization strategy is based onthe replicated data model which is
a severe bottleneck. We will implement a data distributed version.
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.
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Figure 6: Boxes are numbered by logical bit shifts
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Number of particles Time [hh:mm:ss] Scaling Theoretical scaling)
) ��77 � Æ��) ���> ��¹) �� Æ�) � �> � ���
 �>>> �) �
 � Æ )
 Æ7� � �7 � ��
Table 3: Scaling of FMM regarding the number of particles

3.4 Test calculations

We have performed several calculations on the IBM Regatta p690+ system at the Research
Centre Jülich on a single CPU. We have chosen systems consisting of homogeneously dis-
tributed point charges. Table 3 shows the scaling of FMM for three systems consisting of
262.144, 2.097.152, and 16.777.216 particles. Each lowestlevel box contains 8 charges.
We are capable of computing systems consisting of more than abillion of point charges.
The energy computation of a system consisting of 1.073.741.824 particles required a com-
putation time of only 8 hours on a single CPU. Because of memory limitations the FMM
parameters were not optimized. The depth of the tree was set to 8, the length of the multi-
pole expansion was equal to 10. Each lowest level box contained 64 charges. The relative
error of the energy was less than��,k. In general, for many applications such a small
relative error is not necessary. A multipole length of 5 instead of 10 would reduce the com-
putation time by a factor of 8. The same system could be computed in 1 hour. A massively
parallel version of our FMM implementation would be capableof treating such a system
within seconds.

4 The Continuous Fast Multipole Method

The interest of using the FMM approach to reduce the scaling of the Coulomb problems has
shifted to electronic structure calculations, particularly to density functional theory (DFT)
and Hartree Fock calculations. The FMM theory is not immediately applicable to problems
in which charge distributions have a non-zero extent. In a certain distance two separated
charge distributions can interact as classical point charges within a given absolute error.
This approach makes the FMM applicable to treat charge distributions arising in quantum
chemistry.
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4.1 Separation in near and far field

To obtain the error when treating charge distributions as point charges we compute the two-
electron integral of four normalized s-type Gaussian functions analytically. The normalized
s-type Gaussian function is given by� � �)ÒÀ � ÇÈ `,>� o (29)

The product of two basis functions defines a charge distribution of non-zero extent. The
product of two normalized s-type basis functions having thesame exponenẗ represents a
delta function for infinite largë which is the expression of a unit point charge. Assuming
the normalized s-type basis functions of the products are located at the same positions in
space the two-electron integral can be written as����� &�� �JC � �)Ò �À � ÇÈ �)Ò�À � ÇÈ �)Ò�À � ÇÈ �)ÒJÀ � ÇÈ � � `,É � oÊ `,Ë ½Ìo ,Í ½o&/ � � /� & �/ � �/� (30)Ò � and Ò� are the exponent of the first distribution,Ò� and ÒJ are the exponents of the

second distribution.� is the sum ofÒ � andÒ� , Î is the sum ofÒ� andÒJ. f is the distance
between the two charge distributions. The integral can be calculated analytically.

����� &�� �JC � `�  #Ï É ÐËÉe Ë f $f (31)`�  is the normalized Gaussian error function defined by`�  #Y $ � )ÔÀ � ¸R `,8o �N (32)

The factor`�  #Ï É ÐËÉe Ë f $ rapidly approaches 1 with increasing separation, and the two

charge distributions then interact as classical point charges. Consequently, we define an
error ; as ; #� % Î % f $ � �f � `�  #Ï É ÐËÉe Ë f $f (33)� � `�  can be substituted by the complementary Gaussian error function `�  Q.

; #� % Î % f $ � `�  Q #Ï É ÐËÉe Ë f $f (34)
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; f f É + f Ë
10,m 6.46 9.24
10,k 6.92 9.87
10,�R 7.36 10.50
10,�� 7.77 11.08
10,�� 8.17 11.64
10,�� 8.55 12.17
10,�J 8.91 12.68
10,�t 9.26 13.17

Table 4: Minimum distances [a.u.] for far field interaction (Ñ = 0.7,Ò = 0.7)

Assuming one of the two distributions is a delta function Eq.(34) can be used to determine
the extension for a single charge distribution.; #� % f É $ � `� Q #Ô�f É $f É (35)

Considering two charge distributions having the exponents� andÎ the sum off É andf Ë
is always greater thanf . Table 4 shows the accuracy of the approximations off by the
sum off É andf Ë .
If the two basis functions of a charge distribution are not located at the same position in
space the threshold; is divided by the Gaussian pre-factor. Because the Gaussianpre-factor
is always less than or equal to one the extensions of charge distributions of separated basis
functions are always smaller. Charge distributions of higher angular momenta are treated
as s-type distributions.

4.2 Extensions of products of contracted basis functions

A generally contracted basis function�� � � YWÓX Ôn b*�È � Q� `,> Õ� o (36)

with the property �� &�C � � (37)

is approximated by the function� �� � � � YWÓX Ôn í b*�È � &Q� &ð `,X�n �> Ê H��H>Ö �� o (38)
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satisfying the condition� � ¾ �. The extension of the distribution� �� � is always larger

compared with the extension of the distribution��.

4.3 Multipole moments of charge distributions

In the FMM theory point charges are expanded in multipole moments. Now we have to
expand charge distributions instead of point charges. Because a charge distribution has
non-zero extent contributions of the distribution are existing everywhere in space. Com-
pared with FMM where one sums over all point charges we must integrate over the charge
distributions in the Continuous Fast Multipole Method (CFMM).×ØØ Æ ¹ WX � *b öb � Wb B WX #�E
 #_b $ % Qî� #_b $$#Z � D $ [ #Qî� #D �b $ � E M �E
 #D �b $$ (39)

�×ØØ Æ ¹ WX � � ·R � ÀR � �ÀR � ��R � W B WX #�E
 #_ $ % Qî� #_ $$#Z � D $[M #Qî� #D �$ � E M �E
 #D �$$ � � �E
 #_ $ �� �_ �� (40)

The distribution� ��R can easily be expressed in spherical coordinates.� ��R � �� � R YÙ Ói Ôg `,�>Úe> Û �� o (41)� ��R � �� � R �Ùei eg �E
Ùei #_ $ Qî�g #_ $ Qî�Ù #�$ �E
i #�$ `,�>Úe> Û �� o (42)

The multipole moments are computed first at the positions of the charge distribution� ��R.
Using the

£
operator a multipole expansion can be shifted to any position in space. The

associated Legendre polynomials can be written as a sum overproducts of sine and cosine
functions. BWX #�E
 #_ $ % Qî� #_ $$ � *� *b Q�bWX �E
 � #_ $ Qî�b #_ $ (43)

The Q�bWX are constants.Qî� #D �$ and�E
 #D �$ can be expanded in a similar way.
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� #_ $ Qî�b #_ $ (44)�E
 #D �$ � *� *b Û�bX �E
 � #_ $ Qî�b #_ $ (45)

The integral (40) can be written as a product of three single integrals. Only three types of
CFMM integrals remain which can easily be calculated by recursion relations. The CFMM
integrals do not have any restrictions with regard to the angular momenta of the basis
functions. The CFMM integrals are computed once at the beginning and the computational
cost is negligible. � ·R � � `,�o � � �� (46)� �ÀR �E
� #�$ Qî�b #�$ �� (47)� ÀR �E
 � #_ $ Qî�b #_ $ �E
 #_ $ �_ (48)

The integrals (47) and (48) are calculated by numerically stable recursion relations. The
shifting of a multipole expansion from the position of the charge distribution to the box
center requires� #ÜJ $ work. L is the length of the multipole expansion. Usually, many of
the CFMM integrals are zero and the multipole expansions at the positions of the charge
distributions are sparse which reduces the scaling from� #Ü J $ to � #Ü ��t $. Any zero-tasks
in the translations of the multipole expansions to the box centers are skipped.

4.4 Structure of CFMM

At the beginning of a CFMM calculation all CFMM integrals arecomputed and stored in
a four-dimensional array. The first dimension is used to store all the multipole moments
for each combination of the angular momenta of x, y, and z. These multipole expansions
can be shifted to any locations in space. In the second step all charge distributions which
contribute very little to the Fock matrix are pruned from theCFMM tree. Usually, more
than the half of all distributions can be skipped. In the CFMMapproach the FMM is
embedded in the outer loops over shells. In general, the sequence of the shell pairs is
arbitrary. Each Fock matrix element can be computed independently of the others. The use
of CFMM requires a certain sequence of the distributions to minimize the transformations
on the CFMM tree. We have to ensure that the multipole expansion of a given box is
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transformed only once to a certain remote box. Assuming all boxes on each tree level
contain at least one distribution the shell pairs of box 1 must be treated first. After box 1
has completed the shell pairs of box 2 are computed and so on. On the next lower level of
the CFMM tree all children of box 1 on the parent level are computed in the order box 1 to
box 8. After the child boxes of box 1 on the parent level have completed the 8 child boxes
of box 2 on the parent level are treated and so on. The algorithm is applied for each tree
level giving the sequence of the shell pairs on the lowest tree level. Each transformation of
a multipole expansion to a Taylor expansion is done only oncefor a given pair of boxes.

Each box has an extension equal to the largest extension of its distributions. Two boxes can
interact via multipoles if the distance between the boxes isless than or equal to the sum of
the extensions of the two boxes. Because a box contains usually more than one distribution
shell pairE' located in box

£
for example can interact via multipoles with shell pair( Z

of box
7

but not vice versa. Because index symmetry is used in the computation of the
near field interaction incorrect results would occur. On thelowest level on the tree we have
to split the distributions of a box in distributions which can interact via multipoles with a
given distribution and which have to be computed in the near field part. The distributions
of a box must be sorted according to their extensions to avoidadditional computational
effort. A logarithmic search algorithm is implemented to minimize the number of search
steps. Only on the lowest tree level boxes are divided.

In case a box extension is to large to interact via multipoleswith a given distribution the
box is divided in its child boxes and the interaction is computed on the next lower level. If
the lowest level was already reached the box is split and one part of the distributions must
be calculated conventionally.

Because of the non-zero extents all possible values for the separation criteria can occur.
The most time-consuming step within the CFMM is the transformation of the multipole to
Taylor expansions as it is for the FMM. Unfortunately, we have to calculate more rotation
matrices compared to FMM. The number of rotation matrices grows with the separation
criterion. Nevertheless, like in the FMM implementation each rotation matrix is calculated
only once and used for many transformations. The computational effort to compute the
rotation matrices is negligible compared with the computation time for the transformations
of the multipole expansions.

For each distributionE' the contribution to the Fock matrix element is computed for all tree
levels separately. 9 ��b � 9 ��b � 8� hh Wh� hW�*�È� Ù*WÈR W*XÈ,W ¹ �WX 4�WX (49)

The sum over the tree levels starts at 3 because level 3 is the first level having separated
boxes.

�
is the length of the multipole expansions. After the computation of the far field
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interaction the near field contribution is still to evaluate. The CFMM routine returns a
list of distributions which cannot interact with the distribution E' via multipole moments
because the sum of the extensions is greater than the distance between the distributions.
This list is passed to the routine which computes the two-electron integrals conventionally.

4.5 CFMM implementation in TURBOMOLE

In the DSCF routine shloop the loop structure has been changed. The original structure of
the routine was as follows.

Scheme 1: Original structure of routine shloop

do i = 1, n: First loop over shells

do j = 1, i: Second loop over shells

do k = 1, i: Third loop over shells

if(k.eq.i) then

do l = 1, j: Fourth loop over shells

Computation of two-electron integrals

end do

else

do l = 1, k: Fourth loop over shells

Computation of two-electron integrals

end do

endif

end do

Fock matrix update

end do

end do

Indexn is the number of shells. The most outer loops are replaced by asingle loop over
shell pairs. The loop over shell pairs is implemented as a loop over all occupied lowest
level boxes and a second loop over the shell pairs in each of the lowest level boxes.
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Scheme 2: Current structure of routine shloop

do ibox= 1, nboxes: Loop over all occupied lowest level boxes

do ij = 1, number of shell pairs in boxibox: Loop over shell pairs

call cfmm(fij, length of kl-list, kl-list): FMM

if( length of kl-list .gt. 0) then

do kl = 1, length of kl-list

Computation of near field contribution

end do

endif

end do

end do
 ´îY`� is the number of occupied lowest level boxes. The transformation of multipole
expansions to Taylor expansions is done once for each separated pair of boxes. The evalu-
ation of any multipole moments is only done if a multipole interaction has been recognized.
No multipole expansions are computed in advance. No sortingof the list passed to the con-
ventional integral calculation is necessary.

4.6 Accuracy of CFMM

We have compared several two-electron integrals computed conventionally and by the
CFMM approach for normalized basis functions of s- and p-type. The shell pairs are sep-
arated by 8 a.u., the exponents are 0.5. Table 5 shows the absolute errors for a length of
the multipole expansions of 6, Table 6 for a length of 10. An increase of the length of the
multipole expansions by four moments decreases the absolute errors by approximately two
magnitudes.

4.7 Test calculations

We have tested our CFMM implementation on two systems of industrial interest. The
calculations were performed on the new IBM computer at the Research Centre Jülich
equipped with Power4+ processors p690, 1.7 GHz. The first system is a cobalt catalyst
consisting of 213 atoms (Figure 7). The second one is a rhodium complex consisting of 99
atoms (Figure 8). Tables (7) and (8) show the computation times and the absolute errors of
the CFMM based DFT compared to conventional DFT for lengths of multipole expansions
of 6 and 10.
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Integral &Ý13ìì � ÝèçIT � &��� &��C ) �> M ��,���� &��C ) �� M ��,���� &��C 
 �� M ��,���� &��C 
 �) M ��,���� &��C 
 �) M ��,���� &��C 
 �7 M ��,�
Table 5: Accuracy of the CFMM integral calculation for normalized basis functions (L = 6, Exponent = 0.5,
Distance of shell pairs: 8 a.u.)

Integral &Ý13ìì � ÝèçIT � &��� &��C ��� M ��,m��� &��C ) �) M ��,m��� &��C ) �7 M ��,m��� &��C ) �> M ��,m��� &��C 
 �� M ��,m��� &��C 
 �) M ��,m
Table 6: Accuracy of the CFMM integral calculation for normalized basis functions (L = 10, Exponent = 0.5,
Distance of shell pairs: 8 a.u.)

Length of Multipole expansion t[s] t13ìì [s] &Þ � Þ13ìì &
6 5833 878

7 �� M ��,�10 5833 951
7 �
 M ��,m

Table 7: CPU time for routine shloop for conventional and CFMM based DFT (Cobalt catalyst)

Length of Multipole expansion t[s] t13ìì [s] &Þ � Þ13ìì &
6 4550 907 
 �
 M ��,�10 4550 971 > �� M ��,m

Table 8: CPU time for routine shloop for conventional and CFMM based DFT (Rhodium complex)
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Figure 7: Cobalt catalyst: 213 atoms, 814 shells, 1683 basisfunctions

Figure 8: Rhodium complex: 99 atoms, 650 shells, 1312 basis functions

Table 8 shows timings and errors for the rhodium complex. Thetimings in Tables (7)
and (8) are average times for one iteration. The absolute errors are the errors in the total
energies after convergence has been reached.
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Iteration &uÞ &
1 
 �
 M ��,�2 ¹ �� M ��,�3 ) �� M ��,�4 > �¹ M ��,�5 
 �7 M ��,�6 
 �� M ��,�7 ) �) M ��,�8 > �
 M ��,�9 � �7 M ��,�10 
 �> M ��,�...

...
30 � �
 M ��,�

Table 9: Error accumulation in the SCF iteration for an expansion length of 15 (Rhodium complex)

Iteration &uÞ &
1 ��) M ��,m2 
 �> M ��,m3

7 �� M ��,m4 
 �
 M ��,m5 � �> M ��,k6
7 �¹ M ��,m7 ) �� M ��,m8 ) �) M ��,m9 � �
 M ��,k10
7 �
 M ��,m...

...
30 
 �� M ��,m

Table 10: Error accumulation in the SCF iteration for an expansion length of 25 (Rhodium complex)

The accumulation of errors in the SCF iteration has been tested for the rhodium complex.
Table 9 shows the error accumulation for a multipole expansion length of 15, Table 10 for
a length of 25. The energies are compared to the energies of the conventional DFT calcu-
lation. An increase of the expansion length by 10 decreases the errors by approximately
three orders of magnitude.
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Its. Energy
u

E CPU time per iteration [s]

CFMM-DFT 26 -2918.641427 -0.00001 923

RI-DFT 27 -2918.647531 -0.006 322

Table 11: Comparison CFMM-DFT with RI-DFT (Rhodium complex)

In comparison with RI-DFT our CFMM based DFT implementationis still a factor be-
tween two and three slower. The accuracy of the energy is about three orders of magnitude
higher. Table 11 shows the timings and the energy errors for our CFMM based DFT im-
plementation compared to RI-DFT.

5 Summary and outlook

We have described an improved implementation of the rotation based Fast Multipole Method
to evaluate systems of point charges as the basis for the Continuous Fast Multipole Method
to treat charge distributions. First steps in parallelizing the program have been made. Fur-
ther work to improve the parallel performance is necessary.

The serial version of our FMM program is able to treat very large systems of point charges
up to several billions of particles. We have proposed a new approach for the separation of
near and far field within the theory of FMM to minimize the computation time depending
on an user-requested threshold. Within the framework of theBlue Gene/L project our FMM
program will further optimized with regard to the IBM power processor architecture.

The CFMM implementation is based on our FMM program. It is an alternative to DFT
and RI-DFT. Depending on the geometry of the molecule and basis set more than 90%
of all electron repulsion integrals can be computed via multipole expansions which takes
approximately 15% of the total computation time. Our CFMM implementation is still at
least a factor of two slower compared to RI-DFT whereas the accuracy of the total energy
is about three magnitudes higher.
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The treatment of solute-solvent interactions in quantum chemical calculations has become
an important field, because most of the problems, which can beaddressed with modern
quantum chemical methods, are dealing with liquid phase chemistry. The continuum sol-
vation models (CSMs), such as the polarizable continuum model (PCM) [1], the solvation
models of Truhlar and Cramer (SMx) [2], COSMO [3], and others, have become well-
established models, which take into account solvent effects on molecular energies, prop-
erties, and structures. An overview is given in the Refs. [4,5, 6]. The following chapters
will give an overview of the COSMO theory and implementations made in the HPC-Chem
project.

1 Basic theory

The basic idea of the CSMs is to present the solvent by a continuum, which describes the
electrostatic behavior of the solvent. The polarization ofthe dielectric continuum, induced
by the solute, is represented by the screening charge density appearing on the boundary
surface between the continuum and the solvent. Usually the exact dielectric boundary
condition is used to calculate the screening charge density. The basic idea of COSMO is
to replace this condition by the simpler boundary conditionof the vanishing potential on
the surface of a conducting medium. Using a discretization of the solute-solvent boundary
surface= into D sufficiently small segments with center-coordinatesß �, and the segment
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area<�, this condition reads à8ñ8 � à �ñW � à � � � � (1)

Here theD -dimensional vector

à8ñ8 denotes the total electrostatic potential on theD sur-
face segments, which consists of the solute potential

à �ñW
(electronic and nuclear) and the

potential arising from the screening charges on the segments

à �
. The last term can be

expressed by the product of theD jD -dimensional Coulomb interaction matrix£ and theD -dimensional screening charge vectorá. Then we have� � à �ñW � £á (2)á � �£ ,�à �ñW
(3)

which gives an exact expression for the screening charges ina conducting continuum. The
screening charges in a dielectric medium are approximated by the introduction of a scaling
function that depends on the dielectric constant of the solvent:áâ �  #;$á (4) #;$ � ; � �; � �� � (5)

It can be shown that the relative error introduced by this approximation is very small for
strong dielectrics and within 10 % for weak dielectrics and consequently within the accu-
racy of the dielectric continuum approach itself [3].

The interaction energy��n 8 of the solute and the continuum, i.e. the screening charges,is
given by the dot product of

à �ñW
andáâ . To obtain the total dielectric energy�
�hW one has to

add the energy that is needed to create the screening charges( �� áâã à �
). Using

à � � �à �ñW
we get�
�hW �  #;$ äá µà �ñW � �) á µà �å �  #;$ äá µà �ñW � �) á µà �ñWå � �)  #;$á µà �ñW � (6)

As usual for linear response theory the free electrostatic energy gained by the solvation
process is half of the total interaction energy. Non-electrostatic terms as for instance used
in the PCM [11] or COSMO-RS [10] models, will not be discussedhere.

2 Implementation in HF/KS SCF calculations

The standard implementation scheme of the COSMO model in SCFprograms is given
in Scheme 1. After the input parameters have been set the molecular surface= can be
constructed, followed by the£ -matrix setup. This has to be done only once for a given
molecular geometry. During the SCF cycles the current density is used for the calculation
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Scheme 1:Work Schedule of a COSMO SCF Calculation
0) COSMO parameter setup

1) Cavity construction

2) æ -matrix setup

LOOP until SCF convergence is reached

3) Evaluation of the solute potentialç �ñW
4) Evaluation ofè and

Z 
�hW
5) Computation of

Z é Z êë �ñW� ì í Z 
�hW and in-
sertion of the scaled screening chargesè Â into the
solute Hamiltonian

END LOOP

6) Outlying charge correction

of the solute potential, which is used in step 4 to calculate the screening charges and the
dielectric energy according to Eqs. (3) and (6). The scaled screening charges are introduced
into the Fock or Kohn-Sham operator, respectively. The total energy is defined as the sum
of the energy calculated with the solvated orbitals and the dielectric energy� � � #" �ñW� $ � �
�hW � (7)

The outlying charge correction at the end of a converged SCF calculation corrects the error
due to small residual solute density that reaches into the continuum.

3 Technical details

Cavity Construction: For molecular shaped cavities the efficient and sufficientlyaccu-
rate segmentation of the surface is an important aspect, because it has strong influence on
the accuracy and the speed of the calculation. All the cavityconstruction techniques define
the interior of the molecule as the union of atom centered spheres (see Figure 1). The radii
of this spheres can be assigned element specific, as atomic charge or electronic density
depended radii [12], or by using the information about the chemical surrounding, i.e. by
using atom-types also known from molecular mechanic calculations. The later definitions
obviously introduce more flexibility with the potential of amore accurate reproduction, but
also with the danger of a loss of predictive power of the model. Therefore, we use element
specific radii. Presently optimized radii, which are adjusted to thermodynamic properties,
are available for H, C, O, F, Cl, Br, I, N, and S. For other elements scaled v.d.W. radii are
used. The scaling factor 1.17 is in the range of findings of other groups [1]. A second
important aspect of the cavity construction is the treatment of the intersection seams of
the atomic spheres. These surface areas exhibit sharp cuspsthat lead to unreasonable high
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electrostatic fields, and therefore to a physically unreasonable description and mathemat-
ical instabilities. Thus, any sphere-based construction requires a smoothing algorithm for
these areas. The cavity construction in the COSMO implementations starts with a union

Figure 1: Illustration of the intersection smoothing methods

of spheres of radiif> � f<+�¾
for all atomsÒ. The default for the auxiliary radiusf<+�¾

is the optimized H radius. The segmentation of the atomic spheres starts from a
regular icosahedron with 20 triangles. A refinement of the segmentation is reached in two
steps. First the triangle edges midpoints are used as new vertices and second the triangle
centers are used as new vertices. The first step increases thenumber of triangles by a factor
4, while the subsequent step increases the number by a factor3. In general the triangle
edges can be subdivided by any integer
, leading to an increase of triangles by a factor
� .
Thus triangulations with( � )� j 
 � j 
� #E � � % �$ triangles can be generated. Eventually
we do not use the triangles as segments but the correspondinghexagons and 12 pentagons.
Therefore, we consider each vertex of a triangle as a center and connect the midpoints
of the six or five neighbor triangles. Because the number of pentagons and hexagons is( ¿ � (9) � ), we can construct surfaces with( ¿ � �� j 
� j 
� � ) � �) % 
) % 7) % �) ���
segments. This procedure has two advantages: first it reduces the number of segments
and second the center-center approximation used in the£ -matrix setup is better justified
for pentagons and hexagons than for triangles. In order to achieve a proper£ -matrix
with a tolerable number of segments, we use a two-grid procedure. Initially a basis grid
with NPPA (default: 1082) segments per non-hydrogen atom isprojected onto the atomic
spheres of radiif> � f<+�¾

. All the points, which are not in the interior of another
sphere, are defined as remaining and projected downwards onto the radiusf> . This con-
struction prohibits the generation of points in the problematic intersections. In the next step
a segment grid of NSPH segments per H atom and NSPA segments for the other atoms is
projected onto the spheres defined byf> . NSPA (default: 92) and NSPH (default: 32) are
out of the( ¿ set. Now the remaining basis grid points are associated to the nearest segment
grid centers. Segments without basis grid points are discarded. The remaining segments
coordinates are redefined as the center of area of their associated basis grid points, while
the segment area is the sum of the basis grid areas. In order toensure nearest neighbor
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association for the new centers, this procedure is repeatedonce. Now the spherical part of
the surface is ready and the intersection seams of the spheres have to be closed. There-
fore, a ring is generated for each pair of intersecting spheres of radiif> � f<+�¾

. The
parts of these rings, which do not penetrate other spheres, are projected onto the surface
defined byf> towards each of the two atom centers. The resulting two opposing rings are
filled with triangles, each having two corners on one ring andone on the other. The sole
corner of the triangles moves a bit towards the center of the opposing ring resulting in an
inclination. The tilt angle is a function off<+�¾

, the two atomic radiif> andf ¸ and
the atomic distance. At the end of the surface construction the triangular regions which
arise from the intersections of three spheres, the so-called triple points, are paved with ad-
ditional triangles. The ring and triple points segments areindividual segments, they do not
hold associated basis grid points.£ -Matrix Setup: The Coulomb interaction matrix elements

£�b are calculated as the
sum of the contributions of the associated basis grid pointsof the segmentsE and ' if
their distance is below a certain threshold, the centers of the segments are used otherwise.
For all segments that do not have associated basis grid points, i.e. ring and triple point
segments, the segment centers are used. The diagonal elements

£�� that represent the self-
energy of the segment are calculated via the basis grid points contributions, or by using the
segment area

£�� ? 
 ��Ô<�, if no associated basis grid points exist. Numerical instabilities
can arise due to the lack of positive definiteness of the£ -matrix, which is very often
caused by matrix elements between two very close segments. In such cases the Coulomb
interaction leads to an unphysical description due to a disadvantageous cavity. To avoid this
problem, one has to provide proper cavities for all possiblemolecular structures. Because
this problem is hardly solvable, we introduced the following interaction term:£ ¿�b � ¶ ��b � ��bÄ��b � �Ä��b � ¶ ��b � û��b § Ä��b � (8)

The term¶ ��b ? ) ��9 Ä��b is the self-interaction of a segment with the radius
Ä��b � !� �� � � �b ( 9),

which is the average segment radius of the two segments underconsideration. If the dis-
tance of the two segments��b is less than or equal to the average segment radius

Ä��b , the
interaction is scaled between the self-interaction¶ ��b and the Coulomb interaction�9��b ,
dependent on the ratio��b 9 Ä��b . This procedure can also be applied to the basic grid interac-
tions. Iterative biconjugate gradient techniques have theadvantage that a positive definite
matrix is not required [9] but they do not handle the physicalorigin of the lack of positive
definiteness.

Potential Calculation and Operator Update: The full solute potential on the segments
consists of an electronic and a nuclear part.à �ñW � à hW � àg

(9)
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In the LCAO-formalism the electronic part can be expressed in terms of potential integrals
over basis functions.& hW� � � " #/$&/ � ß � &�/ � � */- B/- ¾ �/- % ¾ �/- � î4 ïïïï �&/ � ß � & ïïïï 3ð (10)&g� � *> Ê>&, > � ß � & (11)

Where� is the segment index andßñ are center coordinates of the segment. The nuclear
coordinates and charges are denoted with, > andÊ> , respectively. For DFT calculations
it can be more efficient to calculate the electronic potential via a numerical integration of
the electronic density. The COSMO update of the operator matrix can be calculated from
the screening charges on the segmentsö� and the potential integrals:¾ ���/- � � #;$ *� ö�¾ �/- � (12)

If the energy is calculated using the updated operator matrix, one has to subtract the expec-
tation value of the COSMO operator and add the dielectric energy �
�hW in order achieve
consistency with the definition in Eq. (7).

Outlying Charge Correction: The use of a cavity close to the v.d.W. surface, like in
COSMO and other CSMs, implies that a significant portion of the solute electron density
reaches into the continuum. This part of the charge distribution produces screening charges
in the volume of the dielectric continuum and thus leads to artificial screening effects. One
advantage of the COSMO approach is that it exhibits a smalleroutlying charge error than
models that use the electric field and the exact dielectric boundary condition. Nevertheless,
the error should be corrected. Therefore, we use the double cavity approach introduced
in Ref. [7]. This procedure uses a second cavity, which is constructed by an outward
projection of the spherical part of the surface onto the radiusf> � f+ � � 9 ò f<+�¾
(default:f+� � 9 � � ��¹). The corrected values can be calculated as follows:à ñ8 � £ �ñá � à ñ

(13)á ñ8 � �£ ñóÊà ñ8 (14)
àS � �£ !á ô á ñ8( (15)� Sñ�� �  #;$ �) áS µàS � �
�hW � (16)

Here the£ �ñ denotes the Coulomb interaction matrix between the chargeson the inner and
the charges on the outer surface,

à ñ
is the solute potential on the outer surface, and£ ñ

is
the Coulomb interaction matrix of the charges on the outer surface. The full potential on
the outer surface

à ñ8 results from the outlying solute density only and is used to calculate
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the corresponding charge correctionáñ8. The fully corrected screening charge on the inner
surface (á ô á ñ8) can be used to calculate the corrected potential on the inner surface

àS
.

The symbolô denotes that a smaller array is added to the corresponding segments ofá.
The energy correction� Sñ��

for the dielectric energy, and thus also for the total energy, is
defined as the difference between the corrected and the uncorrected dielectric energy.

Gradients: From the definition of the total energy in HF/KS-SCF calculations in Eq. (7)
it is clear that the gradient consists of the SCF gradient, calculated from the solvated wave
function, and the derivative of the dielectric energy.� K � � #" �ñW� $K � � K
�hW (17)� K
�hW �  #;$ ä�) á µ£ Ká � á µà �ñWõ å

(18)à �ñWõ � à hWõ � àg õ
(19)

The first term in the derivative of the dielectric energy can be calculated easily using the
already known screening charges and the derivative of the£ -matrix. The derivative£ K
includes an estimate for the surface derivative, which has to be taken into account for
the diagonal elements. The solute potential derivative splits into the nuclear

àg õ
and

the electronic part

à hWõ
. The first term can be computed by COSMO routines, whereas

the integral derivatives needed for the second term have to be provided by the quantum
chemical code. & hWõ� � � */- B/- î4 ïïïï �&/ � ß � & ïïïï 3ðK

(20)

Like the potential itself, the derivative is known in commonquantum chemical codes,
because it is similar to the nuclear-electron attraction integral derivative. To ensure a fast
gradient calculation the segment center approximation is used during the whole gradient
calculation. It should be noted that numerical derivativesof the energy should not be
calculated with the COSMO model, because due to the cavity construction mechanism the
energy is not continuous.

4 Frequency calculation

The calculation of harmonic frequencies raises the problemof non-equilibrium solvation
in the CSM framework. In the case of long-living states of thesolute, the solvent is able to
respond with its full re-orientational and electronic polarization. But processes that are on
time scales that do not allow a re-orientation of the solventmolecules, such as electronic
excitations or molecular vibrations for instance, have to be treated as non-equilibrium pro-
cesses. Therefore, the total response of the continuum is split into a fast contribution,
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described by the electronic polarization, and a slow term related to the orientational relax-
ation. The partition depends on the susceptibility of the solvent, which can be written as
the sum of the electronic and the orientational part�8ñ8 � � hW � � ñ� ö � hW � 
� � � ö � ñ� � ; � 
� (21)

where
 is the refractive index of the solvent. For the initial state, which is characterized by
the density

� R
and the dielectric constant;, the response of the solvent, i.e. the screening

charges, split into an orientational part and an electronicpart:áâ Hñ� #� R $ � � ñ��8ñ8  #;$á #� R $ ö áâ HhW #� R $ � � hW�8ñ8  #;$á #� R $ � (22)

During fast processes the orientational part is kept fixed while the electronic part is allowed
to respond instantaneously to the disturbance. For an arbitrary disturbed state with the
density

� � � R � �÷
the total potential reads:à ¿ � à #� $ � £áâ Hñ� � (23)

Where£áâ Hñ� is the negative potential arising from the frozen initial state screening chargesáâ Hñ� . The full potential is screened by the electronic polarizability only and thus the di-
electric constant in Eq. (5) has to be replaced by the square of the refractive index
� .
The electronic response contribution to the screening charges of the disturbed state can be
obtained from: á ¿â � � #
� $£ ,�à ¿ (24)

After adding the frozen chargesáâ Hñ� #� R $ and some re-arrangements one obtains a simple
expression for the total scaled screening charge of the disturbed state.á 
 Hâ �  #
� $á #�÷ $ �  #;$á #� R $ (25)

As can be shown [8] the dielectric energy for the disturbed state can be written as follows:� 

�hW � �)  #;$á #� R $à #� R $ � �)  #
� $á #�÷ $à #�÷ $ �  #;$á #� R $à #�÷ $ � (26)

The interaction is composed of three contributions: the initial state dielectric energy, the
interaction of the potential difference with the initial state charges, and the the electronic
screening energy that results from the density difference.
Using this theory we developed an implementation scheme forthe calculation of numeri-
cal frequencies by numerical differentiation of the analytical gradients, which is given in
Scheme 2. In opposition to excited states, which can be treated with one cavity and the
corresponding£ -matrix, the distortions of the numerical procedure changethe COSMO
cavity at every step. In an early implementation of numerical PCM frequencies [18] a fixed
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Scheme 2:Work Schedule of a Numerical Frequency Calculation with COSMO
0) Do a standard COSMO calculation and save the screening charges and poten-

tials asè êø R ì andç êø R ì
LOOP over distorted structures

1) Set up the cavity and theæ -matrix for the distorted geometry

2) Map the frozen potential on the new cavityç êø R ì ù çX êø R ì
and recalculate the screening chargesèX êø R ì é úæ ,�çX êø R ì
LOOP until SCF convergence is reached

3) Calculate the currentç êø ì andè êø ì and buildç êø÷ ì éç êø ì ú çX êø R ì andè êø÷ ì é è êø ì ú èX êø R ì
4) Calculate the dielectric energy according to Eq. (26) us-

ing the mapped values for the initial state charges and
potentials

5) Calculateè 
â from Eq. (25) using the mapped initial state
potentials and insert the charges into the Hamiltonian

6) Calculate the new density and the corresponding energy:Z é Z êë �ñW� ì í Z 

�hW
END LOOP

7) Calculate the gradient according to Eq. (27)

END LOOP

8) Calculate the numerical derivate of the gradient

cavity approach and a density adjusted cavity were examined. It turned out that the fixed
cavity gave reasonable results for diatomic HF molecule, but cannot be expected to be
applicable to polyatomic molecules. To solve the cavity problem we map the initial state
potential on the cavity of the disturbed state and recalculate the screening charges from the
new potential. The mapped potential of a segment of the new cavity is calculated from the
distance-weighted potentials of all segments of the old cavity that fulfill a certain distance
criterion. This procedure should be more stable than a direct mapping of the screening
charges. The gradient of the distorted states can be derivedfrom Eq. (26) and the fact that
the gradients of the frozen initial state valuesá #� R $ and

à #� R $ vanish.� 
 HK
�hW �  #
� $ Þ�) !á µ #�÷ $£ Ká #�÷ $( � �á #�÷ $ �  #;$ #
� $ á #� R $� µ à K #� $ß (27)

Numerical results for the3 (C=O) frequency of 4-(Dimethylamino)-benzaldehyde in six
different solvents are given in Table 1. The deviations fromthe experimental data show
that the implementation of Scheme 2 leads to a small improvement of the calculated fre-
quencies compared to the fully relaxed COSMO calculations (V5.5u). Nevertheless, the
fully relaxed COSMO frequencies exhibit the same trends andseem to be a good approxi-
mation.
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Table 1: Solvent Effects on theû (C=O) Frequencies
±

[cm��] of 4-(Dimethylamino)-benzaldehyde on the
RI-DFT BP/TZVP Level.

Solvent ü ý �Rþ Exp.� V5.5uR V5.5u-
Exp.

new
S

new-Exp.

CClJ 2.23 1.46 1683.0 1662.3 -20.7 1664.7 -18.3
Benzene 2.25 1.501 1677.8 1661.6 -16.2 1664.0 -13.8
Chloroform 4.9 1.446 1662.2 1644.4 -17.8 1652.7 -9.5
Ethanol 24.6 1.361 1658.2 1628.7 -29.5 1644.0 -14.3
Methanol 32.6 1.323 1657.4 1628.1 -29.3 1643.5 -13.9
Acetonitrile 36.6 1.344 1673.6 1628.0 -45.6 1643.3 -30.3
Vacuum 1685.6±
from Ref. [19]. � TURBOMOLE version 5.5 using uncorrected screening chargesfor the gradient

calculation.
 

Implementation of Scheme 2 in TURBOMOLE version 5.6.
±

The calculated values are

numerical harmonic, un-scaled frequencies (SCF conv. 8, step size 0.02 a.u.). The molecular structures have

been optimized for the given dielectric constant.

5 COSMO at the MP2 level

For ab initio MP2 calculations within the CSM framework three alternatives, originally
introduced by Olivares et al. [15], can be found in the literature. The first approach, often
referred to as PTE, performs a normal MP2 energy calculationon the solvated HF wave
function. The response of the solvent, also called reactionfield, is still on the HF level. In
the so-called PTD approach the vacuum MP2 density is used to calculate the reaction field.
The third approach, often called PTED, is iterative so that the reaction field reflects the
density of the first-order wave function. In contrast to the PTE approach the reaction field,
i.e. the screening charges, change during the iterations until self consistency is reached.
This is important if the screening charges are used afterwards e.g. as input for a COSMO-
RS [10] calculation, which allows the prediction of thermodynamic properties of solutions.
The PTE algorithm is less cumbersome than the PTED and suitedfor the analytical gradient
calculations. Furthermore, it was shown byÁngyán that PET is formally consistent in the
sense of second-order perturbation theory [13, 14]. In thisproject we implemented the
PTED method given in Scheme 3. The MP2 density in step 1 of Scheme 3 is the relaxed
density, which can be obtained from a coupled perturbed Hartree-Fock (CPHF) procedure
for solvated systems. Such a procedure has been proposed forthe PCM model by Cammi et
al. [17]. The authors gave a full implementation of analytical gradients for a PTE like MP2
scheme. To adopt this procedure for the COSMO model, the screening charges have to be
divided with respect to the two potential components they originate from. Thus, we obtain
charges, which arise from the electronic potential and the charges that originate from the
nuclear potential denoted by the superscript`Z and� , respectively.ö �̧ � � *8 £,��8 & 8̧ % Y � � % `Z � (28)
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Scheme 3:PTED Implementation Scheme
0) Do a standard COSMO HF calculation

LOOP until convergence is reached forèi A � and
Zi A �

1) Calculate the MP2 energy and density

2) Calculate new screening charges and dielectric energy from
the MP2 density according to Eq. (3)

3) Calculate
Zi A ��ñW� as defined in Eq. (34)

4) Perform a HF COSMO calculations with frozenèi A �
END LOOP

5) Perform the outlying charge correction for the MP2 density

Here the indices� % N refer to the segments of the COSMO cavity. Introducing this definition
in Eq. (12) the COSMO part of the Fock matrix reads:¾ ���/- � ¾ ��� Hg/- � ¾ ��� HhW/-

(29)¾ ��� H¸/- �  #;$ *� *8 £,��8 & 8̧ ¾ �/- � (30)

Using the expression for the electronic potential from Eq. (11)
¾ ��� HhW/-

can be written as
follows: ¾ ��� HhW/- �  #;$ *2. B2. *� ö�2. ¾ �/- � *2. B2. @ö/- H2. (31)ö �2. � � *8 £,��8 ¾ 82. � (32)

In this definition@ö/- H2. is the contribution due to the screening charge portion arising from
the charge distribution of the AO pair�â2�. . The two COSMO parts derived above can be
added to the one-electron and the two-electron part of the Fock matrix, respectively. The
solvated Fock matrix elements read:9 �ñW�/- � !Û/- � ¾ ��� Hg/- ( � *2. B2. #º43 && 6� ½ � @ö/- H2. $ (33)

Using this operator in the CPHF procedure one obtains a Z-vector equation where both
sides include@ö/- H2. contracted with the current density, which take into account the re-
sponse of the continuum due to the perturbed density [17]. Ina non-iterative PTE calcu-
lation the relaxed MP2 density can be used to compute any one-electron property. As can
be seen from Scheme 3 this is simply the first step of the PTED implementation. The last
steps of the PTED scheme are straightforward. The MP2 screening charges are calculated
from the full MP2 potential arising from the MP2 density and the nuclei. These charges are
used to calculate the MP2 dielectric energy that is part of the full MP2 energy expression
of the solvated system�i A ��ñW� � � ÿ � � � ��� � � ÿ �
�hW � � i A �
�hW (34)
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Table 2: MP2 Solvation Energies [kcal/mol] in a Conductor (³ ��� =1) at the RI-MP2/TZVP//RI-BP/TZVP
±

Level

iter.
 PTED-PTE PTED-
PTED0R sr ��Â� �	 � {�  sr ��Â� �¯ ¬ � 

C�HtOH 4 0.51 -0.04 -5.49 -6.55
CF�COO

,
4 1.41 -0.32 -59.83 -63.43

CH�OH 3 0.48 -0.03 -5.77 -6.75
CHCl� 4 0.75 -0.12 -2.20 -3.86
Chlorobenzene 4 0.87 -0.14 -2.39 -4.33
Cl� 2 0.06 0.00 -0.90 -1.02
ClO

,J 4 0.51 -0.22 -58.73 -60.28
CO� 4 1.18 -0.39 -0.66 -3.89
Cyclopropane 2 -0.04 0.00 -1.56 -1.48
Diethylether 4 0.47 -0.05 -3.31 -4.29
DMSO 6 3.33 -0.35 -9.00 -16.16
Ethylamine 3 0.16 -0.01 -5.13 -5.46
Ethylene 3 0.34 -0.05 -1.13 -1.89
HCOOH 6 1.99 -0.57 -5.16 -10.20
Furane 7 3.00 -1.26 -2.35 -10.50
H�O 3 0.45 -0.02 -8.00 -8.92
H�Oe

3 0.05 -0.01 -93.96 -94.08
I� 2 0.23 -0.02 -1.80 -2.30
Methylamine 3 0.09 -0.01 -5.18 -5.39
NH� 3 0.13 -0.01 -6.18 -6.46
Nitrobenzene 6 2.53 -0.90 -2.93 -9.70
NO

,� 3 0.47 -0.13 -66.45 -67.71
OH

,
3 0.92 -0.01 -95.85 -97.70

PF
,� 3 -0.03 -0.04 -55.53 -55.58

Phenol 5 0.98 -0.14 -6.20 -8.39
SO�,J 4 0.44 -0.24 -238.25 -239.80±
COSMO optimizations.� PTED0 is the first cycle of the PTED scheme including the outlying charge cor-

rection.
 

Solvation energysr ��Â� �� � z r � 	
� 	 �� � � r 
 ±� �� � | � z ¯ ¬ | � � r� .
±

Convergence

criteria: energy 10�v; screening charges 10�� (maximum) and 10�v (rms).

where� ��� denotes the second order perturbation energy of the solvated HF wave function.
If the energy and the screening charges are not converged, a HF calculation in the presence
of the fixed MP2 screening charges provides the wave functionfor the next cycle. Some
results obtained with the PTED approach are given in Table 2.The results are similar
to that reported from an earlier PTED implementation in the program package GAMESS
[16]. As can bee seen from the energy difference between the first cycle (PTED0) and the
converged PTED, the relative small improvement of the PTED0energies does not justify
the iterative procedure. Only four compounds exhibit absolute improvements that exceed
0.5 kcal/mol. The largest effects have been found for Furaneand Nitrobenzene. We used
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Figure 2:� -profiles of Furane and Nitrobenzene.

this compounds to check the influence of the iterative procedure on the screening charges.
The plots in Figure 2 show the distributions of the screeningcharge densities, the so-called� -profiles, for the different iterations. The graphs show substantial differences between the
HF profiles and the profiles of the first PTED iteration, whereas no significant changes can
be observed among the MP2 profiles.

6 Implementation in TURBOMOLE

The starting point for the implementations of this project was the already existing COSMO
SCF and gradient implementation in the programsdscf andgrad and the corresponding
RI-DFT routinesridft andrdgrad [20]. This implementation was done by the BASF
and used extensively in industries and academics. The higher-level parametrizations of the
COSMO-RS model, which became an important tool for the prediction of thermodynamic
data of solutions, have been done with these programs [10]. Although this first imple-
mentation turned out to be very stable, the lack of positive definiteness of the£ -matrix,
occurring in the Cholesky factorization, has been reportedby some users. Thus, we started
this project with the analysis of the£ -matrix problem. As discussed in section 3, it turned
out, that in most of the cases the problem was caused by surface segments located in the
intersection seams of the atomic spheres. In some cases the seam filling procedure leads
to small segment-segment distances and thus to huge Coulombpotentials. To overcome
this problem, we introduced the modified interaction term given in Eq. (8) in the£ -matrix
setup routine. This modification leads to a more stable procedure. A second modification
of the basic implementation was a small change in the gradient routines. Since the outlying
charge correction is not included in the gradient, the uncorrected screening charges will be
used in the gradient calculation in future versions.
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MP2 Cosmo Calculations: The PTED scheme (cf. section 5) has been implemented
for the conventional MP2 and the RI-MP2 method. Because the TURBOMOLE package
consists of stand-alone programs, we used a transfer file that contains the needed COSMO
information e.g. coordinates of the surface segments and screening charges of a certain
level of theory. Keywords in the control file are used to activate the features in the HF
program and the MP2 modules needed for the iterative procedure. A shell script is used to
manage the keyword settings and program calls needed for thePTED calculation. The user
can choose the convergence criteria for the energy and the screening charges and the max-
imum number of iterations. A restart of the iterative procedure is possible. The COSMO
related potential has been added in the CPHF procedure, i.e., to the Z-vector equation. In
the case of the non-iterative PTE procedure, which is simplythe first step of the PTED
approach, this leads to a consistent MP2 density that can be used for the calculation of
one-electron properties. The density has been checked using dipole moments calculated
by numerical derivatives. Some results obtained with the described implementation have
been given and discussed in section 5. PTED0 results on the RI-MP2/TZVP//RI-BP/TZVP
level of 331 molecules have been used to optimize and validate the parameter set of the
COSMO-RS model. It turned out that the new MP2 parametrization is inferior to the DFT
parametrization BPTZVP C12 0104 [21]. The free energy root mean square deviation
over all properties used in the optimization is 0.56 kcal/mol in the MP2 case and 0.39
kcal/mol for the DFT parametrization. Nevertheless, the results may be improved by the
use of the fully optimized PTED results, a better basis set, or MP2 optimized structures.
Further work has to be done to check these opportunities.

Cosmo Frequency Calculations: The implementation scheme for the calculation of nu-
merical frequencies including the COSMO model, given in section 4, has been imple-
mented for the RI-DFT method. The programsridft andrdgrad that perform the SCF
and gradient calculations, respectively, have been modified in order to enable the treatment
of the different charge and potential contributions and to read/write the COSMO data file
that is needed for the data transfer between the stand-alonemodules. The shell scriptNum-
Force that controls the numerical frequency calculation has beenextended to handle new
COSMO keywords. First results have been given in section 4.

7 Implementation in MOLPRO

The present implementation of COSMO in MOLPRO was the first realization of a CSM in
the MOLPRO code. Therefore, we started with the implementation of COSMO in the SCF
routines of the program following Scheme 1. This has been done for HF/UHF and KS/UKS
calculations using the modified£ -matrix setup discussed in the sections 6 and 3. During
this implementation we tried to introduce symmetry into theCOSMO routines. Since the
cavity construction described in section 3 cannot be modified for the use of symmetry in
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a straightforward way, we tried to symmetrize the� � cavity. The segments which belong
to the irreducible representation and their associated basis grid points are replicated when
the symmetry equivalent segments or basis grid points are required for the calculation of
the£ -matrix elements. After the£ -matrix is set up for the irreducible representation, at
the beginning of the calculation, only segments that belongto the irreducible representa-
tion have to be taken into account in the next steps. The drawback of this procedure is
the symmetry dependence of the energy. If a high symmetry is used for a small molecule
the deviation from the� � energy can be substantial. Furthermore, the segment distribution
on the symmetrized cavities is worse than in the� � case. Because the edge segments of
the cut out irreducible representation do not lie on the mirror planes, the replication can
generate very small segment distances or holes. After some tests it turned out that the
simpler approach of using the full� � cavity also for higher symmetries leads to a more
stable procedure with negligible energy deviations between � � and higher symmetries. In
the next step the COSMO gradient given in Eq. (18) has been build in using the uncor-
rected screening charges. The MP2 COSMO calculations have been implemented similar
to the TURBOMOLE package as described in section 5. Because MOLPRO is able to
handle control structures and variables in the input, the first version of the iterative PTED
procedure has been implemented using a loop in the input file.The results match the data
obtained with the conventional TURBOMOLE MP2 (mpgrad) and they are close to the
RI-MP2 results presented in Table 2.

8 Implementation in QUICKSTEP

The COSMO implementation in Gaussian plane wave (GPW) codeslike QUICKSTEP fol-
lows the procedure given in Scheme 1. The substantial differences to the implementation in
pure LCAO codes, which has been discussed in section 3, are the interfaces to the quantum
chemical program, i.e. the calculation of the solute potential on the surface segments and
the COSMO contribution to the Kohn-Sham (KS) matrix.
Following the QUICKSTEP philosophy we decided to keep the changes due to the COSMO
implementation, especially the COSMO data structures, as local as possible. The COSMO
routines have been combined in a Fortran 90 module definition. All the relevant COSMO
data are kept inside the module. The Fortran typeCOSMO DATA holds all COSMO parame-
ters like the radii and the dielectric constant. A set of get-and set-functions is used to access
the data from the QM program. A second Fortran type calledCOSMO SEGMENT DATA is
used to store the segment related data, e.g. the screening charges and the potentials on the
surface. Because these data change during the SCF calculation, they are directly accessible
from both sides. The needed memory is allocated internally whenever needed. A cleaning
routine at the end of the calculation frees all allocated memory. The calls of the COSMO
module routines from the SCF program are given in Scheme 4.
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Scheme 4:Implementation of the COSMO Module in a SCF Program
cosmo initialize Initialize data of thecosmo data type, set default parameter

and radii. User defined parameters can be set using the set
routines after the initialization

cosmo check rad Check if all radii have been set. Only optimized radii for the
most common elements are set in the initialization

cosmo surf amat Calculate the surface and theæ matrix

LOOP until SCF convergence is reached

Provide the solute potential

cosmo charges Calculate the screening charges

cosmo ediel Calculate the dielectric energy

Update KS matrix and calculate the energy according to Eq. (7)

END LOOP

Provide the solute potential on the outer surface

cosmo oc corr Perform the outlying charge correction

cosmo write Write the corrected values to the output file

cosmo clean Deallocate the internally allocated memory
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zu inkoh ärentem Transport
Reinhold Lövenich
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