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Preface

Over the last three decades the methods of quantum chernésteyshown an impressive
development: a large number of reliable and efficient agprasions to the solution of
the non-relativistic Schrodinger and the relativisticdi equation, respectively, are avail-
able. This is complemented by the availability of a numbewefi-developed computer
programs which allow of the treatment of chemical problesia anatter of routine. This
progress has been acknowledged by the Nobel prize in chgrit8$8 to John Pople and
Walter Kohn for the development of quantum chemical methods

Nowadays, Theoretical Chemistry is widely accepted as sengisl ingredient to research
in a wide field of applications ranging from chemistry ovesdiiemistry/biophysics to dif-
ferent flavors of material science: quantum chemical mettaod indeed one standard tool
at universities and research centres as well as in industgaarch. The progress in ex-
perimental techniques is invariably complemented by areaming demand for accurate
guantum mechanical models as a means to analyze and intexpegimental data as well
as to provide a deeper understanding of the results. On its the prediction of struc-
tures and properties of materials and individual chemioahgounds or complexes is of
great importance - either because the targets are expddltyenaccessible at sufficient
accuracy or experiments are too expensive or impractical.

Currently quantum chemical methods are on the verge of begipdjed to realistic prob-
lems. Many research topics of considerable economicatesténave quite demanding
constraints: they require to model large numbers of pagi@because the interesting prop-
erties require a certain minimum size of the model to be oj,ube requested level of
accuracy is achievable only within the realm of electronracture methods or requires
the time-resolved dynamics of the process in question. thaddilly, it is observed that
neighboring disciplines such as chemistry, biochemigirgphysics, solid state physics
and material science are gradually merging and in fact adrghsimilar challenges and
closely related methodologies. In view of today’s compierif software engineering and
computer hardware these disciplines depend heavily onuppast of computer science
and applied mathematics. Thus, in the field of computatisciahce an increasing amount
of multidisciplinarity is not only beneficial but essentiaf solving complex problems.

Finally, we have to anticipate the tremendous developnmethitd area of information tech-
nology both from the side of software as well as hardware ldpweent. In particular the

emerging parallel computer and cluster systems open thietoo@ckle challenges of un-
precedented complexity. However, method development naisinly respond to the need
of ever better and computationally less expensive (linealirsgg) models but as well to
the requirements of the underlying computer system in tevfmsarallel scalability and

efficient usage of the (ever-changing) hardware.



Having in mind the wishes and requirements of the reseascéhéhe NIC community and
in the German chemical industry the most promising methmgles and quantum chem-
istry codes were chosen in order to push forward the devedopnThe selected program
packages TURBOMOLE, QcksTEP, and MOLPRO cover complementary models and
aspects of the whole range of quantum chemical methods.iW\thie project High Per-
formance Computing in Chemistry (HPC-Chem) the functiiyalf these codes was ex-
tended, several important methods with linear scaling Wehavith respect to the molec-
ular size were developed and implemented, and last but ast lee parallel scalability on
modern supercomputers and cluster systems was subdtamiptoved. In addition, for
the treatment of solute-solvent interactions in quantunshagrical calculations the con-
tinuum model COSMO has been integrated into the aforemegdi@rograms. This is of
great relevance for the range of use since most practicalgms are dealing with liquid
phase chemistry.

| thank the HPC-Chem project partners and the industridhbotators for their coop-
erativeness and the authors from the different researalpgrtor their contributions to
this book. Special thanks are due to Monika Marx, who inveesitee and effort defining
the layout, correcting the figures, and designing the coVbe beauty of this volume is
entirely her merit.

Jilich, October 2004

Johannes Grotendorst
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Goals of the Project

Further development of quantum chemistry codes still ve®both methodological devel-
opment and issues of parallelization in order to make thigg#yhadvanced techniques ap-
plicable to problems of so far unprecedented size. In pdatiche more closely hardware
related parallelization and optimization benefits largebyn the contributing disciplines

computer science and applied mathematics. It is not passbsimply scale up existing

methods or numerical procedures to arbitrary problem siz#sding parallelization. The

aim is to reduce the complexity of the algorithms and to enbahe parallel scalability.

We need to understand that moving to ever larger system gizgsplying even more ac-

curate methods we will find ourselves confronted with notamicipated problems. On
the one hand it is important to decouple hardware and sagtel@velopment on the other
hand it is essential to exploit modern parallel computehigectures.

The goal of the reported joint research project betweend&ek&entre Julich (Paralleliza-
tion, Linear Algebra, CFMM), University of Karlsruhe (TURBVUOLE), ETH Zirich
(QuiCcKSTEP), University of Stuttgart (MOLPRO) and COSMOIlogic (COSM@as to
join forces and to focus on the improvement of the most promgimethodologies and ap-
plication codes that will have substantial impact on futesearch capabilities in academia
and industry in Germany. The selected programs and metbgiéslpresent diverse though
complementary aspects of quantum chemistry and their guatibn was aimed at syner-
getic effects among the different development groups. Wais a distinct feature of the
multidisciplinary HPC-Chem project. The ultimate targéat development efforts was
to increase the range of applicability of some of the mostartgnt electronic structure
methods to system sizes which arise naturally from manyiepmn areas in the natural
sciences.

Methods and programs developed within this project have bealuated by the industrial
collaborators BASF AG and Infracor GmbH, and are being testeNIC projects on the
Julich supercomputer.

A brief overview covering the selected methodologies andntum chemistry codes is
given in the following sections. Detailed discussions @fwWork carried out by the project
partners are found in the corresponding subsequent clsapter
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DFT Functionality in TURBOMOLE
University of Karlsruhe

Density functional theory (DFT) based methods employing-hgbrid exchange-corre-
lation functionals are not only more accurate than stanétndree-Fock (HF) methods
and applicable to a much wider class of chemical compouhdg,dre also faster by orders
of magnitudes compared to HF implementations. This rendeki@ature arises from the
separate treatment of the Coulomb and exchange contnitsutitothe Kohn-Sham matrix,
which allows to exploit more efficient techniques for theiakiation. With DFT employing
hybrid exchange-correlation functionals this advantagest and only the (slower) tradi-
tional direct HF procedures are applicable. Thus, nonidyDFT is the natural choice for
electronic structure calculations on very extended syst&rhich are otherwise intractable
by quantum mechanical methods. However, as the exchamgaatmn functional is un-
known, DFT suffers from the distinct disadvantage that, antcast to more traditional
quantum chemistry methods, there is no systematic way tooweand to assess the accu-
racy of a calculation. Fortunately, extensive experierta®s which classes of chemical
compounds can be modeled with good success.

TURBOMOLE's competitiveness is primarily due to (i) the éipation of molecular sym-
metry for all point groups in most modules, giving rise toiagg roughly by the order of
the symmetry group, (ii) the resolution of identity (RI) keeque which typically offers
savings of about a factor of hundred, and finally (iii) verjiaént implementations of
integral evaluation and quadrature algorithms.

Within this project a multipole approximation to the RI teadue has been implemented
for the energy as well as gradients with respect to a dispiacé of the coordinates of
the nuclei named Multipole Assisted Hlprocedure (MARIJ). This method decreases
the effective scaling of the evaluation of the Coulomb teomapproximatelyNV'-¢, where
N is a measure of the system size, resulting in substantietlyaed effort for structure
optimizations. Another important aspect of DFT calculasios the implementation of
(analytical) second derivatives with respect to the nucbeardinates carried out in this
project. Infrared and Raman spectra are experimentallly fiai@adily accessible and con-
tain a great deal of information about the structure of thenpound in question. The
actual assignment of the spectrum is often difficult and ireguts simulation. The CPU
time consumption mostly stems from the evaluation of thel@ab contribution to the
coupled perturbed Kohn-Sham equations. The/Ripproximation has been implemented
for the second derivatives with respect to the nuclear doates reducing the computation
time by roughly a factor of 2.5.
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QUICKSTEP. Make the Atoms Dance
ETH Z trich

The general statements regarding DFT given in the previectsos apply to QICKSTEP
as well. QUICKSTEPis a complete re-implementation of the Gaussian plane w&egV)
method as it is defined in the framework of Kohn-Sham densigtional theory. Due to
the usage of plane wavesu@KSTEP enforces periodic boundary conditions and is thus
somewhat complementary to the molecular TURBOMOLE code.sé&h, QIICKSTEP
does not make use of point group symmetry, but on the othet iaiffers substantial ad-
vantages for the modeling of solids or liquidsu@KSTEP exploits like plane wave codes
the simplicity by which the time-consuming Coulomb term t&nevaluated using the ef-
ficient Fast Fourier Transform (FFT) algorithm, which shangear scaling behavior. In
that way, the Kohn-Sham matrix is calculated byIQ<STEP with a computational cost
that scales linearly with the system size. However, the esipa of Gaussian-type func-
tions in terms of plane waves also suffers from disadvastage strong spatial variations
of the density would lead to extremely long and uneconomp@aasion lengths. This prob-
lem is alleviated like in plane wave methods by the use of ai@seudo potentials for the
inner shells.

A new, fully modular and efficiently parallelized implemation of the GPW method in-
cluding gradients has been carried out. Gaussian basisasatdeen specifically optimized
for the pseudo potentials of Goedecker, Teter, and Hutt@H)GSince the traditional
wavefunction optimization step, which involves the diagiation of the full Kohn-Sham
matrix, constitutes a substantial bottleneck for largewakions because of its cubic scal-
ing, two alternative schemes, pseudo diagonalization apithbtransformation, have been
investigated. The resulting performance data measuredeodiiich supercomputer Jump
are impressive. Turn-around times of approximately 100seés per molecular dynamics
(MD) step for a liquid water simulation of a unit cell with 2%@ater molecules on 128
CPUs suggest substantial future potential. Also geomgdtyrazations for molecular or
crystalline systems up to approximately 300 atoms have Hepronstrated to be feasible
within a few minutes per geometry optimization cycle on 8 6aCIPUs.

QUICKSTEP is part of the open source project CP2K which ensures cagtiiom of the
development in the future.

Local Electron Correlation Methods with Density Fitting in MOLPRO
University of Stuttgart

Local electron correlation methods recognize that electarrelation, i.e. the difference
between the exact solution to the Schrodinger equatioritaridiartree-Fock (mean-field)
approximation, is a short-range effect (in insulators)chihidecreases approximately with
the sixth power of the distance between two local chargeibligions. The prohibitive

3
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costs of electron correlation techniques mainly origirieden the use of the orthonormal,
canonical and delocalized HF molecular orbitals. Thustreéto the local electron cor-
relation techniques is the localization of the moleculditats and the decomposition of
the localized orbitals into spatially close subsets (atllibmains and pair domains) whose
size is independent of the extent of the molecule. Configuragpaces are constructed
by excitations within these domains thus reducing their In&imo O(V?). Introducing a
hierarchical treatment depending upon the distance of thigab domains linear scaling
can be achieved. This strategy offers the possibility tormooisly reduce the costs of
electron correlation techniques while maintaining thelsestablished hierarchy of wave-
function basedb initio methods. This approach succeeded in the development df loca
MP2 and CCSD(T) methods with approximately linear scalihthe computational cost,
thus dramatically extending the range of applicability wéls high-level methods. Still all
electron correlation methods suffer from the slow convecgeof the electron correlation
energy with respect to the basis set size, thus somewhattoffy the gain obtained by the
local treatment. This aspect has also been considered Hgnmepting local;, methods
which substantially improve the convergence behavios émarkable, that for local MP2
the preliminary HF calculation, i.e. a conceptionally msaimpler procedure, is the most
time-consuming step.

Within the HPC-Chem project these new local correlationhods have been parallelized,
density fitting approximations to speed up the integralwtidn have been incorporated
and the method has been extended by an open-shell formalisraddition, localr,
methods have been implemented. The bottleneck of evatptenHartree-Fock exchange
contribution has been much reduced by local density fittpgr@ximations as well, lead-
ing to speedups by 1-2 orders of magnitude. All these so fajuenand unprecedented
methods are part of the ®.PRO package o&b initio programs.

Parallel DFT in TURBOMOLE, Linear Algebra, and CFMM
Research Centre dilich

The (re-)parallelization of the DFT code in TURBOMOLE ainpesifically at further ex-
tending its range of applicability to very large systems byams of parallelization. In
fact, the implementation of the MARI-method by the Karlsruhe group already allows for
very large clusters in serial operation provided sufficiexemory is available and rather
long turn-around times are acceptable while still being/\amall compared to standard
DFT or RI-J DFT. The master-slave concept is no longer adequate, menmequyjre-
ments have to be reduced substantially by use of distribdié¢a, and parallelization of
a much larger number of computational steps is requiredielv of the fast methodologi-
cal development, serial and parallel code differ margynialithe actual quantum chemical
code while a specialized set of library routines supportgntenance, parallelization or
re-parallelization of existing code with little effort. €short hardware life cycle prohibits

4
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highly machine or architecture dependent implementatidinee efficient exploitation of
point group symmetry by the TURBOMOLE code is fully suppdrie the parallel imple-
mentation.

Serial linear algebra routines have to be replaced in masgschy parallel versions, ei-
ther because the size of the matrices enforces distrib@tedat due to the cubic scaling
with the problem size. In some cases, the replacement bynatiee algorithms is more
advantageous either due to better parallel scalabilityanerfavorable cache usage.

The evaluation of a pairwise potential over a large numbpadicles is a rather widespread
problem in the natural sciences. One way to avoid the quadiedling with the number of
particles is the Fast Multipole Method (FMM) which treatsadlection of distant charges
as a single charge by expanding this collection of chargessingle multipole expansion.
The FMM is a scheme to group the particles into a hierarchyoagkb and to manage the
necessary manipulation of the associated expansionsisatclniear scaling is achieved.

An improved version of the FMM employing more stable recocee relations for the
Wigner rotation matrices and an improved error estimatebeas implemented. The im-
plementation is essentially parameter free: for a givenestpd accuracy the FMM spe-
cific parameters are determined automatically such thaidhgoutation time is minimized.
The achieved accuracy is remarkable and competitive.

In addition, the Continuous Fast Multipole Method (CFMMpeneralization of the FMM
for continuous charge distributions, has been implemesmedncorporated into the $zF
module of the TURBOMOLE quantum chemistry package.

Conductor-like Screening Model
COSMOilogic

The treatment of solute-solvent interactions in quantuendbal calculations is an im-

portant field of application, since most practical problesms dealing with liquid phase
chemistry. The explicit treatment of the solvent by placandgarge number of solvent
molecules around the solute requires apart from electralsic geometric relaxation of
the complete solvent-solute system yielding this appraattrer impractical. Continuum

solvation models replace the solvent by a continuum whidtdees the electrostatic be-
havior of the solvent. The response of the solvent upon tharigation by the solute is

represented by screening charges appearing on the bouswtdage between continuum
and solute. They, however, cannot describe orientatioer#gnt interactions between
solute and solvent. The particular advantage of the COSMandGctor-like Screening

Model) formalism over other continuum models are the sifigaliboundary conditions.

Within the HPC-Chem project COSMO has been implementechioHF and DFT meth-
ods (including energies, gradients and numerical secorivbdiges) as well as for the MP2
energies.
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E-mail: Reinhart.Ahlrichs@chemie.uni-karlsruhe.de

1 Introduction

The remarkable success of quantum chemistry, which coultiane been anticipated 30
or 40 years ago, is a good example for the growing importaficeientific computing.
This progress is clearly connected with the availabilitycofmputers with ever increas-
ing performance at ever decreasing prices. Hardware isammyaspect, however, equally
important for the impressive achievements of quantum cegynhave been software de-
velopments aiming at novel modeling methods and improvgdrahms, which together
resulted in great gains in efficiency. We thus have presaitlyur disposal an arsenal
of computational procedures which covers very accuratutations for small molecules
(10 to 20 atoms) up to more approximate methods applicaldristers with 1000 atoms.

Larger clusters are typically treated with DFT (densitydtional theory) methods employ-

ing functionals of GGA type (generalized gradient appradion), which have become

available only in the late eighties [1, 2, 3]. DFT-GGA cabttibns are more accurate than
HF (Hartree-Fock) and are applicable to a much wider clastefical compounds, such
as transition metal complexes for which HF very often failey are further 10 to 100

times faster than present-day HF routines and 100 to 10Gstiaster than HF implemen-
tations of the 60s, i.e. before the invention of direct HFgadures (DSCF = Direct Self

Consistent Field) [4], efficient integral prescreeningdB evaluation procedures.

The just given example demonstrates the benefits of softdemelopments but it also indi-
cates a problem: computational procedures often beconmetbsfter 5 to 10 years. This
then does not leave sufficient time for proper software exgging (to convert 'academic
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code’ to a product) required e.g. for parallelization. Aastimportant aim of HPC-Chem
was, therefore, to better implement the parallelizatioRdRBOMOLE to facilitate main-
taining the code and to increase efficiency, of course. Thesponding work was carried
out by project partners from Julich and is described in tiegpter 1V.

The main goal of TURBOMOLE work packages within HPC-Chem wsirther increase
efficiency and functionality of the program as specified mphoposal. The work plan was
focused on the development of procedures especially ¢éailtw the treatment of large
molecules. The results will be reported in this article. Ppinesentation of results will be
preceded by a short description of TURBOMOLE and a brief antof the theoretical
background to prepare for the method developments desddtieeeafter.

2 About TURBOMOLE

The Theoretical Chemistry group of Karlsruhe was (among)fitist to seriously test and

exploit the use of workstations for molecular electroniasture calculations when the new
hardware became available in the late eighties. In a sefidploma and PhD theses an
available HF code was adapted to UNIX workstations with tinete do large molecules

on small computers. Thanks to the algorithmic developmeintise excellent students M.

Bar, M. Haser, H. Horn and C. Kdlmel the ambitious projeeis completed successfully
and TURBOMOLE was announced in 1989 [6].

In the time to follow we have continuously added new featifrdgey appeared promising
for the treatment of large molecules. The present prograsiore 5.7 covers HF, DFT
[7], MP2 [8, 9] and CC2 [10] treatments of (electronic) grdustate properties such as
energies, optimization of structure constants, chemiuétissof NMR, and nuclear vibra-
tions. Electronic excitations and time-dependent progeere covered by linear response
procedures for DFT (usually called TD-DFT) [11], HF (RPA-HEZ2, 13] and CC2 [14].
The implementations include optimizations of moleculaudiure for excited states on the
basis of analytical gradients. For more details the reaxlesferred to the user's manual
(http://wwv. t ur bonol e. con.

Let us finally mention the two essential features of TURBOMEAhich are the basis of
its competitiveness and strength - in the not unbiased vielveoauthors. The codes ex-
ploit molecular symmetry for all point groups in most modijexceptions are groups with
complex irreps for NMR). This reduces CPU times by roughly dinder of the symmetry
group, i.e. by a factor of about 12 for;por D;,; , and a factor of 48 for Q Most other
programs take only advantage of Abelian groups, i.g, &d subgroups. The other spe-
cialty concerns the RI technique [15], for resolution of ithentity, which will be discussed
in the following section.



Theoretical background: HF, DFT, and the RI technique

3 Theoretical background: HF, DFT, and the RI
technique

3.1 HF and DFT

As a preparation for the subsequent sections it is appteptaabriefly sketch relevant
features of HF and DFT. These methods are of single refettgpeeand are fully specified
by the MOs¢; and their occupation numbers. For the sake of simplicity we consider
only closed shell cases with} = 2 for occupied MOs; (andn, = 0 for virtual MOsg,).
The total electronic energy of HF and DFT then includes the-electron termE(®), the
Coulomb interaction of electrong the HF exchang& and the exchange-correlation term
Exc of DFT

EHF = EO +J-K Q)
EppT = E® 4 J— Fxc. (2)

The DFT expression applies for non-hybrid functionals phlybrid functionals include
part of the HF exchange, i.e. a terfixK with 0 < Cx < 1. The evaluation o) is
straightforward and fast x ¢ is defined as a three-dimensional integral

Exo = / drfxe (p(r), [Vo(r)[2, ) @3)

pir) = 23 |oi(r)f (4)
where fxc specifies the actual functional employed. Eq. (3) is evallidty numerical
integration (quadrature) and the procedure implementddJlRBOMOLE is efficient and

numerically stable [7], the CPU time increases linearlyhwaitolecular size for large cases,
i.e. anO(N) procedure, as demonstrated below.

For DFT it remains to considef, which is defined as

7= [ drotroptea) i —ral . ©

The evaluation of/ is typically the most demanding part of DFT treatments. Wité
usual expansion af; in a set of basis functiong, (r)

$i(r) =Y fu(r)Cui (6)

9
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one gets the densifyand the density matriio

p(r) = > Duufu(r)fulr) (7
Dy = 2) CiCu (8)
and Z
7= 53 DuD(uls) ©)
VUK
K = EZD,,,.;DM,\(VMM/\) (10)
VUKA
(vpleA) = /fu(ﬁ)fu(ﬁ)fx(ﬁ)fn(?b)\7”1—7“2|ldT (11)

whereK is given for completeness. The MOs are now specified by thiéicieatsC,; and
the chosen basis set, of course. Optimizatio@afithin the variation principle yields the
HF and Kohn-Sham (KS) equations to be solved

OF

F, 12

= ap, (12)

Y FuCu = &Y SuCi (13)
M ]

whereS denotes the overlap matrix.

In HF one evaluatesg and K together, it is a great advantage of DFT thatloes not occur
in (2). Since onlyJ has to be treated other procedures - than (9) - can be coedjderd
this has been done from the very beginning of DFT grtieory.

3.2 RIltechnique

One of the successful procedures [16, 17] was to approximiatéerms of an auxiliary or
fitting basis P

p(r) = p(r) =Y _ CpP(r). (14)
P
The free parametelSy are obtained from a least squares requirement
<p—plp—p>=min (15)
which yields
Y <QIP>Cpr=<Qlp>. (16)
P

10
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It remains to specify the scalar product occurring in the ta® equations. A careful
analysis by Almlof et al. has identified the best choice [18]

< flg >= /f(rl)g(r2)|r1 — 1o~ tdr. a7)

Straightforward algebra then yields

1 ~ 1
J== ~J=-=- P P -1 18
5 <#lp> 2§<pl >< PlQ >7'< Qlp > (18)

where< P|@Q >~! denotes matrix elements of the inverse<ofP|@ > , and all scalar
products are understood to be as in (17). The form of (18) éad 1o the label RI (for
resolution of the identity) for this technique.

With the basis set expansion ferEq. (7), it then remains to compute as the essential term

<plP>=> "Dy < foful P> (19)
Vi

The formalO(N*) behavior of (9) is thus replaced by a forntN?) scaling in (19) lead-
ing to considerable savings in CPU time [15]. With the usuadice of Gaussian basis
functions one can neglegy f, if the corresponding centers are sufficiently far apart; the
number of significant product§, f,, thus increases for large molecules only(#). This
results in an asymptoti©(N?) scaling for Rl and conventional treatments - with a much
smaller prefactor for the RI technique.

Although the RI procedure had been implemented in various piegrams, its accuracy
had not been systematically tested since the programs colyccompute/ and not the
rigorous expression (9) fof. It was also unsatisfactory that the important auxiliamydu
tions P had not been carefully optimized.

We therefore started a major effort to carefully optimizeibary basis sets for atoms
across the periodic table and to document the errors cays#ee Rl technique [15, 19].
This firmly established reliability, it also increased a#fiecy since optimized sets do not
only guarantee more accurate results, they can often beeclmsaller than 'guessed’
bases. The Karlsruhe auxiliary basis set are now availabldifferent accuracy require-
ments for RI-DFT and also for Ri[20], RI-MP2 and RI-CC2 calculations [21, 22, 23],
which will not be discussed here - but these bases are madakdgdor other projects
within HPC-Chem. There appear to be no other auxiliary beetis which are comparable
in accuracy and efficiency.

3.3 Gradients

Until now we have considered so called 'single point’ cadtigins which yield the molec-
ular electronic structure (occupied M@s) and the electronic energy for given nuclear

11
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coordinates. Itis not possible, however, to determine thstimportant molecular proper-
ties efficiently on the basis of single point calculations.a example consider molecular
equilibrium geometries, i.e. structures of one (or morejners of a molecule defined as

=G =
where¢ denotes structure constants, e.g. coordinates of nuateat&mpt to locate struc-

tures by single point calculations would hardly be feaséien for small molecules with
ten degrees of freedonfi=10.

E¢ 0 (20)

A solution to this problem was achieved by analytical gratimethods, which evaluate
E¢ simultaneously for all degrees of freedom [24]. The compareof E¢ is surprisingly
simple in principle, if one recalls that E depends explcdhly on¢ (location of nuclei
including the centers of basis functions) and on the demsdyrix, i.e. £ = E(&, D),
whereD depends implicitly org. Thus

dE  OE N OE 0D
¢ 0¢ 0D o¢’
The first term can be straightforwardly treated since itscstire is similar to the evaluation
of F in a single HF or DFT iteration, only the effort is about thtiees larger. The second
term can be transformed since one has solved a HF or KS equmfore, i.e. one exploits
that MOs¢; have been optimized and are orthonormal
OF dD
—— . = —trWS§¢ 22
oD de ’ (22)
whereS¢ denotes the derivative of the overlap matrix akdthe 'energy weighted’ density
matrix

(21)

WVH =2 Z €iCuiCus- (23)

With the capability to comput&? it is a standard task to locate in an iterative procedure
structures that fulfill (20):

1. starting from a reasonable gué&gdor &

2. solve the HF or DFT equations to get optimized MOs

3. computer?

4. relax the structurg — &, e.g. by conjugate gradient methods
5. repeat until convergence.

The development of efficient gradient procedures togethigr ngliable and stable relax-

ation methods was decisive for the success of quantum ctrgn8nce convergence of the
relaxation procedure is typically reached withif2 cycles (often less, rarely more), and
since the computation df¢ is (often much) faster than a DFT or HF calculation, struetur
determinations, which are the bread and butter of quant@midiry, have become routine.

12
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4 The MARI- J (Multipole Assisted RI-J) procedure

It has already been mentioned that the Rmethod is anO(N?) procedure for large
molecules, e.g. more than 100 atoms, whereas the other d@amgactomputational task,
the evaluation o 'x ¢, scales a®)(N). It was the aim of this project to increase efficiency
of the RI-J procedure by exploiting the multipole expansion for the IBmb interaction
of (non-overlapping) charge distributions. Since detailthe rather technical derivations
have been documented in a publication [25] we will only sketar approach.

The multipole expansion deals with the Coulomb interaatibinvo charge distributions;
and p,, provided they do not overlap. Let be centered around A ang around B. We
then compute the moments @f as

oh = / p1 (1) O (1 — A)dr (24)

Oum(z) = 7mle(cose)e_im¢ (25)

whereP,,, denote associated Legendre polynomials, and similarly)E;rreferring top,.
One then gets

<pilpa> = ZQ}?‘anH,mM(R)Qﬁ (26)
Likm
[ —|m|)! ‘
My, (R) = %Bm(cos 6)e'™? (27)

where R denotes the vector pointing from A to B2 = B-A, and the angleg and ¢ of
respective vectors are defined in an arbitrary fixed cootdiegstem. Eq. (26) effects a
separation of Coulomb interactions betweerandp, if they do not overlap.

The computation ok p|P >, Eq. (19), is the only demanding task within RJ-and we
apply the multipole expansion to accelerate the evaluakonthis purpose we decompose
p into contributions associated with nuclei N, which are &ddally characterized by an

extensiore
p=2_pwe (28)
N,e

We then compute the momerﬁzﬁf from (24), where we have pyt; = pyo and have
chosen for A the position of nucleus N. The auxiliary funo8a® are by construction
atom-centered and are further chosen with angular behasgiepherical harmonics; the
evaluation of the corresponding moméﬂt’j{‘i’e is thus trivial.

The crucial point of this procedure is the decompositior),(8Bich is based on a detailed
consideration of products of basis functiofyg,,. Depending on the actual case the product

13



DFT Functionality in TURBOMOLE
University of Karlsruhe

is associated with the nuclei N at which the steeper funétieentered, and an appropriate
extension established. One then has to look at individugly .|P >. If the charge
distributionspy . and P are well separated, for which we have introduced a new arad str
test, one uses the multipole expansion, the so called 'far {leF) contribution

< el P >EE= Y Mo jmen (R)QP (29)

where R points from nucleusV to P. For the remaining terms one cannot apply this
formula since the charge distributions penetrate and osedase for this 'near field’
(NF) part the conventional integral code:

< pn,|P >NfF= usual integrals (30)

Our aim is to define parameter sets for the MARMethod that yield the shortest CPU
times while maintaining errors due to the multipole expansiat a minimum level, be-
low the errors of the RIFapproximation. We specify two parameter sets, which inkar t
shortest CPU times while maintaining a minimum precisiang@ach calculated molecule
corresponding to £10°¢ and 1x10~* E,, respectively. They are hereafter referred to
simply as the high- and low-precision sets. Table 1 listererobtained for the largest
molecules studied, specified in more details below. Theeace evaluated by comparing
converged total MARD energies with results of full RJ-calculations. Using the high-
precision parameter set yields errors belowx110-¢ E;,, which corresponds to no more
than 1.0<10~° E,, per atom for the largest molecules in the series. As expetttegmall-
est errors, less than1l0~7 E,, are observed for two-dimensional graphitic sheets and for
relatively low-density zeolite clusters. Using the lowepision set gives errors lower than
1x10~* E;,, which amounts to no more thax10 7 E;, per atom for the largest systems.
For the insulin molecule, the high-precision MAREalculation yields total energy differ-
ing 1.3x10~% E;, from the full RI-J calculation. Surprisingly, the low-precision calculatio
yields a difference of only 2:210~8 E;,. This is a similar result as for the zeolite fragments
and shows that the low-precision MARIealculations are accurate enough for most appli-
cations. Only for dense three-dimensional systems, oesystith very diffuse basis sets
one should consider using the high-precision parameter8etconclude that the errors
introduced by the multipole expansions are negligible carag to the errors of the Rl-
approximation itself, incomplete basis sets and numeimtagrations.

4.1 Demonstrative tests

This section describes the application of the MARIethod to some model systems:
graphitic sheets, zeolite fragments and insulin moleckigufre 1). We believe that this
choice of the systems corresponds more to the problems fatnethods are typically
applied to than the usual one and two dimensional model systesed to test th@ (V)
algorithms.
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Figure 1: Schematic draw of the insulin molecule used foraalezulations.

All DFT calculations employ the Becke-Perdew (BP86) exd®aonorrelation functional
[26, 27, 28]. Unless specified otherwise we use split-vadrasis sets with polarization
functions on all non-hydrogen atoms, denoted SV(P) [29] emdesponding auxiliary
bases [15, 19]. To determine the differences of total easrigetween the MARJ-method
and full RI-J treatment the DFT energies are converged better tha01!° F}, and the
numerical integrations use grid 3 (see Ref. [7] for detaif®)r the timing runs the energy
convergence criterion is set to<10-% Ej, and numerical integrations use grids m3 and
m4[7, 19]. Whereas grid m3 is recommended for smaller mddscgrid m4 should be
used for larger ones. All calculations are performed on anJ6RO0 workstation with a
PA RISC HP785 processor (750 MHz) and 6 GB main memory.

4.1.1 Model systems

The 2-D series of graphitic sheets;,,&Hg,, n = 2, ...,12, all in Dg, symmetry, have C-C
and C-H bond lengths set to 1.42 and i,Oespectively. These are similar models as used
by Strain et al.[30] and Pérez-Jorda and Yang[31] to agedsrmance of their multipole-
based methods. The largest sheet used in this stugyH¢, contains 12240 basis and
32328 auxiliary basis functions.
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Table 1: Selected results for the largest model systemsestudNumber of atomsN), number of basis
functions and auxiliary basis functiond/{;), CPU times (min) per iteration for the NE\E) and FF {&r)
portions of the MARIJ calculations and the full RIHreatment{r,.;), and absolute errors in the total energies
(En) compared to the full RD calculations A Eya). Results for high- (hp) and low-precision (Ip) MARI-
calculations (see text for details). For comparison CPUniys for grid construction (grid m4) are given

(tgrid)-

Graphitic Zeolite Insulin
sheets fragments  molecule
Composition Ge4H7o SigsOa16Hss  CoseH3s3076N65SZN
Symmetry Rn C: C,
Nat 936 360 787
Nis 12240 4848 6456
Nyt (aux) 32328 12072 16912
tnr (hp) 4.9 115 35.1
trr (hp) 2.3 1.26 3.4
tne (IP) 4.1 8.1 25.3
ter (Ip) 1.6 0.9 2.3
trIJ 33.7 58.6 147.8

AEwa (hp) 1.6x10%  6.3x10% 1.3x10°8
AFwa (Ip)  6.1x10°  2.6x107 2.2x10°8
tgria (M4) 18.1 30.3 479

The fragments of pure-silica zeolite chabazite are coostdufrom the experimental crys-
tal structure [32]. We take a unit cell consisting of a doublemembered silica ring unit
and create zeolite fragments containing between one ahtisigh units, all in €symme-
try. The dangling Si-O bonds are saturated with hydrogemsatolhe coordinates of the
insulin molecule (Figure 1), [33] in Csymmetry, are taken form the PDB database [34]. It
comprises 787 atoms, 6456 basis and 16912 auxiliary basitidms. Table 1 summarizes
the largest molecules calculated in this study. The coatdmof all structures are available
ininternetundeft p://ftp. chem e. uni - karl sruhe. de/ pub/ marij .

4.1.2 Timings and scaling

First, we would like to comment on the often cité{ N3) computational effort of the
RI-J method due to the density fitting step, i.e. solution of E@)(IThe TURBOMOLE
implementation of the RJ-method is based on a very fast Cholesky decomposition of the
positive definite matrixc P|@Q >. For symmetric molecules the times needed to calculate
the fully symmetric part of two-center repulsion integral®|Q > and following Cholesky
decomposition are negligible. For the insulin moleculew@ symmetry, 787 atoms and
16912 auxiliary basis functions this step takes approxtg&0 min, and is done only once
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at the beginning of the SCF procedure for bothJRind MARI-J calculations. For most
of the practical calculations the cost and scaling behafitre RI-J method is determined
by the calculation of three-center Coulomb integrals. FayJarge systems methods can
be implemented which reduce the computational cost of theitifitting step even below
O(N?) [35, 36].

Figures 2 and 3 show CPU times per SCF iteration for the syse&sias studied using the
RI-J and MARI-J methods and Table 1 summarizes results for the largest mekecd~or
comparison, the times needed for evaluation of exchangelation energies with grids
m3 and m4 are also shown. These timings do not include the obsihe grid formation,
which is done only once at the beginning of the SCF procedtakle 1 shows timings of
this step for the largest molecules. In most cases the aiplicof the MARIJ method
allows one to reduce the computational effort for the Couldderm to a level comparable
to the calculation of the exchange-correlation energy. NIA&RI- J method shows the best
performance for two-dimensional graphitic sheets anditeethgments. For the largest
graphitic sheet the CPU times are reduced 4.7 and 5.9 tinmdsdgh and low-precision
parameters sets, respectively, as compared to the fullldaleulation. A similar reduction
of the CPU times (factors 4.6 and 6.5) is observed for thesktrgeolite fragment. For the
insulin molecule we obtain 3.8 and 5.3-fold speedups.

For all systems studied the “crossover point” with full Rireatment is reached already for
the smallest systems. For graphitic sheets and zeoliteniats the MARIJ calculations
are already faster at about 250-350 basis functions, depgmesh the accuracy. A few
test calculations on even smaller systems show that the MA®RIes not introduce any
significant overhead compared to the full Rtreatment.

The influence of the required precision on the CPU timingglier MARI-J method de-
pends on the system studied. For graphitic sheets, zeblgtecs and diamond pieces the
difference between CPU times for high and low-precision MARcalculations is about
30%.

Table 1 also shows a comparison of the CPU times for NF and Riops of the Coulomb
calculations for the largest systems in each series. Aghaanly a few percent of the
three-center ERIs are evaluated analytically the NF pdktdsiminates the calculations.
For the molecules with Csymmetry the FF part of the MARI-calculations takes 10%
or less of the CPU time for the Coulomb part. For symmetricanoles the CPU times
for the FF part increase to 20-30 %. The current implemeoriadf the MARI-J method
does not fully take advantage of symmetry in the calculatiohthe FF part. Symmetry
implementation in all parts of the MARI-algorithm should reduce these times but would
only slightly influence the total calculation times.

We note, that all calculations reported here employ thedstahSCF procedure, and the
diagonalization of the Fock matrix is not a dominant stepr the insulin molecule the
average CPU times per SCF iteration are 42, 17, and 39 or 28miRutes for the diago-
nalization, exchange-correlation, and high- or low-ps&ri MARI-J steps, respectively.
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, Graphitic Zeolite
Calculation
sheets fragments

Full RI-J 2.00 2.11
MARI-J Total 1.44 1.54
high precision NF 1.41 1.54
FF 1.49 1.52

MARI-J Total 1.47 1.56
low precision NF 1.45 1.57
FF 1.51 1.45

XC (m4) 1.23 1.33

XC (m3) 1.23 1.34

Nyist 1.09 1.20

Table 2: Scaling exponents of different steps for the comtjrt of the Coulomb and exchange-correlation
(grids m3 and m4) terms. For comparison the scaling expsredrignificant shell-pairs of basis functions
(IV4ist) are also shown.

35
——RI-J
30 —&— MARI-J (hp)
—e— MARI-J (Ip)
=X = XC (m4)
25 4| - X- XC (m3)
5
£ 20
)
£
=
> 15 4
o
(8]
10
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0. = = T

0 2000 4000 6000 8000 10000 12000

Number of Basis Functions

Figure 2: CPU time per SCF iteration for calculation of theu®onb term versus the number of basis
functions in a series of graphitic sheets;,,Hg,, n = 2,...,12. Results for full RIJ calculations and
MARI-J with high- (hp) and low-precision (Ip) parameters sets. €mmparison CPU times needed for
evaluation of exchange-correlation energ({) with grids m3 and m4 are included.
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Figure 3: CPU time per SCF iteration for calculation of theu@donb term versus the number of basis
functions in a series of zeolite fragments. Results forRHU calculations and MARDB with high- (hp) and
low-precision (Ip) parameters sets. For comparison CPegineeded for evaluation of exchange-correlation
energy X C) with grids m3 and m4 are included.

Table 2 shows scaling exponents of different calculati@pstfor the systems studied.
They are obtained by a logarithmic fit using results for thrgdat molecules in each se-
ries. As expected the exponents for the fullRtalculations are close to 2.0 and are larger
for dense three-dimensional systems than for graphitietshend zeolite fragments. The
scaling exponent is reduced to about 1.5 for MARIand that forE'x is about 1.3, i.e.
we have nearly linear scaling. As expected, the scalingreampis of the R calculations
are closely related to the scaling exponents of numbersguifgiant products of basis
functions comprising the electron density as shown in TablEhe thresholding procedure
applied to multipole moments, as described in [25], sigaiftty reduces the forma)(V?)
scaling behavior of the FF part of the MARIealculations. The scaling exponents are low-
ered by more than 0.5. For zeolite fragments and diamonegpielcanging from high- to
low-precision parameter set lowers the scaling exponemtthe FF part. For graphitic
sheets the scaling exponent increases slightly when goong fiigh- to low-precision pa-
rameters. It is difficult to sayw priori whether increasing the precision of the MARI-
calculations causes also increases in the scaling expohte FF part.
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Figure 4: Comparison of timing for various parts of gradieaitulations for graphitic sheets

4.2 MARI-J Gradient evaluation

Geometry optimization require a succession of energy aadignt calculations, and it is
highly desirable to take advantage of the multipole expansgi both steps. The imple-
mentation of the MARIJ gradient is a demanding technical task. We will thus not go
into the details [37] and will merely report the results of efforts. In Figure 4 we show

a comparison of CPU times for various parts of the gradieltuéations for the case of
graphitic sheets. The state of affairs is even better thath&®energy calculation: timings
for the Coulomb ternmy/ are reduce by a factor of 15, they are now comparable tdife
term.

5 DFT second analytical derivatives

We have already pointed out that first order derivatiZ&scan be computed faster than
the energy in HF or DFT, and that this is vital for daily rowim theoretical treatments of
molecules. Even more useful would be the knowledge of sedendatives, the so called
Hessian. ,
d°E
H, = .

(31)
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The Hessian determines if a given stationary point, Eq., (@) local minimum specifying
an isomer, or a saddle point which characterizes a transstiate of a reaction, provided
only one eigenvalue dH is negative. From the Hessian one also gets quite direatly th
frequencies of infra-red (IR) and Raman spectra within t@rtonic approximation.

The explicit expression faH,, is best obtained by differentiatir%, Eq. (21) to Eq. (23),
once more with respect to a second coordinate

d (OE
= — _ €
Hey = 4 ( 5e ~ WS ) : (32)

The detailed formulae, which are quite lengthy, need noteonus here; the most impor-
tant aspect of (32) is that one now has to compute the peduvifas, i.e. d%C,,Z- = Cfi.
This leads to the so called coupled perturbed HF or KS equa{lcPHF or CPKS) which
are typically solved in the following way. One expressesgbédurbed MO in terms of the
unperturbed ones with the help of a transformation mafiix

Cfi = Z Cqucfi (33)
q
which is determined by HF-type equations
(& — ) Us — 4G, [U¥] = RHS, (34)
G [MX] = Z CupCugCrrCis - {(vplEA) + fxcvumn} MY (35)
TSVUKA

1 [ 0

fXCu;m)\ = 5 a—p2¢1/¢,u¢n¢)\d7— (36)

The technical details are complicated but the essential pothat one necessarily has to
solve a CPHF or CPKS equation for every degree of freedone. the evaluation of the
Hessian is at leagt times as expensive as a single point or a gradient calcola8mcef
increases linearly with molecular sizé= O(N), the computation of the HessianN?).
This isO(N) more than for the gradierd¢ but one also gets O(N) more information. We
have demonstrated above that energy and gradient catmdatan be done with about
O(N) effort - but second derivatives can presently only bated for molecular sizes for
which the reduced scaling does not apply.

The challenge in the development of DFT or HF implementatiisnnot only computa-
tional demands, it is also algorithmic complexity, since ogally has to cope with lengthy
expressions. Our plan was originally to start from the sdcderivatives HF code of
TURBOMOLE and to add DFT. It was decided, however, to restmacthe existing code
which would have lead to efficiency problems for systems wilor more atoms.

Our implementation of DFT second derivatives has been itextim a publication together
with some applications to demonstrate efficiency and acgyB8]. The code shares some
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general features with other programs, e.g. GAUSSIAN, sgdntagral direct and multi-
grid techniques for the CPKS equations, and inclusion oghederivatives in the quadra-
ture. Other features to increase efficiency appear to beiariaf TURBOMOLE.

The iterative solution of CPKS is based on a preconditiormgugate gradient method
with subspace acceleration, i.e. all solution vectors aeelbped in a single subspace
which is enlarged in each iteration. This guarantees googergence: typically four to
six iterations suffice to push the residual norm below thgetaof 1075.

We decompose the spacefointernal coordinates into irreducible subspaces (of thiemo
ular symmetry group). This reduces memory and disc stoegenements since occurring
matrices are symmetry blocked, which also facilitatesineat of CPKS and enhances ef-
ficiency. Itis a further advantage that the evaluation oHkesian can be limited to certain
irreps, e.g. those corresponding to IR- or Raman active siode

All following results were obtained by force constant cddtions using the new TURBO-
MOLE module AOFORCE with the BP86 DFT-method. We employed an SV(P) (split
valence plus polarization except at hydrogen) [29] bagisl®egive an impression of com-
putational cost for systems of different size and symmateydisplay in Table 3 total CPU
times (wall times do not differ by more than 2 %) and their magbortant components
in benchmark calculations on several hydrocarbons. Thecuotds treated are n-alkanes
(of formulaCsH15 to C37H7g), planar graphitic sheets (which results in compositioosf
CsHg to Cu5H;5), and diamond likep? carbon clusters (starting with adamanta@ig,H s,
and creating further clusters by adding larger sheets fnroesale up t&s; Hs,). The alka-
nes were treated in thdik, structure, the aromatic sheetdm,, and the diamond clusters
in T,. The CPKS equation solver needed four iterations for edanaland diamond clus-
ter and five iterations for each aromatic sheet, thus mat@gé/ | had to be formed six
times for each of the first and seven times for the latter camgs. As can be seen, the
total CPU time increases approximately@gV?) for larger systems, which is due to the
evaluation of the Coulomb part @&[A/X ]| discussed above Eq. (35). The effort for first
weight derivatives needed in boR{¥) and E®©) 1 is negligible. For smaller molecules,
the DFT quadrature i) is clearly more expensive than the differentiated fourteen
integrals - in larger systems like,sH;s these two contributions exhibit similar timings.

As a demonstration for the 'IR-only’ and 'Raman-only’ optizve have treated fullerene
Ceo, again on AMD-Athlon, 1.2 GHz:

Ceo (1), 900 BF all irreps t=3.40 h
Ty (IR) t=1.21 h
A, andH, (Raman) t=1.61h

LEX©) = 28 p() = 9F which is a contribution to th&H S, in Eq. (34)
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Table 3: CPU times and its most important constituents (iarsloon AMD-Athlon (1.2 GHz, 768 MB
RAM) for BP86/SV(P) force constant calculations of varialasses of hydrocarbong.denotes the number
of degrees of freedom am¥gr the number of basis functions. For the definition of the patéir CPU time
contributions see text.

molecule f  Nge G[MX] FO EXO total
linear alkanes(s,)
CsHis 45 99 0.04 0.02 0.03 0.09
Ci3Hog 117 251 0.54 0.16 0.24 0.95
Co1Hyy 189 403 2.27 041 0.68 351
Co9Hgg 261 555 560 0.82 140 8.32
Ca7Hre 333 707 10.37 146 2.37 15.47
aromatic sheetd¥y;)
CeHg 30 102 0.02 0.01 0.02 0.04
CisHig 72 260 036 0.13 0.23 0.73
CsoHis 126 478 2.76 0.58 1.11 458
CasHig 192 756 1221 190 340 18.24
diamond clustersI(;)
CioHig 72 182 0.07 0.04 0.03 0.15
CosH3o 168 454 163 0.38 045 2.64
Cs1Hso 303 869 1348 252 247 20.48

5.1 Implementation of RI-J for second derivatives

We have so far considered the computation of analyticalrs®derivatives in general and
have pointed out that the most demanding task is the solaiddPKS equations. In
each CPKS iteration one has to evaluate a Coulomb te¢and for hybrid functionals an
additional exchange tert), which dominates CPU times. The computational effort can
be reduced if/ is treated by the RIF technique for non-hybrid functionals. This concerns
actually only the first term in Eq. (35), which includes a Goab matrixJ[M]

TulM] = > (vplrA) My (37)
KA
M = CMC! (38)
whereC is the MO coefficient matrix from Eq. (6). With RI-we get
TulM] % J,uM] = Y (vu|P)(P|Q) ™ (Q|kA) Moy (39)
PQkKA

The replacement off by J requires 'only’ to import the RIf machinery into the
AOFORCE module.

Our implementation of RIF for second analytical derivatives is described in a pubbca
[39], which documents reliability and efficiency of Hlfor this purpose. CPU times for
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the evaluation of/ are reduced to about 10%, which is not as spectacular as évgy¥en

or gradient calculations. The reason for this is simple: @RKS solver treats a set of
CPKS equations simultaneously and two-electron intedthés most expensive part) are
evaluated only once for the entire set. Total timings arécglly reduced by a factor 2.5,

the bottleneck is now in the treatmentBk¢, i.e. in the second term in Eq. (35), which is
believed to be efficiently implemented.

5.2 Demonstrative tests
5.2.1 Indinavir

For this more realistic systenC{sH47N504, f=270,C; symmetry) we carried out BP86
partial RI-J DFT second nuclear derivative calculations. On Intel Xedd GHz) com-
puters, we obtained the following timings:

SV(P), 769 basis functions Joue[MX]: 3.2 tot. CPY,,: 25.7 h
TZVP [40], 1182 basis functions J,,.[MX]: 8.8 h tot. CPY,,: 74.2 h

Indinavir has some floppy modes with frequencies below 10 tnThis requires a careful
structure optimization since otherwise the computed feegies can be imaginary, i.e.
~ 15 cm~'. We recommend to include derivatives of quadrature weightle structure
optimization to make sure the energy minimum has been aetyiacated and to avoid
spurious imaginary frequencies.

5.2.2 Cyanocobalamin

As a last example we report timings for the computation ost@nd derivatives of cyano-
cobalamin (vitamin B12, E3HgsN1,014,PCo, f=537,C; symmetry). Using again an SV(P)
basis, 1492 basis functions, and grid m4 the calculatiok 1&days and 22 hours. In this
case it was decided to use grid m4 (instead of the coarsemuBid since for systems
exceeding about 50 atoms we generally recommend to use gfideThe RI-/ part re-
quired just 13% of the total time. Matrix algebra, e.g. Eg8)(&ccounts only 3% of the
CPU time.

In Figure 5 we present a comparison of the experimental sbéite infrared absorption
spectrum [41] with the one computed in this work. For thisgmse we broadened the
computed lines by 30 cm and scaled globally the intensities to roughly match experi
ment reported in arbitrary units. The line at 2152 ¢ngorresponds to the CN stretch of
the central CoCN group in good agreement with experiment27&1 cm! we find an
intramolecular ©- -H-O mode, around 3170 crh are various NH stretches, which are
all localized at the molecular surface. These modes aretaffeby intermolecular inter-
actions causing frequency shifts and broadening, as shgwemjeriment. Even the peak
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Figure 5: Comparison of the experimental solid state altgwrinfrared spectrum of cyanocobalamin (solid
line) [41] with the one computed in this work (dashed line).

at 1754 cnt!, again at the surface of B12, should be affected by packifegtst The
detailed assignment of vibrations resulting from the tb&oal treatment thus shows that
information provided by solid state spectra is limited. STbonclusion also holds for the
IR spectra reported in polar solvents@, ethanol and 75% glycerol [42]. There are three
peaks denoted B, C and D between 1530 and 1680 cin this range we find numerous
modes including surface modes affected by solvation.

6 Summary

We have developed and implemented the MARtechnique in the TURBOMOLE mod-
ulesRIDFT andRDGRAD, which serve to optimize wavefunctions and to compute ®rce
on the nuclei within DFT. This has considerably reduced tierteto deal with the in-
terelectronic Coulomb repulsioh, which was the dominating step before. Since larger
molecules - with more than 100 atoms - are mainly treated by, BRd since most CPU
time is typically spent in the moduld3IDFT andRDGRAD, which are required in the
iterative procedure to determine molecular structureshexe greatly increased the ef-
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ficiency of TURBOMOLE. The gains are especially pronouncadldrger systems with
more than 300 atoms, and up to 1000 atoms are now feasiblEjgaes 2-4.

The other important project concerned the extension of tfonality. The module
AOFORCE can now deal with second analytical derivatives within DFFfiis was not
implemented beforeAOFORCE was completely redesigned, it is now efficient for closed
and open shell states treated by HF and DFT. As demonstrhtee asee e.g. Figure 5,
one can now even compute IR- and RAMAN-frequencies for maéscwith more than
100 atoms.

All timings reported in this work and the corresponding peditions are conservative in the
following sense. Shortly after the HPC-Chem project endgdrbdirect connection with
it, the present authors have redesigned the integral siiomputing< p|P > in RI-J
energy and gradient calculations, which are also calletl otleer modules employing the
RI technique. This has increased efficiency, CPU times ferNRk part of MARI-J are
reduced by 30 % compared to the timings reported in Table 1.
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1 Introduction

During the last decade density functional theory (DFT) hesime a very efficient tool for
electronic structure calculations. DFT methods were sagfodly applied to many prob-
lems in different fields ranging from material science torolstry and bio-chemistry. Most
of the applied methods use either plane waves or Gausgnfiyctions for the expan-
sion of the Kohn-Sham orbitals. Both types of basis fun&ibave their own merits.
Plane waves provide from the beginning an orthogonal basa&l are independent of the
atomic positions which makes the force calculation verys@nMoreover, the calculation
of the Hartree (Coulomb) potential can be efficiently perfed by fast Fourier transforma-
tion (FFT). Unfortunately, there are also some disadvagaghe strong variations of the
wave function close to the nuclei require a huge number afgisaves. Atomic pseudo
potentials are usually employed to alleviate this problemnt, for many applications the
number of plane waves is still large. Furthermore, the wisplece is equally filled with
plane waves and therefore each pointin space is descrilbedheisame accuracy, but this
feature of the plane waves turns out to be rather inefficiensystems of low density like
biological systems where the homogeneous description ptyeand atom-filled regions
results in a waste of basis functions and thus computer tByecontrast, Gaussian-type
functions localized at the atomic centers are much mordesitiin this respect, since they
provide a more compact description of the atomic chargeitiesiand basically there is no
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need to employ atomic pseudo potentials. Neverthelessssgmitype functions have also
some disadvantages. The force calculation is more conigticéhe Hartree term usually
requires the computation of a large number of multi-cemteagrals, and possibly basis set
superposition errors have to be considered. The Gaussiae plaves (GPW) method [1]
tries to combine the merits of Gaussian-type functions dadepwaves. In that way it be-
comes feasible to build the Kohn-Sham operator matrix witbmputational cost scaling
linearly for a growing system size.

A new implementation of the GPW method, callediQkKSTEP, was performed within the
framework of the HPC-Chem project [2]. The goal of the projas to implement the
GPW method in a fully modular and efficiently parallelizedrmar. QJICKSTEP is part

of the open source project CP2K [3, 4] which ensures the goation of the development
even after the end of the HPC-Chem project. The next sectibpnovide a short outline
of the GPW method followed by a description of the pseudomi@ks and the Gaussian
basis sets employed byu@CKsSTEP. Finally, the accuracy and the efficiency of the new
parallelized QuicksTEP implementation will be shown.

2 Gaussian and plane waves method

The energy functional for a molecular or crystalline systertne framework of the Gaus-
sian plane waves (GPW) method [1] using the Kohn-Sham fatian of density func-
tional theory (DFT) [5, 6] is defined as

E[n] =E"[n] + Ev[n] + EH[n] + EXC[n] + E" (1)

Z ~ Ve (r)
+ZPW () [ViEF(r) ()
+§ w (Pu(P) Vil e, ) 0, ()
+2WQ;%

+ / n(r) excln] dr

T2 #ZARIZI—ZEJ\

whereE[n] is the kinetic energyE"[n] is the electronic interaction with the ionic cores,
E"[n] is the electronic Hartree (Coulomb) energy ditf[n] is the exchange—correlation
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energy. The interaction energies of the ionic cores withrgd®Z; and positionsR; is
denoted byE". The electronic interaction with the ionic cores is desediby norm-
conserving pseudo potentials with a potential split in algartV,57(r) and a fully non-
local partViP(r, ') (see section 3).

The electronic density

n(r) =Y Pupu(r)eu(r) (2)
7%
is expanded in a set of contracted Gaussian functions

ou(r) = Z dingi(T) 3)

where P, is a density matrix elemeni;(r) is a primitive Gaussian function, arnf}, is
the corresponding contraction coefficient. The densityrid® fulfills normalization and
idempotency conditions

Tr(PS) =N (4)
PS = (PS)(PS) (5)

whereS is the overlap matrix of the Gaussian basis functions

Suv = (¢ulr)[[ev(r)) (6)

andN is the number of electrons.

In the original work by Lippert et al. [1] the same auxiliargdis approximation was used
for the Hartree and exchange-correlation energy. It wasulise relax this constraint
and use two independent approximations to the density,tddmdG) for the Hartree
energy andi(r) for the exchange-correlation energy. Both approximatetedaic charge
densities are functions of the density matx

3 Pseudo potentials

The GPW method works like plane waves methods with atomiggispotentials, since an
expansion of Gaussian functions with large exponents isemigadly not efficient or even
not feasible.

The current implementation of the GPW method uses only tkeqms potentials of Goe-
decker, Teter, and Hutter (GTH) [7, 8]. The separable dpate GTH pseudo potentials
consist of a local part
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VieP(r) = _ Zion Cerf () + ZC’PP (\/_a ) exp [ (") } (7

with

pp_ 1

V2rPP

and a non-local part
ZZ (r o) by (o™ [ 7) ®

with the Gaussian-type projectors

m m(a 7— 1 r ?
(r | ) = NY™ ()22 exp [—5 (—)]

T

as shown in Eq. 1 resulting in a fully analytical formulatihich requires only the defi-
nition of a small parameter set for each element. Moreoker(XTH pseudo potentials are
transferable and norm-conserving. Nevertheless, plamesvaethods employ this pseudo
potential type only for reference calculations or if no ethadiable pseudo potentials are
available, since this type requires relative high cut-afixes, i.e. more plane waves. How-
ever, in the framework of the GPW method there are no sucldtimans, since all contribu-
tions are integrals over Gaussian functions which can ilzed analytically. Therefore
the GTH pseudo potentials are particularly suited for theewsh QUICKSTEP and that is
why QUICKSTEP only supports GTH pseudo potentials, currently. The GTHigegoten-
tial parameters were optimized with respect to atomic la¢teon wavefunctions obtained
from fully relativistic density functional calculationssing a numerical atom code. The
optimized pseudo potentials include all scalar relatiwisbrrections via an averaged po-
tential [8], because the consideration of relativistieef§ is indispensable for applications
involving heavier elements. A database with many GTH pseadential parameter sets
optimized for different exchange-correlation potentialalready available [3]. It provides
all parameter sets formatted for a direct usage withCBSTEP and it contains parameter
sets for almost the whole periodic table based on the loa@itleapproximation (LDA).
Moreover, there are also many optimized parameter setfiéoexchange-correlation po-
tentials based on the generalized gradient approximaB&¥) of Becke, Lee, Yang, and
Parr (BLYP) [9, 10, 11], Becke and Perdew (BP) [9, 12], HarshteCohen, Tozer and
Handy (HCTH/120, HCTH/407) [13] and Perdew, Burke and Erha&(PBE) [14]. The
following GTH pseudo potentials are currently available:
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LDA:
H(1), He(2), Li(1), Li(3), Be(2), Be(4), B(3), C(4), N(5),(®), F(7), Ne(8), Na(1), Na(9),
Mg(10), Mg(2), Al(3), Si(4), P(5), S(6), CI(7), Ar(8), K(1K(9), Ca(10), Ca(2), Sc(11),
Sc(3), Ti(12), Ti(4), V(13), V(5), Cr(14), Cr(6), Mn(15), M7), Fe(16), Fe(8), Co(17),
Co(9), Ni(10), Ni(18), Cu(1), Cu(11), Zn(12), Zn(2), Zn(2Ba(13), Ga(3), Ge(4), As(5),
Se(6), Br(7), Kr(8), Rb(1), Rb(9), Sr(10), Sr(2), Y(11),3J(Zr(12), Zr(4), Nb(13), Nb(5),
Mo(14), Mo(6), Tc(15), Tc(7), Ru(16), Ru(8), Rh(17), RR(®d(10), Pd(18), Ag(1),
Ag(11), Cd(12), Cd(2), In(13), In(3), Sn(4), Sh(5), Te(§J), Xe(8), Cs(1), Cs(9), Ba(10),
Ba(2), La(11), Ce(12), Pr(13), Nd(14), Pm(15), Sm(16),1E)(Gd(18), Th(19), Dy(20),
Ho(21), Er(22), Tm(23), Yb(24), Lu(25), Hf(12), Ta(13), (8, W(14), W(6), Re(15),
Re(7), Os(16), Os(8), Ir(17), Ir(9), Pt(10), Pt(18), Au@u(11), Hg(12), Hg(2), TI(13),
TI(3) Pb(4), Bi(5), Po(6), At(7), Rn(8)

BLYP:
H(1), He(2), Li(3), Be(4), B(3), C(4), N(5), O(B), F(7), N&)( Na(9), Mg(10), Al(3) Si(4),
P(5), S(6), CI(7), Ar(8), Ca(10), Ti(12), V(13), Cr(14), NIb5), Fe(16), Co(17), Ni(18),
Cu(11), Zn(12), Ge(4), Br(7), Zr(12), I(7), Ba(10), Ba(2y(14)

BP:

H(1), He(2), Li(3), Be(4), B(3), C(4), N(5), O(6), F(7), N&( Na(1), Na(9), Mg(10),
Al(3), Si(4), P(5), S(6), CI(7), Ar(8), Ca(10), Sc(11), IR), V(13), Cr(14) Mn(15),
Fe(16), Co(17), Ni(18), Cu(11), Zn(12), Zr(12), Cs(1), Ds(

HCTH/120:
H(1), O(6), Ar(8)

HCTH/407:
H(1), O(6)

PBE:
H(1), He(2), Li(3), Be(4), B(3), C(4), N(5), O(6), F(7), N&( Na(9), Mg(10), Mg(2),
Al(3), Si(4), P(5), S(6), CI(7), Ar(8), Ca(10), Ti(12), ArR)

The numbers in brackets denote the number of valence awsotroployed by the respec-
tive pseudo potential, i.e. the effective core charge. Téeudo potential data base is
maintained within the CP2K project [3] and thus all the lis@TH pseudo potential data
sets are available online.
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4 Basis sets

The Kohn-Sham orbitals are expanded in Gaussian orbitakifums in the framework of
the GPW method as described in section 2. Therefore an ajpg®pet of Gaussian func-
tions has to be defined as a basis set for eaclcQSTEP calculation. There is a plenty of
Gaussian basis sets available in the literature. Howevepgp basis sets have to be opti-
mized for the usage with the GTH pseudo potentials from tlegipus section. Therefore,
the exponents of a set of primitive Gaussian functions wetemozed for all first- and
second-row elements with an atomic DFT code applying theagsjate GTH potential
parameters for each element. The same set of exponents vpdsyenhfor each angular
momentum quantum number of the occupied valence state® afdtnal element which
are onlys andp orbitals for the elements from H to Ar. The optimization wasfprmed
for a growing numbers of primitive Gaussian functions in ¢le¢ in order to obtain basis
sets of increasing quality. The atomic DFT code allows fa ¢alculation of first ana-
lytic derivatives of the total atomic energy with respectiie Gaussian orbital exponents.
The second derivatives were calculated by an updated higsdaedure (BFGS). Finally,
the primitive Gaussian functions were contracted usingctiedficients of the respective
atomic wavefunctions. These basis sets were augmentedli&yzation functions which
were taken from the all-electron basis sets cc-pVXZ (X = DQJ,of Dunning [15, 16].
In that way a new sequence of basis sets was created with i@agiicg number of primi-
tive Gaussian functions and polarization functions forhefrst- and second-row element.
The basis sets were labelled DZVP, TZVP, TZV2P, QZV2P, an¥8Zdue to the applied
splitting of the valence basis where DZ, TZ, and QZ denotébsutriple- , and quadruple-
zeta, respectively, and the increasing number of polasizdtinctions. The quality of the
basis sets should improve systematically within this seqeeThese basis sets can be fur-
ther augmented by diffuse functions, if required, analegmuthe aug-cc-pVXZ basis sets
resulting in a sequence aug-DZVP, aug-TZVP, aug-TZV2P,@4Y 2P, and aug-QZV3P
analogous to the aug-cc-pVXZ basis sets. The inclusionflafsdi functions may improve
the accuracy of certain molecular properties, howevey, #ne prohibitive for condensed
phase calculations, since they introduce linear depemekento the basis set. The basis
sets for H to Ar are collected in a basis set file which is inefdichto the CP2K program
package.

5 Wavefunction optimization

The total ground state energy (see Eq. 1) of a system for angt@mic configuration
is minimized by an iterative self-consistent field (SCF)gadure. Three methods are
currently available in QICKSTEP to perform an SCF iteration procedure: a traditional
diagonalization (TD) scheme, a pseudo diagonalizatioerseh[17], and an orbital trans-
formation (OT) method [19]. For the sake of simplicity, wellwestrict our description
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of these methods in the following to closed-shell systerogydver, the generalization to
open-shell (spin-polarized) systems is straightforwardl @QuICKSTEP can deal with both
types of systems using each of these methods.

5.1 Traditional diagonalization (TD)

The traditional diagonalization scheme uses an eigensbiva a standard parallel pro-
gram library called ScaLAPACK to solve the general eigemgagiroblem

Kc=Sce 9)

where K is the Kohn-Sham matrix anfl is the overlap matrix of the system. The eigen-
vectorsc represent the orbital coefficients, and thare the corresponding eigenvalues.
Unfortunately, the overlap matri&¥ is not the unit matrix, since QCKSTEP employs an
atom-centered basis set of non-orthogonal Gaussian-tyjidunctions. Thus we have
to transform the eigenvalue problem to its special form

Kc=U"Uce (10)
(UNHTTKU'd=ce (pdsygst) (11)
K'cd=Ce (pdsyevx or pdsyevd) (12)

using a Cholesky decomposition of the overlap matrix
S=U'U (pdpot rf) (13)

as the default method for that purpose. Now, Eq. 12 can silmplyolved by a diagonal-
ization ofK'. The orbital coefficientg in the non-orthogonal basis are finally obtained by
the back-transformation

d=Uc (pdt r sm. (14)

The names in brackets denote the ScaLAPACK routines emglimye¢he respective oper-
ation by QUICKSTEP.

Alternatively, a symmetric orthogonalization instead d@@laolesky decomposition can be
applied by using
U =52 (15)

However, the calculation &8*/2 involves a diagonalization & which is computationally
more expensive than a Cholesky decomposition. On the otret,Hinear dependencies
in the basis set introduced by small Gaussian function expisncan be detected when
S is diagonalized. Eigenvalues & smaller than10~> usually indicate significant lin-
ear dependencies in the basis set and a filtering of the pamdsg eigenvectors might
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help to ameliorate numerical difficulties during the SCKFat®n procedure. Both orthog-
onalization schemes are implemented inIQKSTEP. For small systems the choice of the
orthogonalization has no crucial impact on the performasgee it has to be performed
only once for each configuration during the initializatidrttee SCF run. By contrast, the
eigenvectors and eigenvalues of the full Kohn-Sham mdhfixhave to be calculated in
each iteration step as indicated by Eq. 12 using a divideeamdjuer pdsyevd) scheme
or an expert drivergdsyevx) which allows to request only the build of an eigenvector
sub-set. The divide-and-conquer scheme is faster tharxgietedriver, if all eigenvectors
have to be computed. However, for the construction of the chewgity matrix

pP=2 cocccoch (16)
only the occupied orbitals are needed. In that case the edpeer is superior, since for
standard basis sets only 10—-20% of the orbitals are occapiddhe orthonormalization
of the requested eigenvectors is a time-consuming stepcedly on parallel computers
where it requires heavy communication between the prosesse

The TD scheme is usually combined with methods to improvecthesergence of the
SCEF iteration procedure. The most efficient SCF converganceleration is achieved by
the direct inversion in the iterative sub-space (DIIS) [2@] exploiting the commutator
relation

e=KPS-SPK a7

between the Kohn-Sham and the density matrix where the grabrix e is zero for the
converged density. The TD/DIIS scheme is an establishedaddor electronic structure
calculations. The DIIS method can be very efficient in the hanof iterations required to
reach convergence starting from a sufficiently pre-coreeidensity which is significant,
if the Kohn-Sham matrix construction is much more time conislg than the diagonal-
ization. Nevertheless, the cost for the TD/DIIS scale®é&/?), whereM is the size of
the basis set. This implies that, even at fixed system sizegasing the number of basis
functions results in a cubic growth of the computationaltcds further disadvantage of
the DIIS is that the method might fail to converge or that diskintly pre-converged den-
sity cannot be obtained. This happens more frequently &mtednically difficult systems.
For instance spin-polarized systems or systems with a smatlyy gap between the high-
est occupied (HOMO) and the lowest unoccupied orbital (LUMKe semiconductors or
metals belong often to this kind of systems.

5.2 Pseudo diagonalization (PD)

Alternatively to the TD scheme, a pseudo diagonalizatiah [B] can be applied as soon
as a sufficiently pre-converged wavefunction is obtaindte Kohn-Sham matri¥*° in
the atomic orbital (AO) basis is transformed into the molacarbital (MO) basis in each
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SCF step
KMO = ¢TKA% (PDSYMViandPDGEMV) (18)

using the MO coefficients from the preceding SCF step. The converdetf® matrix
using TD is a diagonal matrix and the eigenvalues are itsotialelements. Already after
a few SCF iteration steps th&™° matrix becomes diagonal dominant. Moreover, the
K™© matrix shows the following natural blocking

( 00 | ou ) (19)
uo | uu

due to the two MO sub-sets afnamely the occupied) and the unoccupied:f MOs.
The eigenvectors are used during the SCF iteration to ctedhe new density matrix
(see Eq. 16), whereas the eigenvalues are not needed. &herietgy only depends on
the occupied MOs and thus a block diagonalization which deles the occupied and
unoccupied MOs allows to converge the wavefunctions, né all elements of the block
ou or uo have to become zero, sind™° is a symmetric matrix. Hence the transformation
into the MO basis

KMO = ¢'K"c¢, (PDSYMMandPDGEMV) (20)

has only to be performed for that matrix block. Then the deting can be achieved
iteratively by consecutive x 2 Jacobi rotations

0= 70 (21)

sgn(0)
_ 22
Eie (e2)

1

= 23
¢= TE (23)
S = tc (24)
C,=cC,-sC, (DSCAL andDAXPY) (25)
C,=sC,+cC, (DSCAL andDAXPY) (26)

where the angle of rotatichis determined by the difference of the eigenvalues of the MOs
p andq divided by the corresponding matrix elemeﬂﬁtgo in the ou or uwo block. The
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Jacobi rotations can be performed with the BLAS level 1 regDSCAL and DAXPY.
Theoo block is significantly smaller than the: block, since only 10-20% of the MOs are
occupied using a standard basis set. Consequentlyutioe uo block also includes only
10-20% of theK™® matrix. Furthermore, an expensive re-orthonormalizatibthe MO
eigenvectorg is not needed, since the Jacobi rotations preserve thawmmotmality.

5.3 Orbital transformations (OT)

Finally, an orbital transformation method [19] is impleneohin QUICKSTEP which per-
forms a direct minimization of the wavefunctions. The OT hoet is guaranteed to con-
verge and it scales, depending on the preconditioneR (d¢ N?), where M is the total
number of MOs or basis functions aidis the number of occupied MOs. A detailed de-
scription of the OT method is given in Ref. [19]. In the franmaw of the OT method the
electronic energy(c) is minimized using the constraint

c'Se=1 (27)

wheree, S, andI are the matrix of the orbital coefficients, the overlap nxatand the
identity matrix, respectively. Given the constant stadteesc, which fulfill the condition

c;Scy=1 (28)

a new set of vectors(x) is obtained by

c(x) = cycos(U) +z U 'sin(U) (29)
with
U=(x"Sz)/? and 'Sc;=0 (30)
This implies
c'(z)Sc(x)=1 Ve (31)

x can be used to optimize the enerffyc(x)) with standard methods like conjugate gra-
dient in combination with line search, since the allowespan a linear space. In that way,
the OT method as a direct minimization method addressesdssitiencies of the TD or
PD scheme, as the method is guaranteed to converge, ansl, siggending on the precon-
ditioner, asO(M N?). In more detail, the following scalings can be observed fier ®T
method:

e matrix product sparse-full lik& X: O(M2N) — O(MN)
e matrix products full-full like(K C)*X: O(MN?)
e diagonalization of théV x N matrix XS X: < O(N?)
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The computational cost of the OT method is normally domidde the computation of
theO(M N) termsH ¢ and Sz, but is in principleO(M N?) with a sparse preconditioner,
andO(M?2N), if a non-sparse preconditioner is used. The relative efficy of TD/DIIS
and OT depends on many factors such as system size, bassesetral network latency
and bandwidth.

6 Accuracy

As a first accuracy test for @QCKSTEP, we employed the new basis sets described in
section 4 for the geometry optimization of small moleculsesg the local density ap-
proximation (LDA). The CP2K geometry optimizer works withsti analytic derivatives
whereas the second derivatives are obtained via an upda&ssidt method. In that way
each molecule of the following test set of 39 small molecules

Hs, Lig, LiH, BH3, CH,, CG;Hs, CoHy, CHg, N, NH3, HCN, H,O, H,O,, CO,
CQO,, CH;0H, N;O, R, HF, LiF, CHF, OR, AlH, SiH4, SiO, B, PH;, HCP,
PN, S, H,S, CS, C$§, SO, COS, Sk, HCI, CH;Cl, LiCl

consisting of first- and second-row elements was optimiz@dguCartesian coordinates.
Figure 1 compares the optimized bond distances obtaindd@utCKSTEP using differ-
ent basis sets with the NUMOL results of Dickson and Beckég. [RUMOL is a purely
numerical DFT code and thus considered to be free of baseffsets. The smallest basis
set DZVP gives on average slightly too long bond distancesalveady the TZVP basis
set works fine for most of the molecules. Finally, the TZV2B\QP, and QZV3P show
an excellent agreement for all bond distances. Figure 2 stiogwesults for the optimized
bond and dihedral angles. The agreement for the small DZ\@Rlen TZVP basis set is
already excellent. Only one data point is off which corregfoto the dihedral angle of
H,O,. This angle is known to be very sensitive to the number of eygd polarization
functions. Thus one set of polarization functions is insigfit as shown by the results for
the DZVP and TZVP basis set. However, for the TZV2P basistsedthedral angle is
already very close to the reference value and for the QZV3isIsat shows more or less a
converged result. Acomprehensive view of the numericalltesf the geometry optimiza-
tions is provided by Table 1 which shows the maximum and tbemeean square deviation
of all bond distances and angle compared to the NUMOL rebal¢ged on a statistics in-
cluding 52 bond distances and 18 angles and dihedral anfjteserrors become smaller
for a growing basis set size as expected. The TZV2P basisvest glready an excellent
overall agreement and for the QZV3P most distances coirveitien the expected errors.
Note, that a fully agreement with the NUMOL values is not jloles since NUMOL uses a
slightly different LDA implementation and it employs a ferz core approximation for the
elements beyond Beryllium that differs from the GTH pseudteptials used by QiCk-
STEP These difference may cause a change of the bond distaneé®waf0.001 A. This
small error also shows that the effect of the pseudo potestiagligible compared to basis
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Table 1: Maximum Qnax) and root mean square deviatio) (of bond distancesﬁo, bond angles, and
dihedral angles°) compared to the NUMOL results for different basis sets.

basis set distanceéI angles []
Amax o Apax O

DzVP 0.048 0.018 6.4 1.6

TZVP 0.040 0.013 85 21

TZV2P 0.015 0.006 1.7 0.6
QzZV2P 0.012 0.005 21 0.6
QZV3P 0.011 0.004 0.7 0.3

set effects concerning structural properties. Thus a Isasisan be chosen tuned due to the
accuracy requirements of the actual application, but firtakk accuracy of QICKSTEP is
determined by the error of the employed exchange-coroslgtotential.
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Figure 1: The optimized bond distances for 39 small molecatdculated with QICksTEP using different
basis sets are compared to the NUMOL results of Dickson ac#eB1].
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Figure 2: The optimized bond angles and dihedral anglesfen®all molecules calculated withU@CKSTEP
using different basis sets are compared to the NUMOL restillickson and Becke [21].

7 Benchmarks

After proving the accuracy of QCKSTEP in the previous section, it will be shown in
this section that QICKSTEP can achieve that accuracy with high computational effigienc
For that purpose, we firstly selected liquid water at ambegamtditions as a benchmark
system to show both the serial performance o0i€ksSTEP and its scalability on a parallel
computer. Moreover, we will report the performance resofligeometry optimizations for
some molecular and a crystalline system.

7.1 Liquid water

Liquid water is often used as a benchmark system, since ieaaity be scaled by simply
doubling the number of water molecules in the unit cell whgobquivalent to a doubling of
the unit cell at the same time. For instance, liquid watempleyed as a standard bench-
mark system for the CPMD code [22] to check its performancksmalability on various
parallel computers. Furthermore, water is an importantadgnt of many bio-chemical
applications involving water as the natural solvent andeoalar dynamics (MD) simula-
tions are performed to study the properties and the behavisuch systems. Therefore,
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Table 2: Detailed characteristics of the employed bencksystems for liquid water at ambient conditions
(300 K, 1 bar). The edge length of the cubic simulation cb&, mumber of atoms, electrons, Gaussian-type
orbitals (M), occupied orbitalsX), and plane waves, i.e. grid points, is listed.

system cellf] atoms electrons M N grid points (x10°)
32 H,0 9.9 96 256 1280 128 1.3
64 H,0O 12.4 192 512 2560 256 2.0
128 H,O 15.6 384 1024 5120 512 4.1
256 H,0 19.7 768 2048 10240 1024 9.3
512 H,0 24.9 1536 4096 20480 2048 16.0
1024 HO 31.3 3072 8192 40960 4096 32.8

MD runs for pure liquid water at ambient conditions (300 K, dr)owere conducted for
benchmarking using realistic input parameters as they dvalslo be chosen for produc-
tion runs. A GTH pseudo potential and a TZV2P basis set fordyeh and oxygen were
employed in all benchmark runs including 40 contracted spakGaussian-type orbital
functions per water molecule. The high accuracy of the TZW2Bis set was already
shown in section 6. Table 2 lists the detailed charactesisif the employed benchmark
systems ranging from 32 water molecules in a cubic unit deidge length 9.9 up to
1024 water molecules in a cubic unit cell of 3]A3edge length. These unit cell sizes
required up t32.8 - 10° plane waves, i.e. grid points, as an auxiliary basis sethgiveen-
sity cut-off of 280 Ry for the expansion of the electronic sigyn This density cut-off was
used for all the benchmark calculations of liquid water. &tythe orbital basis set is lin-
early growing from 1280 to 40960 Gaussian-type orbital fioms. However, the involved
matrices like the overlap or Kohn-Sham matrix are growingdratically for this entity.
Thus the Kohn-Sham matrix calculation for 1024QHrequires to deal with matrices of
the size40960 x 40960 and it is therefore indispensable to take advantage of ttadiied
character of the atomic interactions as efficient as passifdble 3 shows the occupation
of the overlap matrix for each benchmark system using a TZW&¥s set and a numeri-
cal threshold value of0~'2 a.u. for the overlap integral between two primitive Gaussia
functions. For the systems with 32 and 64CHeach water molecule interacts with each
other in the unit cell. Starting from roughly 200 water malkss, the interaction sphere
of a water molecule is completely confined in the unit ced, for larger systems more
and more water molecules inside the unit cell do not inteaagtlonger with each other.
This can be retrieved from the overlap matrix occupatioastisy with 256 HO, since
the occupation is halved for each doubling of the simulatelh. Thus beginning with
256 H,0O in the unit cell the number of interactions grows lineanhg aimilarly the spar-
sity of the matrices increases continuouslywIQKSTEP takes efficiently advantage of the
matrix sparsity, however, this becomes only effective forethan 200 water molecules in
the simulation cell. It is further important to recognizatthe number of occupied orbitals
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Table 3: Occupation of the overlap matrix applying a nunaribreshold value o10~12 for the overlap
contribution of two primitive Gaussian orbital functions.

system occupation
32 H,0 100.0 %
64 H,O 99.6 %
128 H,O 85.1 %
256 H,0 51.3%
512 H,0 25.8 %
1024 KO 12.9 %

N is significantly smaller than the total number of orbitds(see Table 2). In this bench-
mark using the TZV2P basis set only 10 % of the orbitals arejpied. Thus any operation
only dealing with the occupied orbita{d/ ) is favorable compared t@\/?) for the full
matrix. This is a crucial performance issue when compahegigensolvers implemented
in QUICKSTEP. Figure 3 shows the timings for the benchmark systems oET2bking the
IBM Regatta p690+ system at the Research Centre Julidedciimp. The Jump system
consists of 39 compute nodes. Each node provides 32 PowerA&Hz) processors. The
processors are interconnected by an IBM High Performande®BwWHPS). The results are
given using a double logarithmic scale to show the scalinp®fTD and the PD scheme.
Each MD step included a full wavefunction optimization éalled by a calculation of the
forces on each atom. The total energy of the system was aggo/éo 107 a.u. and the
deviation of the electron count for the converged density l@as than 1¢. Ten MD steps
were performed for each benchmark system (except 1@2) Hsing a time step of 0.5 fs.
The CPU timings of the last 5 MD steps were averaged. Figuris@ays the obtained
CPU timings per MD step for various CPU numbers and systeessiging the TD and the
PD scheme. The missing data points are due to the limited mygmeo CPU which did not
allow to run larger systems using only a small number of CPTre small systems with
32 and 64 HO can efficiently be run on a small number of CPUs. 6£OHheed roughly
one CPU minute per MD step, i.e. 2 CPU minutes per fs simulidtiae, when using 16
CPUs. The larger systems with 128 and 2580Hun efficiently on 32 and 64 CPUs,
respectively. However, 14 minutes per MD step for 25®Hloes not allow to obtain ap-
propriate MD trajectories in reasonable time. It was notsgae to run 512 HO, even if
using 256 CPUs, since the TD scheme which is based on ScaLKWBAGCS requires
to deal with a distribution of several full matrices durimgtSCF procedure exceeding the
available memory.

A direct comparison of the two panels of Figure 3 shows thaBh scheme scales slightly

1This benchmark was run on the Jump system before the majowasef update (PTF7) in July 2004
which improved the MPI communication performance signiftba
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Figure 3: Scaling of the CPU time per MD step using the tradal diagonalization (TD) scheme and
the pseudo diagonalization (PD) scheme for the benchmasteras of Table 2. The calculations were
performed on an IBM Regatta p690+ system with 32 Power4+&HZ) per node interconnected by an IBM

High Performance Switch (HPS).
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better than the TD scheme. The small systems with 32 and,®}gdale up to 32 CPUs
and the largest system with 256,@ scales even up to 128 CPUs using the PD scheme.
However, the absolute CPU times per MD step for the TD and thes¢éheme are very
close, even if the PD scheme requires less communicationtbieaTD scheme. The PD
scheme shows only for 256,80 on average significant shorter CPU times per MD step
compared to the TD scheme. As described in section 5, the R&nse can only be ap-
plied to sufficiently pre-converged wavefunctions. The Tdheme is employed until this
convergence is achieved and thus no speed-up with resptdat ID scheme is obtained
for the first SCF iteration steps. Furthermore, the initiiion of the PD scheme requires
at least once a diagonalization of the Kohn-Sham matrixushiclg the calculation oall
eigenvectors. This step turns out to be rather expensive kitown that the orthonormal-
ization of a large eigenvector set is computationally espanstep that involves a lot of
communication. In fact, this SCF step may consume two oretlirees more CPU time
than a normal TD SCF step and turns out to be a bottleneck édlatiyer systems. How-
ever, once the PD scheme is set up, the following iteratiepssare less expensive than a
TD step. Moreover, the PD steps are becoming cheaper angahsice the number of
matrix elements which have to be processed by the Jacotiomgalecrease continuously.
However, a typical MD step only involves approximately 8 S@ration steps and at least
two or three of these are normal TD steps followed by an exped® step providing the
full eigenvector set. Thus there are only four or five SCFsteft for the faster PD scheme
and finally nothing is gained compared to the pure TD schemm&st of the test systems.

By contrast, the OT method shows a much better performanskaxen in Figure 4. The
OT method needs less memory than the TD and the PD schemeisbatdoes not deal
with full matrices during the SCF iteration and thereforalibws to run larger benchmark
systems with up to 1024 water molecules in the unit cell. Als® scaling behavior of
the OT method is much better. The small systems with 32 and,@ddale nicely up to
32 CPUs. A scaling beyond 32 CPUs cannot be expected, siaaath blocks per CPU
become too small to keep an SP4+ processor efficiently busyrencalculation will be
completely dominated by the communication between thegases. At least one or two
H,O molecules per CPU are needed, formally. Also the largechmark systems show a
better scaling with OT as indicated by the slope. The 51@ Bystem shows a continuous
scaling up to 128 CPUs including 4 compute nodes of the Jursiessy This shows that
the scaling behavior of QCKSTEP is also preserved when the processors of more than
one compute node are employed.

7.2 Molecular and crystalline systems

As a final performance test forlJcKSTEP, geometry optimizations for a couple of molec-
ular and crystalline systems were performed. The detahadacteristics of the employed
molecular and crystalline benchmark systems is listed inlefd. The DZVP basis set

described in section 4 was used for all elements includirdydgen, even if the-type
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Figure 4: Scaling of the CPU time per MD step using the orbitadsformation (OT) scheme for the bench-
marks systems of Table 2. The calculations were performedroiBM Regatta p690+ system with 32
Power4+ (1.7 GHz) per node interconnected by an IBM Highd?erénce Switch (HPS).

polarization functions for hydrogen are not needed in mases. It turned out that the
quality of the DZVP basis set is sufficient for most of the apagions. Optionally, a re-

finement of the structure can be obtained with the TZV2P Imetibased on the structure
pre-optimized with the DZVP basis set. It was shown in sedithat the TZV2P basis set
provides structures of high accuracy within the actual dgrisnctional approximation.

The density cut-off for the plane waves expansion of theteda density was chosen
sufficiently large, i.e. in correspondence with the largestissian function exponent of the

Table 4: Detailed characteristics of the employed moleand crystalline benchmark systems. The number
of atoms, electrons, Gaussian-type orbitdlg)(and occupied orbitalsY) is listed. The employed exchange-
correlation functional is given in brackets.

system atoms electrons M N Cut-off [Ry]
Cqo fullerene (LDA) 60 240 780 120 240
Cigo fullerene (LDA) 180 720 2340 360 240
Grubbs catalysator (BP) 120 284 774 142 280
Taxol (BLYP) 113 328 908 164 280
[2]Catenan (BLYP) 164 460 1524 230 280
RNA duplex (BLYP) 368 1192 3444 596 320

46



Benchmarks

Table 5: CPU time per geometry optimization step for the malr and crystalline benchmark systems as
described in Table 4. The calculations were performed orBdh Regatta p690+ system with 32 Power4+
(1.7 GHz) per node interconnected via an IBM High Perforneg®witch (HPS).

system 4 CPUs 8 CPUs 16 CPUs
Cso fullerene 30 11 8
Cisg fullerene 115 69 36
Grubbs catalysator 178 108 63
Taxol 208 118 74
[2]Catenan 246 138 92
RNA duplex 432 186 128

orbital basis set based on the accuracy of the computedatecbunt. The OT method
was employed in all optimization runs.

Cso Is the well-known hollow, soccer ball shaped molecule celieckminsterfullerene or
simply bucky ball. The G, fullerene is a bigger variety of thegwhich is also a hollow
ball structure. Figure 5 shows the ruthenium based olefiratinesis catalysts also called
after its inventor Grubbs catalysator. Taxol (see Figuie &compound which is used as an
anti-cancer drug. The [2]Catenan [23] is an electroniaabonfigurable molecular switch
which consists of two interlocked rings: (1) a tetracatooyclophane that incorporates
two bipyridinium units and (2) a crown ether containing ad#tiafulvalene unitand a 1,5-
dioxynaphthalene ring system located on opposite siddseoftown ether (see Figure 7).
Finally, Figure 8 shows the unit cell of a fully hydrated RNAipdex crystal structure
[24]. For all the molecular systems a sulfficiently large weils were chosen to eliminate
the interaction with the images. GTH pseudo potentials veenployed for all structure
optimization runs. For ruthenium and sodium the semi-caeudo potential versions
were used including 16 and 9 valence electrons, respegtivel

The CPU times per geometry optimization step are listedimefausing 4, 8, and 16 CPUs
of one compute node of the Jump system at the Research Céhtte EEach geometry
optimization step includes like an MD step a full wavefuantoptimization followed by a
calculation of the forces on all atoms. The timings depertanty on the size of the orbital
basis set, but also on the selected exchange-correlathmtidnal and the density cut-off.
For instance, the {g fullerene has a large orbital basis, however, the pseudmpat of
carbon is softer than the pseudo potential of oxygen anditiheguires only the relatively
small density cut-off of 240 Rydberg. Moreover, the grat@ithe electronic density has
not to be calculated in the framework of the local densityragination (LDA), whereas
this is needed for the exchange-correlation functionamB[9, 10, 11] and BP [9, 12] (see
section 3) based on the generalized gradient approxim@@@®). A couple of geometry
optimization steps can be performed for all the presentstesys within the limits of an
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Figure 6: Taxol (G7H51014N)
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Figure 8: Unit cell of the fully hydrated RNA duplex ¢gH163N320g4NayPy) crystal structure
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interactive job on the Jump system which provides up to 16 £@U30 minutes. In that
way, QUICKSTEP allows to optimize efficiently the structure of small and neal-sized
molecular or crystalline systems.

8 Summary and outlook

It was shown that QICKSTEP allows for fast and accurate density functional calculatio
of molecules and condensed phase systems. It provides siefbactionality needed to
perform structure optimizations and to run Born-Oppenleeimolecular dynamics simu-
lations. The nice scaling behavior ofu@KSTEP was proved using the new IBM parallel
computer system Jump at the Forschungszentrum Julich.efficeent parallelization of
QuicksTEP allows to obtain results in shorter time or to investigatgda systems.

Nevertheless, there are many possibilities to improvén@urthe efficiency and functional-
ity of QUICKSTEP. The extension of the GPW method to the Gaussian augmerdad pl
waves (GAPW) method [25] will significantly speedup the a#dtions. Moreover, the
GAPW method will also allow to perform all-electron dendiimctional calculations [26].
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1 Introduction

Recent advances in computer hardware and its exploitdtrongh the techniques of high-
performance computing, as well as advances in the develaopoh@pproximate theories
of quantum chemistry and quantum molecular dynamics, hayether brought us to the
position where theory can provide reliable answers to cbhahguestions that are of rel-
evance not only to furthering fundamental understanding,altso to real-life industrial

and environmental problems. This emergence of the relevahquantum chemistry has
been recognized through the award of the 1998 Nobel prizetfemistry, and through
the wholesale adoption of quantum chemical methods by teenal community, both

academic and industrial.

The breakthrough in the ability to treat realistic chemgyatems has to a large extent been
due to improvements of density functional theory (DFT). Tevelopment of accurate
density functionals and linear scaling techniques haveenitgabssible to predict energies
and molecular structures for molecules with 1000 or evereratoms. These techniques
are the subject of other articles in this volume, and will hetfurther discussed here.
The problem of DFT is that there is no way to systematicalleas or to improve the

lpresent address: Institute for Physical and Theoretican@stry, University of Regensburg, Univer-
sitatsstralle 31, 93040 Regensburg
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accuracy of a calculation, since the exact functional isnomkn. Thus, the results depend
on the chosen functional, and experience is needed to selgaitable functional for a
given problem. The best currently available density fuor@is contain some parameters,
which have been fitted to obtain best agreement with expeatinaad therefore DFT can
be viewed as a semi-empirical method. Even for such funatsont is often difficult or
impossible to estimate the accuracy of a computed resuéssigalculations are performed
for similar molecules as contained in the training set.

On the other hand, there is a well established hierarchy gévianction baseab initio
methods, which allow to approach the exact solution of tleetedbnic Schrodinger equa-
tion systematically. In most cases, such methods are bas#tedHartree-Fock method
as zeroth-order approximation. In Hartree-Fock, eachtreleanoves independently in
an average field caused by the the other electrons. To go Bekimapproximation it is
necessary to treat the electron correlation, i.e., thetddygnamical interaction of all elec-
trons. Typically, the correlation energy (the differen@vieeen the exact energy and the
Hartree-Fock energy) amounts only to 1% of the total endfigyvever, this is of the same
order of magnitude as the energy differences which areaatexa chemistry, and since the
correlation energy may change significantly from reactsmfzroducts, a high-level elec-
tron correlation treatment is mandatory for an accurateliptien of energy differences
and molecular properties.

Unfortunately, the computational cost of wave-functiosdzhmethods is much higher than
for DFT, and for the best methods the increase of computerwith molecular size is ex-
tremely steep. Even for the simplest method to treat thdérelecorrelation, second-order
Mgller-Plesset theory (MP2), the computer time formallgles asO(N?), where N is

a measure of the molecular size. This means that doublingitieeincreases the com-
puter time by a factor of 32 (this factor can be somewhat redioy screening techniques
[1]). For the more accurate fourth-order perturbation tii®P4) or the coupled clus-
ter method with single and double excitations (CCSD) andupeative triple excitations
[CCSD(T)] the scaling is eve@(N7), i.e., the CPU time increases by a factor of 128 if
the number of electrons is doubled. Therefore, despitenitrease of computer speed by
3-4 orders of magnitude during the last decade, still orlbtiresly small molecules (10-20
atoms) can be be treated by such accurate methods. Evenehd the largest super-
computers cannot significantly extend the applicabilitg@iventional electronic structure
methods.

The steep scaling of the computational cost with molecuias s mainly caused by the
delocalized character of the canonical Hartree-Fock alyitvhich are traditionally used as
a basis. However, (in insulators) electron correlationsbart range effect which decreases
approximately as ¢, wherer is the distance between two local charge distributionss Thi
can be exploited by localising the molecular orbitals anglexting distant interactions.
Based on a local ansatz originally proposed by Pulay [2, 3],4our group has recently
been able to develop local MP2 and CCSD(T) methods with tif@é\ )] scaling of the
computational cost [6, 7, 8, 9, 10, 11, 12, 13]. This has dtemally extended the range
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of applicability of such high-level methods, and energ@smholecules with 100 atoms or
more can now be computed with good basis sets.

The HPC-Chem project has significantly contributed to ferttlevelop and improve the
efficiency of these unique new methods, which have been mmgéed in theVOLPRO
package ofab initio programs [14]. Work has been done in four areas: firstly, #a& n
local correlation methods have been parallelized. The @ipamallel computer hardware
is particularly useful for linear scaling methods, sincertithe size of the molecules which
can be treated in given time increases linearly with the remobprocessors. Secondly, the
pre-factor of the cost function has been reduced by the img@teation of so called density
fitting approximations for computing the integrals. Thitde method has been extended
to open-shell cases. And finally, the slow convergence oktletron correlation energy
with basis set size has recently been improved by the impitatien of efficient locat -
methods. Before describing these methods and new devetdpmnemore detail, we will
give a short description of tiHdOLPROpackage. This highlights the long history of method
development which is typical for many quantum chemistryesodl'he enormous amount
of code (about one million lines) and the "grown” structurekas it rather difficult to
maintain, modularize, and parallelize the program. Intéspect, the man-power provided
by the HPC-Chem project has been extremely helpful.

2 About MOLPRO

The development of thBIOL PRO program was started by Wilfried Meyer and Peter Pulay
in 1969. At a very early stage they implemented a generalrédfEock program, includ-
ing spin restricted (RHF) and unrestricted open-shell (YHEatments. Based on this,
Pulay wrote the first analytical gradient program, whichng of the key developments in
guantum chemistry and forms the basis for molecular gegnogtiimization. At the same
time, Meyer developed his famous pseudo natural orbitdigoration interaction method
(PNO-CI) and the coupled electron pair approximation (CERA, 16]. These methods
made it possible to obtain for the first time 80-90% of the &t correlation energy in
small molecules like KO [15] and CH [16]. A second generation of electron correlation
methods was implemented il PROby H.-J. Werner and E. A. Reinsch in 1978 and the
following years. These methods were based on Meyer’s thaefosglf-consistent electron
pairs (SCEP) [17]. This is a patrticularly efficient direct i@ethod in which any compli-
cated logic for computing the Hamiltonian matrix elementsweliminated by a suitable
renormalization of the configurations. This leads to effitimatrix algebra, which allows
to use modern hardware to the best possible extent. Additigrthe theory was formu-
lated in a basis of non-orthogonal atomic orbitals (AOs)ly@ery much later it has turned
out that the use of such a non-orthogonal basis is the kegeatdiscaling in local electron
correlation methods. In the early 80thOLPROwas extended by multiconfiguration-self-
consistent field (MCSCF) [18, 19] and internally contractedltireference configuration
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interaction (MRCI) methods [20]. In 1984, one of the preserihors (HJW) started to col-
laborate with Peter Knowles, and more efficient MCSCF and MitGgrams were written
[21, 22, 23, 24, 25, 26], in which new techniques for compyittamiltonian matrix ele-
ments and high-order density matrices [22, 24] were appliater on, efficient closed and
open-shell coupled cluster methods [27, 28, 29, 30], naiétrence perturbation theory
(MRPT2, MRPT3, CASPT2) [31, 32], and DFT methods were dgwed Furthermore,
analytic energy gradients for DFT, RHF, UHF, MCSCF [33], MB2, 35], CASPT2 [36],
and QCISD(T) [37], as well as many other utilities were inmpéted (for more details see
www. ol pr o. net ). By now, MOLPROhas the reputation to be one of the most efficient
and general programs for highly accurate electronic siraatalculations. It is world-wide
used by hundreds of research groups.

The development of local electron correlation methods,civhwill be described in the
following sections, was started in the group of H.-J. Weiner996 [6], and linear scaling
was achieved for LMP2 for the first time in 1999 [7]. Quite neitg density fitting was
introduced intoMOLPRO by Manby and Knowles, and their integral program forms the
basis for the local density fitting methods described irrls¢etions.

3 Local correlation methods

As already mentioned in the introduction, the steep scafragpnventional electron corre-
lation methods mainly originates from the delocalized abtar of the canonical molecu-
lar orbitals, which are traditionally used as a basis. Té@églk to a quadratic scaling of the
number of electron pairs to be correlated, and in turn thestatron space for each pair also
grows quadratically with molecular size, leading over@khO(N*) increase of the num-
ber of double excitations and corresponding coefficientgp{daudes) with the number of
electrons. However, dynamic electron correlation in naetattic systems is a short-range
effect with an asymptotic distance dependence af ¢ (dispersion energy), and therefore
the high-order dependence of the computational cost wemtimber of electrons of the
system is not physically imposed.

In order to avoid these problems, local correlation methwalse been proposed by very
many authors (see citations in our original work [6, 7, 11]).38®ur method is based on
the local correlation method of Pulay [2, 3, 4, 5]. As in maxtdl correlation methods,
localized occupied orbitals (LMOSs)

¢§oc = ZX/LLui (1)
u

are used to represent the Hartree-Fock reference wavaian@he rectangular coefficient
matrix L represents the LMOs in the AO badig,}. The particular feature of the Pulay
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ansatz is to use non-orthogonal projected atomic orbiBHA©E) to span the virtual space

¢$ao = ZXuPur . (2)
u

The coefficient matrix (often called projector) is defined as
P = 1-LLS*?, (3)

whereSA0 the overlap matrix of the AOs. Due to this definition, the PA#s orthogonal
to the occupied space

<opide > = [PSL], =0 @

but non-orthogonal among themselves. They are inherest},|and it is therefore possi-
ble to assign to each localized orbital an individual subsetital domair) of PAOs, which
are spatially close to the region where the LMO is large. Birty, for each orbital pair
one can fornpair domainswhich are the union of the two orbital domains involved.-Sin
gle excitations are made into the orbital domains, doubtg&ons into the pair domains,
and so on. For a given electron pair, the number of functiorespair domain is indepen-
dent of the molecular size, which reduces the scaling of theber of configuration state
functions (CSFs) and corresponding amplitudes f@W™) to O(N?). Furthermore, a
hierarchical treatment of different electron pairs depegdn the distance of the two cor-
related localized occupied molecular orbitals (LMOs) cardbvised Strongpairs, where
the two electrons are close together, are treated at hitgwedt e.g. LCCSD, whileveak
anddistantpairs can be treated at lower level, e.g. LMP2. For distam$|itas possible to
approximate the relevant two-electron integrals by malegxpansions [39Mery distant
pairs, which contribute to the correlation energy only a fewro-hartree or less, are ne-
glected. An important advantage of the local treatmentastte number of strong, weak,
and distant pairs scales linearly with molecular size, peshelently of the distance criteria
used for their classification (cf. Figure 1). Only the numbgkthe neglected very distant
pairs scales quadratically. The number of amplitudes ih etass scales linearly as well,
since the number of amplitudes per pair is independent ofrtblecular size. This forms
the basis for achieving linear scaling of the computatiaoal.

The errors introduced by these local approximations arenalty very small. Typically
they amount to only 1% of the valence-shell correlation gnéor a triple zeta (cc-pVTZ)
basis set if the domains are chosen as originally propos@&wbbghton and Pulay [40]. The
errors can be reduced and controlled by extending the dosieés. For instance, about
99.8% of the canonical correlation energy for a given baiare recovered if the standard
domains are augmented by the PAOs at the first shell of nergithatoms.
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Figure 1: Number of pairs as a function of chain length forcglg polypeptides (gly)
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3.1 Local MP2

In the local basis the first-order wavefunction takes themfor

= = Z > T with 79 = T7% | (5)

ZJGP rs€(if]

where P represents the orbital pair list afi] denotes a pair domain of PAOs, which is
defined in advance (for details, see Refs. [6, 7]). Here atlidfiollowing, indices, j, &, [
denote occupied orbitals (LMOs) angs, ¢, u virtual orbitals (PAOs). Note that the number
of PAOsr, s € [ij] for a given pair(ij) is rather small anihdependenbf the molecular
size. Therefore, the individual amplitude matri@&s are very compact and their sizes are
independent of the molecular size. The total number of dog#s’? depends linearly on
the molecular size and it is assumed that they can be stotedhrspeed memory.

Since the local orbital basis does not diagonalize the kenater Hamiltonian, an iterative
procedure is required to determine the amplitude mat®&y,, = 7. The optimization
is based on the minimization of the MP2 Hylleraas functigaal

= > 2TV - T9),) (K7 +RY),, ®)

1j€P rs€(ij]

with respect to the amplitudéd/),,, where

RY = KY+FTYS+STYF -y S[FuT + F; T S (1)
k
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are the so called residual matrices. The quantBiendF are the overlap and Fock ma-
trices in the projected basis, respectively, and the exghanatrice§ K),, = (ri|sj)
represent a small subset of the transformed two-electqousi®n integrals (ERIs). Due
to the absence of any coupling of amplitudes with ERIs in éQ.tl{ere is a one-to-one
mapping between amplitude and exchange matrices. Hereruthber of required trans-
formed ERIs is identical to the number of relevant amplitided therefore obviously of
O(N). Note that this is a particular feature of the algebraiccitme of the LMP2 equa-
tions, and no longer holds for LCCSD, which will be discussetthe next section.

At the minimum of B, the (R¥),, must vanish for, s € [ij], and thenF, corresponds

to the second-order energy®. Thus, one has to solve the system of linear equations
(R¥),s = 0. The iterative method to solve these equations is desciibddtail in Ref.

[6].

For a given paifij), only the local block§K"),,, F,,, andS,, for r, s € [ij] are needed

in the first three terms, while for the overlap matrices inghe only the blocks connect-
ing the domair{i;] with [ik] or [jk] are required. The sizes of all these matrix blocks are
independent of the molecular size. Taking further into actéhat for a given paifij) the
number of termg in the summation becomes asymptotically independent ofriblec-
ular size if very distant pairs are neglected, it followstithee computational effort scales
linearly with molecular size.

The exchange matricd€® are conventionally obtained from the two-electron remusi
integrals in AO basis (ERISs) by a four-index transformatiios

K =(rilsi) = 3 Pud Posd Lpi ) Loj(uplve), (8)
" v p o

(mplvo) = /drl/erXu(rl)Xp(rl)T121Xu(r2)Xa(r2);

where the coefficient matricdsandP represent the LMOs and PAOs, respectively, in the
atomic orbital basis. The ER[gp|vo) in AO basis are computed on the fly and not stored
on disk. In order to keep the computational effort for thesfarmation in eq. (8) as low
as possible, the four indices are transformed one afterttiex.oBy defining suitable test
densities and screening procedures it is possible to rettecéormal O(N®) scaling to
OWN) [7]

For distant pairs the expensive integral transformatiam loa avoided by performing a
multipole expansion [39]

Ki =% QnUi.Q, 9)
whereQ" is a vector containing the multipole moments (up to octopofethe overlap
distributionri andU% is an interaction matrix depending only on the centres afd ;.

In this way, theK® for distant pairs can be evaluated in negligible time, ansl l#ads to
significant savings in large molecules.
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Figure 2: CPU times (in seconds on P4/2 GHz) of LMP2/cc-pVRIEglations as a function of chain length
for glycine polypeptides (gly,).
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Figure 2 demonstrates the linear scaling behavior of LMR&&ations for a linear glycine
polypeptide chain, both for the transformation and thatien steps. Naturally, the timings
depend sensitively on the efficiency of integral screenimberefore, the very extended
model system used in Figure 2 represents an optimum casescféening becomes less
efficient for molecules with a more compact two- or three-glisional structure or if larger
basis sets are used. Some timings for more realistic m@saeuill be presented in sections
4.1 and 4.2. MP2 calculations for molecules of this size vpeesiously not possible.

It should be pointed out that the absolute cost (i.e., thefaoor) depends strongly on

the basis set size per atom. If the double zeta (cc-pVDZxslsiis replaced by a triple

zeta (cc-pVTZ) set, as is required in order to obtain redslyreccurate results, the basis
set size per atom increases by about a factor of 2. Sinceahsftrmation depends on the
fourth power of the number of basis functions per atom, tlmeesponding increase of CPU
time is a factor of 16 (in practice, a factor of 10-12 is fousithce due to the larger matrix
sizes some efficiency is gained). This means that LMP2 catioms for large molecules

are still computationally very demanding, despite thedimgzaling (which does not affect
the dependence of the cost on the basis set quality). In tmseof the HPC-Chem project
this problem was attacked in three possible ways:

(i) parallelization: this reduces the elapsed time, butaifrse not the total computa-
tional cost. Some aspects will be discussed in section 5.

(i) development of local density fitting methods. This aggoeh, which will be discussed
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in section 4, strongly reduces the pre-factor. Most impulyain this method the
CPU time depends only cubically on the number of basis fonstper atom, and
therefore dramatic savings can be achieved for large batss s

(iif) development of a local MP2-R12 method, using densitiniy techniques. This
method improves the convergence of the correlation enertfy vasis set size. A
description of this method is beyond the scope of the preasditle and will be
presented elsewhere [42].

3.2 Local CCSD(T)
In coupled cluster theory, the wavefunctions is expanded as
[TC) = exp(T)[TH) (10)

whereT is a generalised excitation operator. In local coupledtefutheory with single
and double excitations (LCCSD), this operator is approxau@as

7= Y B Y Y TR, (11)
€[4

i 1j€Ps rselijf]

whereE,; are spin-summed excitation operators, which excite artreleérom LMO Ploc
to PAO ¢P*°. The single and double excitations are restricted to drbienains[:] and
pair domaingij], respectively. In most cases, it is sufficient to includeyacitations for
thestrong pairsin the expansion, and to compute the energy contributioheiteak and
distant pairs only at the LMP2 level. The list of strong pasrslenotedP;. It is obvious
that the number of single and double excitation amplitutjesnd7’/, respectively, scales
only linearly with molecular size. Therefore, similar larescaling techniques as for LMP2
can be devised for local CCSD [6, 11, 13], even though thertkgns are much more com-
plicated. In contrast to LMP2, where one needs only exchamggrals(ri|sj) over two
LMOs and two PAOs, in the LCCSD case all other types of tramséal integrals are re-
quired as well, in particular also those involving three smd PAOS(ri|st), (rs|tu). This
requires additional integral-direct transformationsrtkermore, in contrast to the LMP2
case the LCCSD residual equations do contain products olftaicigs and ERIs. Neverthe-
less, it is still possible to restrict the LMO and PAO rangeshie related supermatrices to
certain lists gperator listy and domainsqperator domaing which are larger that the am-
plitude pair lists and domains, but still independent of@calar size [11]. Nevertheless, in
spite of these additional complications, dramatic comital savings were achieved, in
particular for the calculation of the LCCSD residual mascwhich are evaluated in each
iteration. Consequently, in strong contrast to conveti@CSD calculations, the compu-
tational effort in LCCSD calculations is often dominatedtbg time spent for the integral
transformations. This problem is particularly severe fgé basis sets. Fortunately, as
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Figure 3: CPU times (in sec on Athlon 1.2 GHz) of LCCSD(T) cddtions as a function of chain length for
glycine polypeptides (gly).
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will be demonstrated in section 4, density fitting approxXioas can be used to overcome
this bottleneck.

Figure 3 shows the scaling of the computational cost as aiimof the chain length
for the polyglycine model system. Perfect linear scalingbserved, and the savings are
dramatic. For the largest calculation it can be estimatattkie corresponding conventional
CCSD(T) would take 56 years, while the local (T) calculatoam be done in less than an
hour [9, 10] (this does not include the time for the integrahsformation, which in the
present case dominates the computational effort.) Timiogsome other more realistic
applications will be presented in section 4.3.

4 Density fitting approximations

The idea of simplifying electron repulsion integrals byirfigt products of orbitals in an
auxiliary basis goes back at least as far as 1959, when BalySlsawvitt used the technique
to compute the intractable 3-centre Slater integrals ioutations on the kimolecule [43].
The method saw relatively little use @b initio theory for a number of decades, but proved
invaluable in DFT [44], where the emphasis was on fitting thtre density in an auxiliary
basis for the efficient solution of the Coulomb problem [46, 47, 48]. The accuracy of
the method has been carefully investigated, and it has bemmsthat with suitable fitting
basis sets the errors are much smaller than other typicatern the calculations, such as
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for instance basis set errors [49]. Optimized fitting basis sre available for Coulomb
[50] and exchange [51] fitting, as well as for MP2 [52, 49].

Some authors, including those of TURBOMOLE, denote the itlefiging approximation
as "resolution of the identity” (RI). We prefer the name dgnitting (DF) for two reasons:
first, it is strictly not a resolution of the identity, sinc&€€aulomb metric is used. Secondly,
a resolution of the identity is used in the MP2-R12 method dhfferent context, and in
our implementation of MP2-R12 both RI and DF approximatieith different auxiliary
basis sets are involved.

In the following we assume that the basis functions (AQg)} and orbitals{¢l°c, ¢pac}
are real. The two-electron integrdjsv|po) in the AO basis can be written as

(uv|po) /dr1 /dr Puv(X1)Ppo (T2) ppg (r2) . (12)

In the density fitting methods the one-electron product iiess,,, (r1) = x,.(r1)x.(r1)
are approximated by linear expansions

P (1) = L0 (13)

whereyx 4(r) are fitting basis functions (e.g., atom-centred Gaussipa-orbitals, GTOs).
The expansion coefficienf3’,” are obtained by minimizing the positive definite functional
[45, 46, 47]

A, - /drl / e, 1) = P (00)] [P (02) = P (22)] 14)
T12

This leads to the linear equations
> DWJsip = RY, (15)

A

where
Jap = (A|B) = / dr, / dry —XA(T12XB("2) , (16)
12

RY = (uw]d) = / dr; / dr, Xelm X (F1)Xa(rs) (17)

The 4-index integrals are then obtained by simple matrixiplidations

(wlpo) ~ ) DYWRY. (18)
A
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In the LCAO approximation the molecular orbitdlg, } are linear expansions of the basis
functions (AOs) x,. }. Therefore, exactly the same fitting procedure as outlihed@can
be used to approximate integrals over molecular orbitals

(rs|tu) = ZD’ASR?{, (19)
A

where R’} = (rs|A) are 3-index integrals in the MO basis, ab® the corresponding
fitting coefficients. Thus, in principle all types of intefgaeeded in angb initio method
can be approximated in this way.

We have implemented density fitting in Hartree-Fock (HFhsity functional theory (DFT),
second-order Mgller-Plesset theory (MP2), and couplestetiheory with single and dou-
ble excitations (CCSD). If used with conventional methownld eanonical orbitals, the ad-
vantage of density fitting is mainly a faster computationhad 2-electron integrals and a
simplification of the integral transformation. Since thentbutions of the 4-external in-
tegrals can be conveniently evaluated in the AO basis, feigni savings result only for
the integrals involving at least one occupied orbital. Rennore, in HF, DFT, and MP2
the scaling of the CPU time with the number of basis functipgisatom is reduced from
(Nao/Natoms)* 10 (Nao/Natoms)®. This means that the savings increase with increasing
basis set. However, there is no change in the scaling witecoddr size. Furthermore, the
(Nao/Natoms)* dependence cannot be removed in CCSD. In the followingaestt will
be shown that these disadvantages can be eliminated wheleriséy fitting approxima-
tion is combined with local correlation methods.

4.1 DF-HF and DF-DFT

Density fitting is most easily applied to the Coulomb part lué Fock matrix, which is
needed both in HF and DFT. This has sometimes been denotelfr Rikd RI-DFT, re-
spectively, but for the reasons explained above we call teéhods DF-HF and DF-DFT.
The Coulomb contribution formally scales é§A/?), but close to linear scaling can be
achieved using Poisson fitting basis sets [53, 54, 55, 56, B¢ evaluation of the ex-
change contribution to the Fock matrix is more involved.ah ®de written as

kw & kw = > Y DYRY. (20)

% AE[’i]ﬁt

If canonical orbitals are used, all fitting functioAs B must be included in the summation,
and the computational effort scales@§N*) [51]. In the work carried out as part of the
HPC-Chem project we have shown that this bottleneck can tieled by using localized

orbitals [38, 57]. The use of localized orbitals offers twivantages: First, the integrals
Rl = (uilA) become negligible unless the basis functignsare close to the localized
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Table 1: CPU timesfor Fock-matrix construction using conventional or Poissaixiliary basis functions.
The full cc-pVQZ basis set has been used.

CPU times/s
Nao integrals transf. solve assembly Coulomb total
Indinavir:
GTO 3885 3577 1585 480 855 2572 9112
Poisson 3885 1529 837 615 890 663 4578
Pregnanediol:
GTO 2345 1307 580 187 196 953 3237
Poisson 2345 771 450 243 227 302 2009

% in seconds on AMD Opteron 2 GHz processor.

orbital gl°c. Therefore, the number of non-negligible integrgig|A) scales asymptoti-
cally asO(N?). Secondly, since the charge densitigsr) = x,(r)¢:°°(r) are local, a
fitting basis located in the same region of spacg,ass sufficient for a given orbital. The
subset of fitting basis functions belonging to orbita called the fitting domain related
to 7 and is denotedt]s,. For large molecules, the number of functiopsg in each fitting
domain becomes independent of the molecular size. Thengthaining number of re-
quired integralgui|A) scales only linearly with molecular size. Furthermore, fittang
and assembly steps for a fixedecome independent of the molecular size, leading overall
to linear scaling for the evaluation of the exchange couatitim. The price one has to pay
is that for each fitting domain a set of linear equations hdsetsolved. Since this scales
with the third power of the number of coupled equations, th&t ¢i.e., the pre-factor of
the linear scaling algorithm) will depend sensitively om sizes of the fitting domains.
Fortunately, relatively small fitting domains are suffigiemoptimize the orbitals. Further-
more, the inverse of the Coulomb matdxor the corresponding LU-decomposition) can
be reused in subsequent iterations, provided the fittingadilo&iremain unchanged. In or-
der to minimize the errors, the final energy can be computedrately with the full fitting
basis without explicit construction of the Fock matrix. Flatails of our implementation
and an analysis of the errors caused by local fitting we ref@&éf. [57]. We found that
the errors on relative energies, equilibrium distances hemmonic vibrational frequencies
are negligible.

The local fitting procedure leads to significant savings | Hock matrix evaluation, in
particular for large basis sets. Table 1 shows some timiogpregnanediol and indinavir
molecules, using the cc-pVQZ basis sets. The calculatiomnftinavir includes almost
4000 basis functions. This calculation has not been pasagihg our conventional direct
HF program. From the timings it can be seen that if a GTO fithagis is used about 70%
of the time is spent in the evaluation of the 3-index integ(#is corresponds to the sum
of columnsintegrals and Coulomb It should be noted that our current integral program is
still far from being optimum. A new implementation, usingdar techniques as used in
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TURBOMOLE, is currently in progress, and this should lead significant reduction of
the integration times.

A further speedup can be achieved by using the Poisson eqyé8, 54, 55, 56]

Polp] = p, (21)

(whereP = —(47)~'V?), which relates the Coulomb potentigp] to the density that
gave rise to it. For a given basis functiops >= |A > one can define new functions
P\XA >= |A >, formed by the application of the Poisson operafor Functions of
this type are called Poisson functions to distinguish thesmfstandard Gaussian basis
functions. The integralg; 5 and(A|uv) then simplify to integrals over the Laplacian

Jis = /erA(r)PXB(r) —< APIB > 22)
and to 3-index overlap integrals
(W) = [ dexale)uo)(s) =< Al >, (23)

respectively. These 3-dimensional integrals are muclerfastevaluate then the 6-dimen-
sional Coulomb integrals. Furthermore, the 3-index oyentdegrals decay fast with the
distance between and uv, and therefore the number of integrals scales linearly with
molecular size. Unfortunately functions lig&y carry no total charge [55, 56]

qg= /dr st(r) =0, (24)
nor indeed any net multipole of any order, because
Qo = /dr réifgm(r/r)lf’x(r) = 0. (25)

One must therefore augment the Poisson basis set with adedast basis functions. For
the exact fitting of arbitrary densities it is sufficient tovhaonly a single, standard basis
function of each angular momentum. We have optimized Poifigong basis sets for the
cc-pVTZ and cc-pVQZ basis sets. The errors of the final HFgiasrare of similar size (or
even smaller) as with the corresponding optimized GTO lsetisof Weigend [51]. Using
the Poisson basis sets, the CPU time for Fock matrix evaluaitypically reduced by a
further factor of 2 (see Table 1).

Figures 4 and 5 show the scaling of the CPU time as a functianaécular size for
a linear chain of glycine polypeptides and polyalaninedesj respectively. The latter
systems have a 3-dimensional structure and are much momgaobithan the linear glycine
chains. The scaling obtained with the Poisson basis isribta quadratic. By comparing
the timings for the linear glycine chain and the alaninedsdiit is found that for molecules
of comparable size the time is approximately a factor of gdain the latter case. This
is caused by less efficient screening in the 3-dimensiorsg.cdlowever, the effect of
screening is much less pronounced than in conventionaltdi@ck matrix evaluation.
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Figure 4: CPU times for DF-HF Fock-matrix evaluation for gjtye polypeptides (gly) as a function of the
chain lengthm
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Figure 5: CPU times for DF-HF Fock-matrix evaluation forratee helices (ala)as a function of the chain
lengthn
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4.2 DF-LMP2 and DF-LMP2 gradients

The first implementation of density fitting in MP2 theory wassdribed by Feyereisen,
Fitzgerald and Komornicki [58]. This reduced the cost foaleating the transformed
integrals, but the scaling with molecular size was I\V®). This bottleneck can be
eliminated if the DF method is combined with the local catigin methods. In LMP2
theory, one needs 2-electron integr&l§ = (ri|sj) over two occupied orbitalg}®, ¢,
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Figure 6: CPU times (in seconds on P4/2 GHz) for DF-MP2 and_ D2 calculations for glycine polypep-
tides (gly), as a function of the chain length
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and two PAOspP*°, ¢P2°. In the DF approximation these integrals can be written as

Ki = ) DiRY, (26)
A€(if]as

Since the PAOs, s are close to the localized orbitalsj, the charge densitigs;, p,; are
local, and therefore for a given pdiij) the fitting functions can be restricted to a pair
fitting domain|[ij]s.. This means that the fitting coefficienty} are the solution of the
linear equations in the subspace of the fitting donailp;. This is very similar to the local
fitting of the exchange matrix in DF-HF, but in this case aeysbf linear equations has to
be solved for each pafij). Alternatively, one can use orbital dependent fitting dorsai
[1]s for all pairs(i7) involving a particular orbitad. These orbital fitting domains are larger
than the pair fitting domains, but one has to solve the linqaagons only once for each
correlated orbital. A possible disadvantage of using aHaependent fitting domains is
that this is not symmetric with respect to exchange ahd ;. We therefore denote this
as "asymmetric fitting” procedure. However, this can be durg using theobustfitting
formula [59]

Ki = ) DiRj+ ) RyDJ- > > DilsD§.  (27)

A€[i]gy BeE[j]as Ac[i]lgy BE[jlas
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Table 2: Analysis of CPU timédor indinavir (cc-pVTZ, 2008 BF).

LMP2 DF-MP2 DF-LMP2

Integrals 25540 2992 2816
Transformation 56620 4795 970
Fitting 0 3364 362
Assembly 0 82663 38
Total (r7|s)) 82160 93900 4208
Iteration 3772 0 3775
Total MP2 86177 93914 8247

a) In seconds for HP ZX6000 Itanium2/900 MHz.

which can be rewritten as

Ki = > DWR{+ ) RyD} (28)
A€[i]ae Beljlae
with
Ry = Rj— > Dilas. (29)
AE[i}ﬁt

Thus, an additional matrix multiplication is required t@ateR", and the computational
effort in the robust assembly step [eq. (28)] is doubled aspared to the non-symmetric
approximation, in which the second term of eq. (28) is negl¢note thaf?}i vanishes if
the full fitting basis is used). In our original work [38] weagsthe asymmetric procedure
with orbital fitting domaingi]s; which were the union of all orbital fitting domaifig]s; for

a fixedi. Hereli]s, includes all auxiliary basis functions centered at the atbelonging
to the orbital domairiz]. It was found that with this choice the errors due to locainfitt
are negligible, and robust fitting was not needed. More rigewe found that much
smaller fitting domains are sufficient if robust fitting is fsemed. Some results will be
presented in section 4.3. Independent of the choice of ttad fiiting domains, their sizes
are independent of the molecular size, and — provided tlssamti pairs are neglected —
linear scaling of the computational effort can be achieviedble 2 shows some timings for
indinavir. The savings by the local fitting approximatiossiost dramatic for the assembly
step [eq. (28)]. This step takes 82663 seconds in canoniedViB2, but only 36 seconds
in DF-LMP2. This is a reduction by a factor of 2175! The savaid@F-LMP2 vs. LMP2

is about a factor of 20 for the evaluation of the integfalss;j) and a factor of 10 overall.
The latter factor is smaller, since the time to solve the LMBRations is the same with or
without density fitting. While this time is only a small fréah of the total time in LMP2, it
amounts to almost 50% in DF-LMP2. The scaling of the CPU tisteiaction of molecular
size is shown in Figure 6. It can be seen that the scaling is slese to linear, both for
LMP2 and DF-LMP2. This has made it possible to perform LMPRwations for much
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Figure 7: Some plots of molecular systems for which geomaptymizations with the analytic DF-LMP2
gradient program have been performed. In all cases a basiftsiple-zeta size has been used.
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Zn(ll) A, complex (CHOH)s6

larger molecules than previously possible. For instanae heve been able to perform
DF-LMP2 calculations for indinavir with the full cc-pVQZ b (3885 basis functions).
Without local density fitting, not even the Hartree-Fockcoddtion had been possible.
Similar techniques have been used to implement analytiggrgadients for DF-HF/DF-
LMP2. The theory is quite involved and we refer to our oridjwark [35] for details. Most
importantly, all 4-index objects except for the LMP2 amydies are entirely avoided in this
method. In particular, there are no 4-index derivativegraés to compute, in contrast to
the DF-MP2 gradient method of Weigend and Haser [60]. ThéPRNmplitudes, which
by virtue of the local approximation are very compact anyveag contracted with 3-index
integrals to a 3-index object immediately after the DF-LM&ergy calculation. Local
fitting is used both in the evaluation of the direct gradiemttabutions as well as in the
coupled-perturbed Hartree-Fock equations. Again, thagdeto significant savings, and
much larger molecules can be treated than before. The addit®rrors in the geometries,
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Table 3: Timings (in minutes) of the individual steps of a DP2 gradient calculation for some exemplary
test molecules. The calculations were performed on an AME2@p 2.0 GHz processor machine.

molecule Zn(I1A, complex (MeOH)s pregnanediol indinavir
basis TZVP AVDZ VTZ(fIP)  VTZ(fIP)
Nao 1114 1312 1014 1773
Nauvx(MP2) 2349 3776 2943 5055
Navx(IK) 3599 4448 2897 4965
DF-HF 461 251 109 375
DF-LMP2 155 75 57 376
LMP?2 iter. 144 32 41 285
DF-LMP2 GRD 286 341 155 526
Z-CPHF 175 177 77 231
DF-HF GRD 134 91 54 163
TOTAL 1036 758 375 1440

inflicted by density fitting are clearly negligible, as wasramnstrated in Ref. [35]. Some
examples of molecular systems for which geometry optinonathave been performed,
are shown in Figure 7. Table 3 compiles the correspondingpgmesults. Evidently, the
correlation-specific parts of the gradient do not dominfagenverall cost of the calculation.
The Hartree-Fock-specific parts turn out to be roughly agespe. This implies that for a
given AO basis set size a DFT gradient based on a hybrid fomaitis not much faster than
the DF-LMP2 gradient, even when employing density fittingvedl. This is particularly
interesting for applications in the field of intermolecutaimplexes and clusters, where
DFT has severe shortcomings due to its inability to desdhiggersive forces. The new DF-
LMP2 gradient has recently been used in a combined expetaiaemd theoretical study on
predetermined helical chirality in pentacoordinate Zihafomplexes [61]. One of these
complexes is shown in Figure 7. The five coordinating atontkerigand are represented
by one pyridine nitrogen atomNiqine, two 0xazoline nitrogen atomsN,oiine, and two
further atoms, denoted by X. Experiment and theory agrédedkpending on the choice of
X, the Zn complex has either/®, (X=0) or aA, (X=S) conformation. Furthermore, there
is agreement that th&, conformer has perfects&ymmetry, whereas the symmetry of the
A, conformer is distorted. This is also evident from Table 4ichitompares experimental
and theoretical values of the most relevant geometricalpaters of these two conformers.
As can be seen, there is good agreement between the X-raji@titeoretically predicted

structures. It is unlikely that calculations at that levelulM have been possible with any
other program currently available.
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Table 4. Comparison of selected bond lengths and anglegdf:liX=0) andA, (X=S) conformers of the
pentacoordinate Zinc(ll) complex studied in Ref. [61]. Teheerimental values were determined by X-ray
structure analysis. The theoretical values were obtailyepeforming geometry optimizations using the
analytic DF-LMP2 gradient program. The TZVP basis [62] wiike related fitting basis sets [63] was used.
For Zinc a quasi relativistic energy-adjusted pseudopi@idmased on the Ne-like 2ft core together with
the related 6s5p3d1f AO basis [64] was employed. All valueggiven inA and degrees.

A, (X=0) A; (X=S)
X-ray DF-LMP2 X-ray DF-LMP2

Npyridine—ZN 2.03 2.05 2.10 2.12
Noxazoline1—ZN 1.96 1.97 1.98 2.00
Noxazolineg—ZN 1.95 1.96 1.98 2.00
X1—=Zn 2.22 2.23 2.53 2.55
Xo—2Zn 2.28 2.25 2.53 2.55
Z(prridine ,Zn y Noxa.zolinel) 114 115 110 110
L(prridine ,Zn ’ Noxa,zolineQ) 116 116 110 110
Z(Npyridine,ZN,X1) 77 76 84 83
L(prridineazn1x2) 76 75 84 83
Z(X1,Zn,Xs) 153 150 169 167

4.3 DF-LCCSD

As already pointed out in section 3.2, the integral tramsfions constitute the most se-
vere bottleneck in local coupled-cluster calculationspite linear scaling algorithm [11]
Density fitting approximations are therefore particulargeful in LCCSD. In a first step,
such methods been implemented for the most expensive ahtelgss, namely those in-
tegrals involving four PAOs (4-external integrals) [65]pe&dups by up to two orders of
magnitude were achieved in this step. Similar to the caseFoLBIP2, local fitting do-
mains can be introduced to restore #éN) scaling behavior of the parental LCCSD
method, as is shown in Figure 8. Furthermore, even thoughdélkéng with respect to the
number of basis function per atom, i.e., the basis set sa®at be reduced from quartic
to cubic as in the case of DF-HF and DF-LMP2, the computatispaedups due to DF
increase substantially when larger basis sets are used.

Very recently, our program has been extended such thattgditisng is employed for all
types of integrals needed in coupled cluster theory [66hler& shows some preliminary
timings for the (gly) test case. The times for the integral transformations aheced by a
factor of 10-20 if full fitting domains are used, and up by adaof 34 (for the 0-2 external
integrals) with local fitting domains. In the LCCSD withowdribity fitting, the transformed
3- and 4-external integrals are stored on disk. Due to theoftidemains, the number of
these integrals scales linearly with molecular size, aech#tessary contractions with the
amplitude vectors and matrices in each iteration are vesty tdowever, in each iteration
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Figure 8: CPU times (in seconds on Athlon/1.2 GHz) for thecwalalttion of the 4-external integrals as a
function of the chain length for poly-glycine peptides (Gly), n = 1...16, The cc-pVDZ orbital basis set
together with the corresponding MP2 fitting basis of Weigetdl. [49] was employed. In DF-LCCSD the
full fitting basis and in LDF-LCCSD local fitting domains weunsed.
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an additional Fock-like operat@(E) must be computed in the full PAO basis

(GE)ls = 3> [2(rslui) = (rulsi)], - (30)

Due to the long-range nature of the Coulomb operator, dosna@mnot be used for the
indicesr, s in the first term without introducing significant errors [11IThis operator is
therefore computed in the AO basis, and the time is the sanfier avaluating a Fock
matrix. In the density fitted case, this operator can be caetpusing the same techniques
as described in section 4.1, and this removes the main bettkan the iteration time.

In the density fitting case one has furthermore the optiontbeestore the transformed
3- and 4-external 4-index integrals as in the standard case,store the smaller sets of 3-
index integralgrs|A), (ri|A) (and/or the corresponding fitting coefficients) and assembl
the 4-index integrals on the fly in each iteration. The lattese is faster in the transfor-
mation step but requires significantly more time per iteratiThe two different cases are
shown in Table 5 as well. Clearly, overall, storing the 4erdjuantities is advantageous,
provided there is enough disk space available.

The errors introduced by the density fitting approximaticey@emonstrated in Table 6. It
is found that the errors for DF-LCCSD are even smaller thaDfe-LMP2, despite the fact
that optimized MP2 fitting basis sets of Weigend et al. [52}jehbeen used. This is due
to a fortuitous error cancellation: While the errors at tiR2 level are positive (relative
to the result without density fitting), the errors caused tiinfj of the 4-external integrals
are negative. In order to keep the latter error small, we datinecessary to use a larger
fitting basis than for the 0-3 external integrals. This is tuthe fact that in the 4-external
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Table 5: CPU times for LCCSD calculations for (glyxc-pVTZ basig, 706 basis functions, 96 correlated
electrons

Step LCCSD DF-LCCSP¥ DF-LCCSD*
Integral evaluation and transformation:
0-2 external integrals 11280 496 328
3 external integrals 12370 838 1718
4 external integrals 33257 1420 1628
Total transformation 56907 2754 3674
Times per iteration:
OperatorG(E) 1570 140 100
Contractions with 3-external integrals 30 531 30
Contractions with 4-external integrals 40 1233 40
Residual 52 52 52
Total time per iteration 1692 1956 221
Total time (12 iter.) 76002 26433 6567

a) CPU-times in seconds on AMD Opteron 2.0 GHZ.
b) cc-pVTZ/MP2 fitting basis [52] for the 0-3 external intaty;
cc-pVQZ/MP2 fitting basis [52] for the 4-external integrals
¢) Using the full fitting basis for the 0-2 external integrals
The 3-index integrals or fitting coefficients are stored akdi
and the 3,4-external 4-index integrals are assembled migzation.
d) Using local fitting domains for 0-2 and 4 external integrahdG(E).
The time for computing the 4-external integrals withoutldiitting domains is 2615 seconds.
Robust fitting with domains extended by one shell of neigtmgoatoms (see text)
is used for the 0-2 external exchange integrals.
All 4-index integrals are precomputed and stored on disk.

case only products of two PAOs are fitted, and this requirgsditunctions with higher
angular momenta than for the other integral types, in whidbast one occupied orbital is
involved.

In LCCSD larger domains are needed for the transformedrakethan in DF-LMP2, and
therefore also larger fitting domains are required if lodéihfyy is performed. It turns out,
however, that the fitting domain sizes can be much reducedifst fitting is performed (cf.
section 4.2). Table 6 shows the errors of LMP2 and LCCSD tatiom energies caused by
local fitting of the 0-2 external integrals, as compared talawdation with the full fitting
basis. The local fitting domains for each orbitahclude all fitting functions at the atoms
belonging to the standard orbital dom&ip in addition, this domain was extended by the
functions at 1 or 2 shells of neighboring atoms (denoted.”Exthe Table). It can be seen
that with an average number of only 334 fitting functions pdaital the error amounts
only to 0.06 mH with robust fitting. Using the asymmetric fifiprocedure without robust
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Table 6: Effect of robust local fitting on LMP2 and LCCSD cdaten energies for (gly), cc-pVTZ basié

Flttlng EXt.b Nggf ELMP2 AELMPZ ELCCSD AELCCSD
none -3.219946 -0.000224 -3.298234 0.000067
non-local 1797 -3.219723 0.0 -3.298301 0.0
asymmetric 1 334 -3.216307 0.003416 -3.295158 0.003143
asymmetric 2 565 -3.219358 0.000364 -3.297971 0.000329
robust 1 334 -3.219655 0.000068 -3.298251 0.000050
robust 2 565 -3.219707 0.000016 -3.298297 0.000004

a) cc-pVTZ/MP2 fitting basis [52] for the 0-3 external intely; cc-pVQZ/MP2 fitting
cc-pVQZ/MP2 fitting basis [52] for the 4-external integrals
AE.,., is the energy difference to the density fitted result withfthifitting basis.
b) domain extension for fitting basis, see text.

fitting as outlined in section 4.2, the error is more than &tes larger. It can also be seen
that the errors are of very similar size for LMP2 and LCCSusthdespite the fact that
robust fitting is not used for the 2-external Coulomb inté&xy(as|ij), it appears that the
local fitting does not introduce extra errors in the LCCSDe Bxtra effort for the robust
fitting is by far overcompensated by the reduction of thenfittlomains. More details of
our method will be presented elsewhere [66].

5 Parallelization

As part of the HPC-Chem project a number of programstth PROwere parallelized or

the previously existing parallelization was improved. Meparallelized were the integral-
direct local transformations, the LMP2 and CCSD programd the density fitting Hartree-
Fock program. Additional work was done on the MCSCF and MRfigpams. The

infrastructure was extended and generalised to suppderelit communication libraries
(TCAVBG, MPI ) and network protocols (Myrinet, TCP-IP).

The parallelization ilMOLPRO is based on the Global Array (GA) Software developed
at Pacific Northwest Laboratories (seew. ensl . pnl . gov/ docs/ gl obal /). The
GA library provides facilities to create, write, and read &Avhich are distributed over
the compute nodes and can be used as a shared memory deviessAsone-sided, i.e.,
each processor can asynchronously read or write data fsgrarts of the GAs which are
located on remote nodes. The GA software allows to use lolisad and shared memory
machines in the same way, but of course it has to be taken actwuat in the algorithms
that accessing data via the network is slower than from locahared memory. In order
to minimize communication, a symmetric coarse grain-paliahtion model is used, and
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Figure 9: Elapsed times (upper pannel) and speedups (lcavexi)pof direct Hartree-Fock calculations for
progesterol using the cc-pVTZ basis set on a PC cluster/§BBIMHz, Myrinet)
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data are replicated on all nodes if sufficient memory is alddl. The tasks are allocated to
processors dynamically using a shared counter.

Some programs, as direct Fock-matrix evaluation, are rahsy to parallelize, since the
amount of data to be communicated is minimal. However, thi®t the case in the integral
transformations or in the CCSD program. The transformatiovolve sorting steps, and in
the CCSD the amplitudes are combined with all transformesbials in a non-sequential
way. Therefore, the communication requirements in thesgrams are much larger than in
HF or DFT. Furthermore, many data must be stored on disk avertieless be accessible
from all CPUs. In order to minimize the communication and t\@rheadsiMOLPROuses
various different file types: (i) exclusive access files (EEA#hich are local to a particular
processor and can only be read from the processor to whightbileng; (ii) shared files
(SF), which can be read from all processors. However, atiggsors must be synchronized
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Figure 10: Elapsed times (upper panel) and speedups (lcavergh) of LMP2 calculations for progesterol
using the cc-pVTZ basis set on a PC cluster (PI11/933 MHz, i)
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when 1/O takes place, and thus the processors cannot petifieriiO independently. In
order to eliminate the latter restriction, global files (G#re implemented by the Julich
group as part of the HPC-Chem project. Global files behawe@Rs but reside on disk.
One-sided access from any processor is possible. It is alssilge to distribute the file
with a predefined fragmentation over the processors, whachbe used in the algorithms
to further reduce the communication. Finally, files can d#lsanapped to GAs so that all
data reside in the distributed memory. This can be usefulldfrge amount of memory
is available and I/O is a bottleneck. A typical usage of EAESfiis the storage of the 2-
electron integrals in conventional calculations. Thegnags are evenly distributed over all
nodes, and each node processes its own subset. On the atbeshared or global files are
used to store the amplitudes and transformed integralse sivese must often be accessed
in a random manner.
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Figure 11: Elapsed times (upper panel) and speedups (lavexpof CCSD calculations for 1-buten@(
symmetry, 168 basis functions) on a PC cluster (PI11/933 MWyrinet)
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Figures 9 and 10 shows timings of direct HF and LMP2 calcoifetj respectively, on the
PC cluster funded by the HPC-Chem project. This clusterainat8 dual processor nodes.
If only one processor per node is used, the speedup is alimest.l Some degradation
is observed if 2 processors per node are used, since the pméaadwidth is insufficient
for two processors. Furthermore, some global array omersitiike global summations or
broadcasting, are performed via one CPU (usually CPU 0){l@adeads to a communica-
tion bottleneck in this node if many CPUs are used.

Figure 11 shows timings for conventional CCSD(T) calcwlasi as function of the number
of processors. In this case significantly more communicasmeeded than in the direct
LMP2 calculations. Nevertheless, the speedup is veryfaat®y as long as only one
processor per node is used. The performance gets much Wonseprocessors per node
are used (not shown). With 16 processors, the speedup isabolyt 10. To a large extent
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this is due to poor memory bandwidth of this machine. Thisalaa be seen from the facts
that (i) running two similar jobs on one node increases the) @fe of each calculation
by a factor of 1.5-1.8, and (ii), running a parallel job usihgrocessors on a single node
leads hardly to any speedup, despite the fact that sharedmésrused and no inter-node
communication is required. Thus, for memory intensive igagibns like CCSD(T) itis not
advantageous to use dual CPU compute nodes. It should ket hoteever, that with more
recent hardware (e.g. AMD Opteron) this memory bottlensckat observed any more,
since in these machines each CPU has independent memosgath#ortunately, at the
time of writing this report, no detailed benchmark resuttssuch machines are available.

6 Conclusions

The work reviewed in this article has shown that local catieh methods combined with
density fitting approximations have extended the appllitglof high-levelab initio meth-
ods to much larger molecular systems than could previouslydated. Local approxima-
tions lead to linear scaling of the computational cost ashatfan of the molecular size for
all popular single-reference electron correlation meghidee MP2-MP4, QCISD(T), and
CCSD(T). While the absolute cost of the original linear sgamethods was still relatively
large if good basis sets were used, density fitting approxoms.have made it possible to
reduce the computer times by additional 1-2 orders of madait This applies in partic-
ular to the integral transformations, which constituteel thain bottleneck. The speedup
of the correlation treatments has lead to the situationltNW#R2 calculations with density
fitting took only a small fraction of the time needed for thegqeding direct Hartree-Fock
calculation. Therefore, additional work has been devatespeed up the Fock matrix con-
struction. It has been shown that by localising the orbitalsach iteration and applying
local density fitting approximations a speedup of 1-2 oradénphagnitude (depending on
the basis set quality) can be achieved. The new methods ts/keen parallelized, which
further reduces the elapsed times. All methods describalisnvork have been imple-
mented in theVOLPRO package ofb initio programs and will be made available to the
users of this software in the near future.
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1 Introduction

The TURBOMOLE quantum chemistry program package in its current versitmwalfor

the treatment of electronic ground states at the Hartreé-fadF), Density Functional
Theory (DFT), second-order Mgller-Plesset perturbati@moty (MP2) and Coupled Clus-
ter Theory (CC2) level of theory including ground state gndigs (structure constants,
vibrational frequencies, NMR chemical shifts). Furtherlided are methods for the treat-
ment of electronic excited states by linear response tqalesiat DFT, HF and CC2 level of
theory. Specific to TRBOMOLE is the emphasis on integral-direct implementations of the
available methods, combined with fast integral evaluati®in/ and MARI-J techniques)
and the exploitation of the full finite point group symmetry.

This part of the HPC-Chem project aims at further extendisigpplicability to very large
systems by means of parallelization. In view of the fast méthogical development - as
exemplified by the other contributions to this report - patedation efforts should separate
the infrastructure required for parallel optimizationrfrahe actual code of the quantum
chemical (QC) methods and supply only a (limited) set ofliigiroutines supporting main-
tenance, parallelization or re-parallelization of exigtcode with little effort. Discarding
the master-slave concept greatly simplifies paralleliratvhile minimizing the differences
between serial and parallel QC codes. Finally, machinepeddence is advantageous in
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view of the short life cycles of current hardware. Anticipgtthe more detailed discus-
sion of efficiency, functionality and performance of thei@erode in chapter | it is evident
that (easily parallelizable) integral evaluation is of diehing importance. This does not
exactly facilitate parallelization. Moreover, parallede directly derived from a serial
implementation usually does not simply scale to arbitrapbfem sizes: memory require-
ments per processor might be excessive and switching tobdised data might not be
trivial and collide with parallel efficiency.

Linear algebra routines have to be replaced in many casesuiagl versions because
either the size of the matrices enforces switching to disted data or cubic scaling re-
quires parallelization. Specific cases may force the repfant by alternative algorithms
with improved performance either due to better paralleledibity or more favorable cache
optimization.

For parallel computer systems 1/O poses a potentially sefqwoblem and should - when-
ever possible - be completely avoided. As (distributed) mgrmavailability scales linearly
with the number of processors, shortages in distributed ongare likely to be alleviat-
able. This does not appear to be the case now or in future éonsiary storage media. In
addition storage requirements can be reduced by data cesipne

The exploitation of symmetry largely reduces the compateti cost (integral evaluation
is sped up by approximately the order of the point graypsome linear algebra tasks
by ng and memory demand is down by a factorg) at the expense of somewhat more
complicated load-balancing and data access. A key ingnefiie good performance is
systematic, dense data access which can be taken advarithgeh®e communication
routines. TURBOMOLE very efficiently implements symmetry for integral evaleatiand
data storage. An exception comprises the symmetry redursdarmge of the Fock and
density matrices in CAO basis.

In the subsequent sections, these aspects are discussgdidio reasonable solutions in
some detail. For a brief introduction to the Rland MARI-J methods refer to sections 1.3
and 1.4, respectively.

2 General considerations

This article primarily deals with the parallelization ofetfRDFT and ROGRAD modules
required for structure optimization at DFT level with noybhid functionals using the RI
method (cf. section 1.3). With few exceptions all detaikscedpply to the BcFand GRAD
modules which furnish the basis for geometry optimizatiopD&T and HF level of theory
and share most computational steps with their Rl counterp@he latter handle addition-
ally the auxiliary basis set, the associated integrals cantbute Coulomb contributions to
the Kohn-Sham matrix differently.
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TURBOMOLE is a collection of independent specialized modules whighroonicate via
files. The input is set up interactively by the moduleHINE and the calculation is carried
out by means of theGBEX script, which executes the individual modules in the cdrrec
order (Figure 1).

Input data
DEFINE
D
SCF AOFORCE
RIDFT —
UHFFORCE
T ')\ — Escr
b GRAD MPGRAD
B RDGRAD Rivp2
B EGRAD Ricc2
X X —| MPSHIFT
— MoLrocH
RELAX FroaG oroc
— Ricc2

Figure 1: Schematic flow chart of theJ/RBOMOLE package (for details see text)

The master-slave concept is discarded and dynamic (bagksf)tand static load-balancing
based on the data distribution is implemented. Dynamic-lma#ldncing is mainly used for
integral evaluation since the computational costs assatiaith the integral batches can-
not be accurately estimated. Dynamic load-balancing ig efésient in combination with
the replicated data approach, where the communicationitoadlependent of the num-
ber of tasks. However, memory limitations force dynamiadki@lancing with globally
distributed data imposing additional constraints to redtiee communication overhead.
Either fully encapsulated separate parallelized tasksh(ss linear algebra) are used or
parallelization is restricted to the highest possible laverder to avoid instabilities due
to excessive code changes and to retain a maximum overlagéetserial and parallel
codes. Despite its computational simplicity the RI based DBes not have one domi-
nantly CPU time consuming subtask, so that parallelizatguires more effort in order to

85



Parallel DFT in TURBOMOLE, Linear Algebra
Research Centre Jilich

achieve scalability. All timings refer to the Julich mphtocessor system, a cluster of IBM
eServer p690 with 32 Power4 CPUs (1.7 GHz) per SMP node ctethedth a high-speed
network. Reproducibility of performance data is limited®MP systems to sone5-10%
even for serial codes such as matrix multiply. Since contprta have not been carried
out with exclusive access, performance depends on otherjmiming simultaneously.

3 Communication libraries

The parallel implementation of IRBOMOLE primarily utilizes several public domain
communication and mathematical libraries complementea $gt of special-purpose rou-
tines.

The Global Array toolkit [1] provides distributed multi-dimensional arrays alonghw
one-sidedransparent access to the distributed data, i.e. there ieed for cooperative
communication calls between the individual processes-(pae send and receive calls).
This toolkit is of particular use for dynamic load-balarngewvoiding the master-slave con-
cept. This feature is not yet available with the current MRkandard, while vector-specific
implementations may provide some features of the future-RIgtiandard. Other features
are easy control of the data distribution over the processesase of data access and the
provision for taking advantage of data locality by the usedde. The toolkit's communi-
cation library is interfaced to MPI, specific network pratts(quadrinet, myrinet) as well
as to the mixed usage of shared memory and MPI (similar to TORBI [2]) and runs on
a variety of machines.

BLACS [3] is the basic communication library usually implementedtop of MPI used
by the parallel linear algebra package ScaLAPACK. It is netywseful with quantum
chemical program packages as the usage is tedious and dbeffananuch advantage
over the direct use of MPI, here.

Compared to the GA toolkit the widely us&tPI-1 standard lacks the one-sided access to
the distributed data forcing the master-slave conceptaticdbad-balancing. The lack of
more complex data structures and the tedious implementatithe basic library utilities
makes the ready-to-use infrastructure available with tAet@dlkit preferable. However,
the possibility to create process subgroups and carrgexdral parallel tasks simultane-
ouslymakes a limited use of MPI based communication valuable. ithdiglly, certain
data redistributions are very efficient with MPI.

TheScaLAPACK [5] andPBLAS [4] implementations of parallel linear algebra are based
on the BLACS communication library. The block-cyclic dibtrtion of one- and two-
dimensional matrices is - however - not only extremely ineament but also incompatible
with the algorithms used in quantum chemistry. Since thg@eapto be very favorable in
the realm of linear algebra and regarding the large numbeadidllel routines available
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with ScaLAPACK and PBLAS, a set of MPI based routines intszfthe BLACS based
block-cyclic distribution of matrices and the correspargddense GA data structures.

Theinterface library comprises a set of special routines and utilities for a aonétasks
occurring in the context of parallelization. It is also dpgsd to be implemented in a serial
and parallel version so that serial and parallel code aréoae @s possible (somewhat in
the spirit of OpenMP, though not restricted to SMP architezt) and simplify code main-
tenance and development. It also includes extensionsHglsidata-parallel algorithms
and for shared memory usage on clusters of SMP nodes.

4 Data structures

As in other codes, TRBOMOLE stores two-dimensional square matrices as vectors with
column-major labeling (FORTRAN notation, Figure 2a). Fpmsnetric matrices only the
upper half matrix is stored (Figure 2b).

1(9(17(25(33|41|49|57 1|12|4(7]11/16(22|29
2110|18|26|34|42|50|58 315(8]12{17|23|30
3111|19|27|35(43|51|59 619(13/18|24|31
4112|20|28|36|44|52|60 10({14|19|25|32
5113|21|29|37(45|53|61 15/20|26|33
6114|22|30|38(46|54|62 21|27|34
7115|23|31|39(47|55|63 28|35
8116|24|32|40/48|56|64 36
Figure 2a Figure 2b

Figure 2: Storage of non-symmetric (Figure 2a) and symmftigure 2b) two-dimensional square matrices
as vectors. The numbers are the vector element indices.

In the presence of non-trivial symmetry, block-diagonatmoas occur with elements in
the off-diagonal blocks vanishing. Each diagonal blockased as a vector and the vectors
of subsequent diagonal blocks are concatenated (Figure 3).

These arrays are stored in distributed manner as vectossolt two-dimensional matrices
depending on the access pattern of the algorithm. The twasional matrix may be
distributed over the processors by rows, columns or blo€kgute 4).

The global data structures are accessed (i) by retrieviogwaaf any part of the distributed
data and (ii) by direct pointer-access to the local portibiie distributed data that a given
process owns.
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1|6]|11j16|21 11214711
2| 7112|17|22 315812
31|8(13|18|23 69|13
419114|19(24 10(14
5110(15|20|25 15
26|29|32 16/17|19
2730|133 18|20
28|31|34 21
Figure 3a Figure 3b

Figure 3: Storage of two-dimensional block-diagonal ngmusietric (Figure 3a) and symmetric (Figure 3b)
matrices as one-dimensional vectors.

1 2| 1 AN
i | “r
I') ‘ll
- A
“r
Figure 4a Figure 4b Figure 4c

Figure 4: Distribution of a two-dimensional array over 4 ggsses by blocks (Figure 4a), by columns (Figure
4b) and by rows (Figure 4c).

ScalLAPACK relies on block-cyclic (BC) data distributionstavo-dimensional matrices.
A process grid is constructed such that the product of pror®ss and process columns
equals the total number of processes and the grid is as dasguare shape as possible
(Figure 5a). The elements of the initial matrix are grouped subblocks (Figure 5b) with
a typical size of 50. The optimum value depends upon the Bpéask. These subblocks
are distributed in cyclic manner over process rows and gocelumns (Figure 5c). The
resulting distribution guarantees that no process owngaibntinuous part of the initial
matrix thereby optimizing static load-balancing. The MRkéd routines for conversion
from/to BC data distributions introduce a negligible oweati compared to the time spent
in the linear algebra routines.
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1 917 25/33 4149 57| 1 9 (33 41|17 25|49 57
2 10(18 26|34 42|50 58( | 2 10(34 42|18 26|50 58
1 3 3 11{19 27|35 43|51 59| | 5 13|37 45|21 29|53 61
4 12|20 28|36 44|52 60| | 6 14|38 46|22 30|54 62
5 13|21 29|37 45|53 61| | 3 11|35 43|19 27|51 59
6 14|22 30|38 46|54 62| |4 12|36 44|20 28|52 60
2 4 7 15|23 31|39 47|55 63| |7 15|39 47|23 31|55 63
8 16(24 32|40 48|56 64| | 8 16(40 48|24 32|56 64
Figure 5a Figure 5b Figure 5¢

Figure 5: Size of the local matrix associated with each pec€igure 5a), subblock formation (Figure
5b) and block-cyclic distribution of the subblocks (Figh®. The numbers indicate the global consecutive
numbering of the matrix as in Figure 2.

5 Parallel linear algebra

A number of simple algebraic operations on distributed datg. scalar products of vec-
tors, traces of matrices or matrix-matrix products, etece embarrassingly parallel, scale
ideally to an arbitrary large number of processes and reditiile or no interprocess com-
munication. Point group symmetry does not impose any ctsms.

For other important operations (e.g. similarity transferrstandard eigenproblem solver,
Cholesky decomposition) use is made of the ScaLAPACK paldatlear algebra package.

Point group symmetry gives rise to block-diagonal matrig¢egure 3) so that the individ-
ual blocks can be treated independently. The resultinghgd@ictor amounts to approxi-
mately the order of the point group squared, for the seridecdParallelization schemes
include (i) executing each block in parallel on all procassge) executing all blocks si-
multaneously serially, and (iii) executing all blocks sitaneously and in parallel. The
speedup in scheme (i) is limited by the block dimension argraties with increasing
symmetry. Scheme (ii) favors high symmetry cases and is memtensive. The imple-
mented scheme (iii) uses multi-level parallelism by dimglthe total number of processes
into a number of subgroups and each of these subgroupsgmnadane and possibly more
blocks to operate on.

The three most important elementary linear algebra operat@re Cholesky decomposi-
tion, similarity transform and the symmetric eigenvaluelppem, each with cubic scaling.
Figure 6 illustrates the approximate scaling that can bésael for large problem sizes
with no symmetry. Whereas Cholesky decomposition and aiityltransform come close
to ideal scaling this does not apply to the eigensolver.
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600 r-

400

200 -

100 -

60

wall clock time[s]

40 ~— g

Cholesky decomp. (N=39000,20000) —~_
20 s
B—a similarity transform (N=16300,8600)

=—a ejgensolver (evd) (N=16300,8600)
1 1 1 1 1 1

8 16 32 48 64 72
number of CPUs

Figure 6: Parallel performance of important linear algeiparations (dotted line illustrates ideal scaling).

6 Ultilities: parallel /O and data compression

The Global Array toolkit has been extended by a Global I/QJ{3Ibrary, which supports
one-sided transparent access to data which are distributrdhe local hard disks of the
individual nodes of a PC cluster. This was primarily intethf supporting the MOLPRO
package, where the large amount of data which are genenatedyatalculations with par-
allel electron correlation methods cannot be kept in menidaya access and control over
the data distribution mimic the global arrays in memory: diked distribution, program
control over the data distribution, record based and narhtoous data access.

Each GIO file consists of several records. The size and thetdigson of data in a record
over the nodes can be fixed individually for each record. Tdoess to data on remote hard
disks is one-sided and requires no details about the disiiin

This library extension has been used for the parallelinatiobMOLPRO. The developers
group of the Global Array toolkit has obtained the GIO extens and may choose to
incorporate it into the official release.

The data compression scheme [6] relies on the assumptiosaistant absolute error so
that numbers are stored only with that many bits that aressacg not to exceed the error
bound. This results in a substantially better control ower érrors compared to storing
with a fixed reduced mantissa length. The compression faotogases with a decreasing
numerical range of the input data. The initial idea to use m@ssion for integral storage
in memory, however, was abandoned because the integrédsoyiy a low compression
factor of two to three. Moreover, the recent advances inlégarenic structure codes make
integral evaluation less and less critical, so that congioesschemes may be rather applied
to more suitable quantities such as the DIIS error matritesontext of the BCF code,
the compression of the difference density matrices anérdifice Fock matrices might be
a useful target.
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7 The modules RDFT and RDGRAD

In Figure 7 the flow charts for theIBFT and ROGRAD modules are displayed. Whereas
RIDFT involves the (iterative) wavefunction optimization stBGRAD computes the gra-
dient for a previously optimized wavefunction. The stemlicgated in the flow charts may
become time-consuming and enforce parallelization stibgegoint group symmetry and
size of the molecule. Additional minor steps are also peliadd as they operate on dis-
tributed data. Parallelization is driven by the demand éaluced wall clock timings and
the accommodation of memory requirements. Subsequeh#éyintividual steps are de-
scribed in more detail as far as conceptional changes arallgderation are concerned.

RIDFT RDGRAD

Generation & Orthonormalizatio
of the initial MOs

Computation & Cholesky
decomposition of PQ matrix

[ Computation of S, T & V integralg
N

Generation of Density matrix
& transformation into CAO basis

Computation & Cholesky
decomposition of PQ matrix

Computation of Coulomb contribution
RIJ & MARIJ

Generation of Density matrix
& transformation into CAO basis

Computation of Exchange contributio

Grid point generation & quadrature One-electron gradient integrals‘
[ Transformation of Fock matrix into SAO basis Computation of Coulomb contribution
(RIJ & MARIJ)

‘ DIIS convergence acceleration \

Computation of Exchange contributio
‘ Transformation of full/partial ‘ Grid point generation & quadrature

Fock matrix into MO basis

New set of MOs by
(i) solving eigenvalue problem
(ii) orbital rotation scheme

not converged

converged

‘ wavefunction analysis ‘

Figure 7: Schematic flow chart of thed¥T and ROGRAD modules.

The clusters and molecules chosen to demonstrate the tpedormance are collected
in Figure 8: the vanadiumoxide clustei$fy sair, Vso_sheet, Vao_tupe) llUStrate the impact of
symmetry; zeolites represent unsymmetric cage structsmesl! enzymes (BPTI, Barnase)
cover aspects from biochemical applications.
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V240_ball: V5400600 V80_tube: VgyOano V80_sheet V0209
I, 840 atoms, PBE Clyy, 280 atoms, PBE Cs, 280 atoms, PBE
TZVP 19320/38880 TZVP 6440/12960 TZVP 6440/12960

BPTI: CogqaH438NgsO79S; Barnase: Cs50Hgg1 N151 0168 Zeolite: Si960216H4g
C,, 892 atoms, B-P86 Cy, 1710 atoms, B-P86 C4, 360 atoms, B-P86
SVP 8574/20323 SVP 16371/38881 SVP 4992/12216

Figure 8: Molecules and clusters used for evaluation pagdsrutto formula, point group symmetry, num-
ber of atoms, exchange-correlation functional, basissetis set size/auxiliary basis set size.

7.1 Generation and orthonormalization of the molecular orbtals

The iterative wavefunction optimization process beginsdaystructing a density matri
from an initial set of occupied molecular orbitals (MQ3)

occ

D;u/ = Z2Cuzcuz (1)
=1

The Kohn-Sham (KS) matrix is formed by contracting the dgnsith the integrals and
adding the exchange-correlation contribution which isoasfunction of the density
(cf. 1.3). After application of convergence acceleraticheames (direct inversion of itera-
tive subspace (DIIS), level shifting, damping) the eigémea and eigenvectors of the KS
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matrix are computed, which in turn serve to compute an imgalalensity matrix and the
optimization cycle is repeated until energy and/or deraig/converged. The initial MOs
are either obtained from a previous calculation of the saystem at a nearby geometry
or by projection from a more approximate, faster Extendedkel Theory (EHT) calcu-
lation. The subsequent formalism requires orthonormal M@ it is advantageous for
convergence control to have them spanning the full funcserce of the basis. In geom-
etry optimizations the start MOs taken from a previous daloon at a nearby geometry
must be re-orthonormalized. Traditionally this proceegsSbhmidt orthonormalization
which does not parallelize and is rather slow.

The alternative is a Cholesky decomposition based schenehwhfaster, scalable and
shares the advantages of the traditional approach: (i$fivam the overlap matri$ from
atomic orbital (AO) into the MO basis using the current apiimate MOsC, (i) compute
the Cholesky decomposition thereof, and (iii) multiply tqgproximate set of MOs by the
inverse ofU to the right. The orthonormality condition is expressed as

c’fsc =1 (2)

wherel denotes the unit matrix.
C’sC = U'U (3)
(CUHTS(CUu™) = 1 (4)

All steps are available with ScaLAPACK/PBLAS. This proceslalso serves for interme-
diate re-orthonormalization of the MOs in order to reduce @lhcumulation of round-off
errors. In fact, this scheme is quite similar to the re-amttronalization routine already
available in TURBOMOLE, which relies on perturbation theand tolerates small devi-
ations from orthonormality only. On the other hand, startivith the projected occupied
orbitals from an EHT calculation a full orthonormal basislésired without corrupting the
EHT orbital guess. Supplementing the missing virtual MOgdydom numbers, which
serve as a non-linear dependent virtual orbital guess,aime procedure is applicable as
well. Performance data are given in Table 1.

Strictly, the SCF scheme does not necessarily require tstaart a full set of orthonormal

MOs which resemble the canonical KS orbitals: the standasdgulure for the general
symmetric eigenvalue problem constructs an orthonormsisbay Cholesky decomposi-
tion of the overlap matrix in AO basis (cf. section 1.5, [L.3However, experience indicates
a less favorable convergence behavior.
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cluster point MOs wall clock time[s]
groug (total/occ) 4 87 168 3% 48 64 7%
V240.ball 1,(120) 19320/5160 - - 0.6 0.4 0.2 0.1 -

V80_tube Cy(8) 6440/1720 6.4 2.1 1.2 0.7 - - -
V80_sheet G(2) 6440/1720 49 19.0 11.3 6.2 5.1 - -
Zeolite  G(1) 4992/1560 60 30 17.2 9.5 -
BPTI Ci (1) 8574/1734 - 185 84 45 36 28.4 -
Barnase (1) 16371/3271 - - - - 233 - 159

@ N,: N CPUs distributed symmetrically overSMP nodes® Order of point group in parentheses.
Table 1: Performance data for the Cholesky based orthorizatian procedure.

7.2 Computation and Cholesky decomposition of the PQ matrix

In the RI-J method the electron density is expanded in terms of an atmteced auxiliary

basis set. Its size is roughly twice the size of the basis setl dor expansion of the
electronic wave function from the outset and can reach dewas beyond 40000. The
elements of the PQ matrix contain the scalar prodyct®|@) > defined as (cf. section
1.3.3.2)

<PlQ> = /P(Tl)Q(rg)\rl | dr (5)

As only the totally symmetric component of the PQ matrix iguieed, symmetry reduces
memory demands by ng and computational effort by ng Especially for low-symmetry
cases it is important that the PQ matrix remains distribtitedughout so that its size is
no longer the limiting factor. Th@(N?/n?) serial evaluation of the PQ matrix elements
is except for large processor numbers faster than the Gtyobescomposition, which is
carried out with ScaLAPACK (for performance see Figure 6).

7.3 Evaluation of one-electron integrals

The one-electron integrals (overlap, kinetic energy, tebecnuclear attraction, and effec-
tive core potential; COSMO solvent integrals are excludecttas they have to be recal-
culated in each SCF iteration) are computed very much invirtle the old master-slave
implementation but using distributed memory, instead. ddraputational effort for evalu-
ating these integral$X(N?/n,)) is negligible compared to the previous setup step for the
RI-J method.

7.4 Transformation of operators between different represatations

Operators are represented by matrices which are frequeeatigformed between different
basis sets (CAO, SAO, MO) in order to use the most favoralgeesentation for a given
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task. Whereas symmetry for operators in SAO and MO reprasens gives rise to dense
block-diagonal matrices, in CAO representation the mataix be decomposed into groups
of symmetry related scattered submatrices. Although itld/itne sufficient to store the
symmetry independent submatrices, onlyRBoMOLE chooses to keep the full matrix and
to compute the symmetry-nonredundant contributions. Sgtrimation thereafter leads to
the symmetry-correct representation:

o = cfocC (6)

As the transformation and operator matric€ gnd O, respectively) are dense block-
diagonal for the SAO and MO representations the similar@pndformation is of order
O(N?'/nf]) carried out by standard PBLAS routines. In fact the simtjatmansform is be-
coming more expensive than integral evaluation for Barrfdse= 16371), but scalibility
and GFLOP rate is good (cf. Figure 6).

The transformation between SAO and CAO representationeheryvinvolves very sparse
transformation matrice€ which contain at most, non-zero elements per row and col-
umn, respectively, disregarding the transformation betweartesian and real spherical
harmonics basis functions. The sparse matrix-multiplyldesesn adapted for the use of dis-
tributed data and optimized for better cache usage. Thalstigl is limited as the static
load-balancing tied to the data structure is rather poarvery large high symmetry cases
(V240_ball) these operations are particularly problematic.

7.5 The Coulomb contribution to the Kohn-Sham matrix

The construction of the Coulomb part of the Kohn-Sham méattiews the formulae given
in section 1.3 which is evaluated by parts: beginning with¢bntraction of the three-index
integrals/,,, , and the density matrix in CAO basis,

1§4° = > LuwaDuw 7)
uy

the resulting total symmetric component of tf¢'© vector is transformed to SAO basis.

ryISAO — (PQ)_I’)/SAO (8)

The multiplication by the inverse PQ matrix follows the stard scheme avoiding its ex-
plict formation [13]: starting with the Cholesky decompasi of the PQ matrixJ, two
sets of linear equations are solved. This step is implendesgeally on a distributed upper-
triangular packed matrik) in order to minimize memory consumption. After backtrans-
formation ofy/549 into CAO basis and contraction with the integrals the Coddamntri-
bution to the KS matrix is obtained.

JEI’JAO _ Z Tay/€40 ©)
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For the multipole accelerated Hltechnique (MARI) integral evaluation is split into a
near-field part using standard methods to evalliate and a far-field part which uses the
multipole approximation to evaluate the integrals and @mttthem withD,,, and~/¢49,
respectively.

KS and density matrices are kept distributed by columns emd rrespectively. Provided
tasks are defined over shell paiys v) such, that large, non-overlapping, densely stored
stripes of these matrices are accessed, only, the total comation load is almost in-
dependent of the number of processors and does not limitcddalslity. This strategy
implies minimizing the number of independent tasks whilentaaning an acceptable load
balance. This is achieved in a two-step procedure basedsemadéing tasks according to
rough cost estimates for integral evaluation and obtainioge accurate timings during the
first SCF iteration cycle which is used for re-optimizatidrtize task definitions. Due to
the constraint of minimizing the communication load petrfead-balancing is not possible
here.

cluster point MOs wall clock time[s]
grougd (total) & 8¢ 16 3% 482 644 72
V240.ball 1,(120) 19320 - - 6.9 6.1 6.0 6.2 -
V80_tube  Gy(8) 6440 40 19.1 9.8 5.4 - - -

V80_sheet G(2) 6440 172 81 44 20 16 - -
Zeolite G(1) 4992 107 48 27 13 - - -
BPTI G((1) 8574 - 199 103 52 44 31 -
Barnase (1) 16371 - - - - 126 - 98

@ N,,: N CPUs distributed symmetrically overSMP nodes? Order of point group in parentheses.
Table 2: Construction of the Coulomb part of the KS matrix

Large high-symmetry cases (V24@ll) scale to a very limited number of processors, only,
which is in view of the negligible computational effort oftle importance. All of the
examples yield a reasonable parallel scaling (Table 2).

7.6 The exchange contribution to the Kohn-Sham matrix

The evaluation of the exchange-correlation functionahisied out by numerical quadra-
ture. The symmetry-nonredundant grid point generationsamting of the grid points as
to allow for fast evaluation and efficient contraction withgmall number of ) density ma-
trix elements contributes to the startup time. Both gridnpgieneration and sorting are
executed in parallel.

Although the evaluation of the exchange-correlation fiomzl is approximately linear
scaling, it suffers from two serious drawbacks affectingapalization: (i) the reorder-
ing of patches of density and KS matrices permits fast quadgdut amounts essentially
to random access to the original matrix elements renderingompatible with the notion
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of distributed data and - for large matrix dimensions - paEtularge numbers of cache
misses. (ii) The computational effort per batch of grid peiis - due to the data access -
not reproducible, which rules out dynamic load-balancinign\& small number of tasks as
required for distributed data usage.

Since for large cases it is not possible to keep both densdyks matrices replicated, as
reasonable compromise the density matrix is kept replicatee per SMP node reducing
memory consumption while maintaining direct fast simudtams access by all processes.
The KS matrix is kept distributed with a local buffering maaism for adding individual
contributions. For efficient buffering, tasks are cons#itlby a large number of spatially
close grid points. As communication overhead still may ami@a 50% of the total wall
clock time, load-balancing is far from optimum (Table 3). n8improvement can be
expected from the direct use of MPI in the buffering mechanias it is better suited
for the kind of data distributions occurring there. Stiltiee, though dependent upon the
topology of the molecule, is a reordering of the initial dgnand Fock matrices such that
small dense patches of the matrices are accessed only wghdidundancy.

cluster point MOs griel wall clock time][s]
groug  (total) 4 8¢ 16} 32 48 64 7
grid construction

V240 ball 1,(120) 19320 2 - - 2.7 2.8 2.8 3.0 -
V80_tube Gp(8) 6440 2 45 26 1.6 1.3 - - -
V80_sheet G(2) 6440 2 21 13 5.3 3.5 3.0 - -
BPTI Ci(1) 8574 2 - 151 65 38 31 24 -
BPTI Ci (1) 8574 4 - - 277 155 121 88 -
Barnase (1) 16371 2 - - - - 119 - 85
Barnase (1) 16371 4 - - - - 468 - 324
quadrature
V240 ball 1,(120) 19320 2 - - 12.0 9.6 9.8 9.8 -
V80_tube Gp(8) 6440 2 22 12 8 4.5 - - -
V80_sheet G(2) 6440 2 82 42 20 12 10 - -
BPTI  C(1) 8574 2 - 98 40 23 18 14 -
Barnase (1) 16371 2 - - - - 43 - 31

@ N,: N CPUs distributed symmetrically overSMP nodes? Larger numbers indicate finer grid.
¢ QOrder of point group in parentheses.
Table 3: Construction of the exchange part of the KS matrix

7.7 DIIS convergence acceleration

The DIIS (direct inversion of iterative subspace) techeidpy Pulay [7, 8] is an efficient
extrapolation procedure for the convergence acceleratidghe SCF scheme. The most
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CPU time intensive step involves the formation of the sdecbérror matrices:
e = FDS - SDF (10)

The error and KS matrices of previous iterations up to theimam subspace dimension
(usually 4) are stored in distributed memory. Storage reguents can be reduced by
compressing the error vectors, since with forthcoming eagence the entries are becom-
ing vanishingly small. Specifically on PC clusters storimgl aetrieving data from disk
may be worthwhile and the GIO extensions might prove uséfhie computational effort
is somewhat higher than for the similarity transform withitggimilar scaling behavior (cf.
Figure 6). For symmetric problems execution time rapidigisaes due to th© (N?/n?)
dependence.

7.8 Wavefunction optimization
7.8.1 Standard SCF procedure

The standard SCF procedure iwABOMOLE starts by generating an initial density ma-
trix, computing the KS matrix thereof, invoking DIIS ext@ption, and transforming the
resulting KS matrix into an orthonormal basis using the MOhe previous iteration. Af-
ter applying level shift (i.e. increasing the HOMO-LUMO gamd damping (i.e. scaling
the diagonal KS matrix elements), the eigenvalue problesoiiged and the eigenvectors
are used to compute the new density matrix and the cyclesstgatin (cf. Figure 7).

In section 11.5 a slightly different scheme has been diseds#s the density matrix de-
pends only on the occupied MOs (typically 10 to 30% of theltotamber of MOs) only

as many eigenvectors with the lowest eigenvalues must beuimah as there are occupied
MOs. The intermediate orthonormal basis is obtained by €kyl decomposition of the
overlap matrix. The DIIS convergence acceleration remaimaffected. However, level
shifting and damping th&S matrix is impossible. Instead, some additional controlrove
the convergence is exercised by averaging new and old glenattices. The standard SCF
procedure in TRBOMOLE seems to be more robust, so that it is the preferred scheme, as
long as CPU time consumption for the eigensolver does nairhe@rohibitive.

7.8.2 Rotation based SCF procedures

Alternatives to the standard SCF procedure are motivateddoynfavorable cubic scaling
of the eigensolver and the insufficient stability of theatare scheme. The cubic scaling
renders attempts for linear scaling of DFT or HF impossiliiean be improved only by
taking advantage of the specific structure and propertidsedkS matrix. Hence, standard
eigensolvers aiming at the solution of the general problespaobably not the ultimate
solution to the problem. The KS matrix is sparse in terms afgd number of small though
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non-vanishing entries whereas sparse linear algebra lienatrices with a small number
of non-zero elements and is thus not readily applicable.réxmate diagonalization may
be achieved by deleting elements below a given thresholdrandforming the matrix to
block-tridiagonal form which is passed to a special blawffihgonal divide-and-conquer
eigensolver [20]. So far it is not yet clear whether this apgh can compete in terms of
efficiency and economy with standard parallel eigensolMdieover, it does not address
the stability problem of the standard SCF procedure.

An alternative to the numerically not well understood s&ddSCF procedure is a direct
minimization of the total electronic energy with respecthie MO coefficients subject to
the orthonormalization constraint. The number of non-neldunt coefficients is the number
of unoccupied times occupied MOs. Thus, the number of indeget parameters to be op-
timized for large systems reaches easily! The fact that the standard procedure works for
such a large number of parameters at all indicates that tt@iaption problem is simpler
than the sheer number of parameters suggests. Rotatioth $&8seprocedures incorporate
the orthonormalization constraint mostly by using an exgmdial parametrization

Cnew = ColdU = Cold exp(A), A= < _S(T i)( ) (11)
whereC is the MO coefficient matrix and the antisymmetric matixcollects the non-
redundant parameters in the off-diagonal blocks. The mateéments ofA are in general
a function of the matrixC. The various number of schemes that have been suggested over
about 25 years, differ essentially in (i) the computationhaf first and second derivatives
of the energy with respect to the matrix elementsAof(ii) the evaluation of the matrix
exponential, and (iii) the optimization scheme (conjugaialients, Newton-Raphson etc.).

In the orbital transformation method by Hutter et al. [9, 1§ exponential is evaluated
exactly. Thus, the analytic gradient and the orthonormabinstraint is obeyed exactly for
an arbitrary choice of the reference point. Moreover, thethrad requires matrix opera-
tions over the occupied MOs, only. A minor disadvantage of pinocedure is the rather
complicated expression for the energy gradient and thedittle second derivative. More
important, the convergence rate depends on the precomelit@f the conjugate gradient
optimization with no recipe for its improvement. For densatmces, the scaling is still
cubic with a reduced prefactor. Further reductions aralfégsf the involved matrices are
sparse enough for efficient use of sparse matrix multiply.

In standard second-order SCF methods [11] gradient andathese evaluated by Taylor
expansion aboua=0, which yields simple expressions in terms of Fock matnixies and
two-electron integrals in the MO representation for gratigeand HessiaH [12]. The
new parameter st is computed and the matrix exponential is approximated ineat
expansion.

A = —Hg (12)
exp(A) (13)

X
[
+
>
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Consequently the orthonormality @f is not preserved and requires orthonormalization
(O(N?)). The initial Hessian is updated during the subsequersdtitar cycles by BFGS
[13]. Since only Hessian gradient products are requiredeticit construction of the
Hessian can be avoided [14]. These second order schemeseraggood set of start
orbitals usually obtained from a few iterations with thenstard SCF procedure which is
not guaranteed to succeed.

In summary, a scheme is required, that is simple enough teddily parallelized, has
modest (distributed) memory requirements, exploits themtal sparsity combined with
well-controlled convergence behavior, and overcomestblelem of "good” start orbitals.

Expanding the orbital exponential approximately in terrh@r@ducts of orthonormality
preserving Givens rotation matric€” which depend on the off-diagonal matrix element
A,, only, yields

exp(A) = HGOU. (14)

This bears close relation to the Jacobi procedure for mdtagonalization [13], Pulay’s
pseudo block-diagonalization scheme [15], and the paramagon of the energy by means
of Givens rotation matrices [16]. The quality of this apgroation goes beyond the linear
approximation in Eq. 13 above. The individual matrix eletséy,, are given by

A, = — N — 15
Foy— Ty (o0l00) ~3(ofon) © Foy—Fptn )

whereo andv refer to the index of an occupied and unoccupied (virtudbjtal, respec-
tively. The approximative term to the right is an approximatto the diagonal Hessian
supplemented by a level shift parameter This approximation holds for a sufficiently
large HOMO-LUMO gap and assumes the analytic Hessian todgodally dominant ex-
cept for a small region with non-negligible off-diagonaents. The level shift parameter
serves to keep the Hessian positive definit and to restiécstip-length|A||. ForA = 0
this expression is similar to the pseudo block-diagonabma[15] which is numerically
less stable than the standard SCF procedure, as presemeddrdetail in section 11.5.2.

The Givens rotations are trivial to implement in parallefagi row-wise distribution of
the MO coefficient matrix over the processes. The maximumbarmof operations is
4n,ee(N — noee) N < N3. Since only rotations above a certain threshold are agtoah-

sidered, the number of operations drops rapidly (case digmehunder 10% of the max-
imum value with forthcoming convergence. This procedura ict no more expensive
than a dense matrix multiply for the full matrix. Additiohglit is sufficient to transform

the off-diagonal block plus the diagonal matrix elementsrgasome additional 40% for
the similarity transform. As a reasonably diagonal dominé® matrix is required, start-
ing from scratch one iteration with the standard SCF proeeduwst be carried out. In
geometry optimizations the orthonormalized MOs of a negrbgmetry may be directly
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used. As in any other rotation based scheme, the optimized ®not in the canonical
form, i.e. they are not eigenvectors of the KS matrix. Depampdpon the later use of the
MO coefficients a final full or partial diagonalization is essary.

The crucial ingredient for stable SCF convergence is thaddyc) computation ok. The
Hessian matrix is decomposed into a (large) diagonally dantipart, which is assumed to
be a reasonably accurate approximation to the analyticidtesand the remaining critical
part that is of limited use only. The level shifserves the purpose to maintain the curvature
almost everywhere and to increase the curvature for thiearpart. There is a subtle
difference to the trust region minimization method [17]:tls technique the level shift
parameter\ is adjusted such as to remain within the trust region of cayerece. It is
increased or decreased depending upon the ratio of actdgiradicted energy changes.
Here, the Hessian approximation may be that poor, that thebfsck mechanism fails.
Instead\ is determined by bisection such that the step-lefigth| remains below a given
value and the diagonal Hessian remains positive definitee mbximum step-length is
dynamically adjusted via a feedback mechanism coupleceteetidily available quantities:
energy changes, norm of the DIIS error matrices (indicatimgvicinity to a minimum),
and the gradient. The procedure readily applies to closell shd unrestricted KS and
requires some modifications for open shell HF as outlined%y Regarding UHF/UKS
the Hessian has large off-diagonal elements connectiagd 5 terms [18]. Hence, we
may expect this procedure based on diagonal Hessian appban to work less well for
UHF/UKS.

It is important to stress, that this scheme crucially retieDIIS extrapolation. M. Krack
pointed out, that DIIS is not reliably converging with smiDMO-LUMO gaps or bad
initial orbitals. The answer to this apparent contraditti® that DIIS is an extrapolation
procedure which depends on the input data and the stand& @®Cedure tends to some-
what uncontrolled strong changes in the resulting KS malvat DIIS cannot cope with:
poor input, poor extrapolation. Hence, the sole task foreigensolver or any substitute
thereof is to provide adequate input for the extrapolatietedure.

Tests on a variety of systems reveal three remarkable grepel(i) On systems which
exhibit no problem to the standard procedure, the suggestedure works as well. (ii)
For difficult systems (small HOMO-LUMO gap, bad starting itals, root flipping) the
scheme does not suffer from wild oscillations or poor coggace but instead shows a
smooth robust convergence. (iii) Close to the minimum theseayence rate slows down.
Thus, the startup problems of most second-order SCF metredsicely overcome, but
problems arise where they are normally expected to suct®hde for second-order SCF
procedures relying on BFGS updates the Hessian ideallyetgas to the analytic Hessian
close to convergence, this does not apply to proceduresigebn (modified) diagonal
approximations to the Hessian, which may produce a few cetalyl wrong entries for
small HOMO-LUMO gaps. Hence, the step vector will point ittte wrong direction and
- with no adequate input - DIIS cannot overcome this defigieAaemedy to this problem
is to incorporate corrections for the missing two-electv@ integrals (cf. Eq. 15).
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cluster  point MOs wall clock time][s]
group (total) 4 8¢ 16} 3% 485 643 72
divide-and-conquer eigensolver & full similarity transfo

Zeolite G 4992 120 64 40 26 - - -
BPTI ] 8574 - 367 168 105 89 78 -
Barnase € 16371 - - - - 592 - 406
orbital rotation & partial similarity transform
Zeolite G 4992 50 27 17 11 - - -
BPTI ] 8574 - 198 74 51 35 29 -
Barnase ¢ 16371 - - - - 124 - 96

@ N,: N CPUs distributed symmetrically overSMP nodes.
Table 4: Eigenvalue problem including transformation ithte orthonormal basis.

Symmetric clusters have been excluded from Table 4 as th@utational effort scales
with O(N?/n2) and thus, are in most cases not very relevant. For symmegsierss, the
parallel scalability is not improved uniformly for a smalleumber of processors as a con-
sequence of the multilevel parallelism used. The timinggHe rotation based procedure
are a linear function of the number of Givens rotations dhtearried out, which depends
on the molecule and the convergence characteristic. Sieceotations are BLAS level 1
routines, they achieve less than 1 Gflops, compared to 1 todgps§sfor the eigensolver.
Also note that for the orbital rotation based scheme mone kiadf of the time is spent on
the partial similarity transform. Comparing the eigensoland the orbital rotations, only,
the latter is typically faster by a factor of 3 to 20.

7.9 Gradients

The evaluation of the one-electron and two-electron irlegontributions to the gradient
of the energy with respect to displacement of the nucleardioates closely follows the
scheme outlined for the IBRFT module with regard to parallelization. Some additional
routines such as the calculation of the integral derivagsttmator have been parallelized
as well. Scalability and memory requirements thus closeipnimthose of the ROFT
module (Table 5).

Highly symmetric compounds (V24Ball) display short execution times at poor paral-
lel scaling: 80% of the one-electron contribution goes inamsformation of density and
energy-weighted density matrices from SAO into CAO repneseon. The remaining
overhead primarily arises from the serial preparation ofisyetry tables and transforma-
tion coefficients. The other extreme are large unsymmetnopounds (Barnase) which
scale reasonably with the primary contributions by onetet®@ and exchange contribu-
tions. The latter are dominated by grid construction (80%#)e general overhead con-
tributing to the total execution time stems almost soletyrfrthe computation of the PQ
matrix and its Cholesky decomposition.
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cluster  point MOs grid wall clock time][s]
groug  (total) £ 8 168 3% 48 64 T2
one-electron contributions
V240.ball 1,(120) 19320 4 - 124 89 60 41 40 -

V80_tube Cj(8) 6440 4 69 37 21 11 - - -

V80_sheet G(2) 6440 4 311 159 93 47 - - -

BPTI Ci(D) 8574 4 - - 474 263 211 143 -

Barnase (1) 16371 4 - - - - 874 - 593
Coulomb contribution

V240.ball 1,(120) 19320
V80_tube Cp(8) 6440

- 52 40 31 34 34 -

79 38 21 13 - - -

V80_sheet G(2) 6440 317 159 82 40 - - -

BPTI Ci(D) 8574 - - 194 91 74 53 -

Barnase ¢(1) 16371 4 - - - - 201 - 151
exchange contribution

4
4
4
4

V240_ball 1,(120) 19320 4 - 21 17 18 17 18 -
V80_tube Cj(8) 6440 4 73 39 20 14 - - -
V80_sheet G(2) 6440 4 277 123 72 41 - - -
BPTI Ci(D) 8574 4 - - 405 236 175 131 -
Barnase ¢(1) 16371 4 - - - - 589 - 407
total timings
V240.ball 1,(120) 19320 4 - 293 248 213 201 207 -
Vv80_tube Gy (8) 6440 4 229 121 71 50 - - -
V80_sheet G(2) 6440 4 943 472 279 155 - - -
BPTI Ci(D) 8574 4 - - 1235 701 574 434 -
Barnase ¢(1) 16371 4 - - - - 2117 - 1549

@ N,: N CPUs distributed symmetrically overSMP nodes? Order of point group in parentheses.
Table 5: Construction of the exchange part of the KS matrix

7.10 Total performance

The effective speedup that can be achieved is considerabl/adependent and closely re-
lated to the memory access pattern. As the IBM SMP clustéreaResearch Centre Jilich
is very sensitive to cache misses applications involvingdanatrices display variations in
execution times. Hence, absolute speedup values arelefiiue, especially as they are
only qualitatively transferable among different parattemputer systems. Thus, aspects
of practical relevance and better transferability are $sedl on. Figure 9 summarizes the
parallel scalability of the OFT (wall clock time per SCF iteration) and the@RRAD mod-
ule. With increasing order of the point group scalabilitpitally decreases as symmetry
related overhead increases.

In Table 6 the total timings of BFT and ROGRAD are decomposed into the major contri-
butions: overhead due to symmetry treatment (preparaficrasformation coefficients,
CAO-SAO transformation), grid construction, and lineayeddra. The effect of symmetry
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Figure 9: Parallel performance thed® T (wall clock time per SCF iteration) and theoRRAD module.

is immediately apparent: high symmetry results in neglegéifort for integral evaluation,

quadrature and linear algebra contrasted by substantiaéfeserial or not well load bal-

anced) contributions of symmetry-related operations asastormations. Large unsym-
metric clusters spend more than 75% of the execution per &t&tion in linear algebra
using the standard scheme, which can be approximatelychatimg the sketched orbital
rotation based scheme, the remainder being almost exelysiue to matrix multiply.

Since matrix multiply is an operation of ordéx(N?/n?) whereas integral evaluation and
quadrature scale at most with orde@(/N'?) it is immediately apparent that unsymmetric
clusters with basis set sizes of 40000 will spend almosthallexecution time in matrix
multiply. The use of symmetry greatly reduces this compoma burden: even with point
groupC; of order 2 linear algebra execution times go down by a facter. dHence, the
possibility exploiting point group symmetry whenever pbsmust not be lightheartedly
discarded.

cluster point MOs NS wall clock time [s]
group (total)
RIDFT startug SCF iteratioff

V240.ball 1,(120) 19320 321 177 (43%, 2%<1%) 58 (1%, 29%)
V80_tube  Cj(8) 6440 16, 13 (7%, 12%, 10%) 23 (18%, 2%)

BPTI Ci(1) 8574 32; 214 (<1%, 18%, 37%) 235 (58%: 1%)

Barnase (1) 16371 48, 857 (<1%, 14%, 47%) 1095 (75%; 1%)

RDGRAD gradient

V240.ball 1,(120) 19320 32; 213 (57%, 4%<1%)

Barnase (1) 16371 484 2117 1%, 22%, 8%)

@ N,: N CPUs distributed symmetrically overSMP nodes® Order of point group in parentheses.
¢ Time spent on symmetry treatment, grid construction (gyidril linear algebra in parentheses.

4 Time spent on linear algebra and symmetry treatment in plageas (standard scheme).

¢ Time spent on symmetry treatment, grid construction (gyidntl linear algebra in parentheses.

Table 6: Percentage of wall clock time spent in linear algebrid construction and symmetry treatment,
respectively.
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The evaluation of the gradient requires larger grids as ewetpto the SCF iterations so
that grid construction is computationally more intens@&erhead due to symmetry treat-
ment is somewhat higher as the CAO-SAO transformation ofitresity and the energy-
weighted density are necessary. Linear algebra is ofiittfortance for the gradient code.

8 The modules BscFand GRAD

In fact, almost everything can be taken over frondRr and ROGRAD to these modules.
Density and possibly KS matrix are replicated once per SMierauring the evaluation
of Coulomb and exchange contribution. On systems with alargount of memory, this
is still the most economic solution. Additionally, differee density and KS matrices are
stored in distributed memory to avoid 1/0. These quantglesuld be attractive targets for
compression. If memory becomes scarce, switching to diged data storage (quadrature
is treated identical to RFT) and separate calculation of Coulomb and exchange contri-
butions offers a simple road to reduce communication at xperse of at most doubling
the integral evaluation costs. For the use of a very largelb@uraf processors, switching
from dynamic to static load-balancing is presumably the evdy to keep communication
demand within bounds. Overall scaling is much better tharRioFT with the MARI-J
method since Coulomb and exact HF exchange evaluation rkayotalers of magnitude
longer.

9 Summary and outlook

The modules BOFT, RDGRAD, DSCF AND GRAD have been parallelized with no restric-
tion of the symmetry treatment. Tests on molecules with up#®0 atoms and up to
~ 20000 basis functionss£ 39000 auxiliar basis functions) have been carried out. Geom-
etry optimizations applied to research problems in the fi¢lolano-structured compounds
[21] are being carried out. A simple parallelizable orbratiation scheme has been sug-
gested, which overcomes convergence with the standard &@me while being substan-
tially faster than the conventional procedure, althoughastcubic scaling. Linear algebra
operations and in particular matrix multiply are domingtthe execution time in RFT

for the largest unsymmetric molecule. Although explodatof symmetry greatly reduces
the associated computational effort, the cubic scalingatfrixmultiply will render calcu-
lations for much larger problem sizes computationally \etgensive. Most linear algebra
is closely related to the wave function optimization step thsat future efforts in quan-
tum chemistry will involve exploring efficient schemes nmmzing the number of general
matrix multiplications.
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1 Introduction

In several scientific applications such as molecular dyoaidi] and plasma physics [2] the
evaluation of a pairwise potential is required. Very ofthis is the most time-consuming
step in a calculation. The direct method to evaluate thesengials scales quadratically
with the number of particlev which places a severe restraint on the size of systems
which can be treated. Many methods have been proposed to éneguadratic scaling
[3]. Unfortunately, all these methods lead to unpredictadtors because they rely upon
not generally applicable approximations [4]. In particudat-off approaches show errors
which often can not be accepted due to the significance ofoing tange charge-charge
interaction. It is highly desired to avoid the ord®&? scaling. One of the methods to
achieve linear scaling is Greengard’s [5] Fast Multipoletihdel (FMM). The purpose of
the FMM is to group together remote charges such that a ¢alfeof distant charges can
be treated as one single charge. The Fast Multipole Methpdress local charges in mul-
tipole expansions. The multipole expansions of severdlgbes about a common origin
can be summed to represent a collection of point chargessbyie multipole expansion.
The collections of point charges are grouped in boxes whicin fthe FMM tree. The
FMM is a computational scheme how to manipulate these expasiso achieve linear
scaling. The Fast Multipole Method can be applied to thewatan ofr "(n > 0) pair-
wise interactions. Unfortunately, the FMM is not free ofgaeters. The computation time
and the accuracy depend on three parameters, the lengté ofttlipole expansions, the
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depth of the FMM tree, and finally the separation criteriae tlumber of boxes between
two boxes which can interact via multipoles. It is very ingenient to set the parame-
ters by an user-request. In addition, the three parametersod independent among each
other. One can define a functigiiL, D, ws) = 0, whereL is the length of the multi-
pole expansions) is the depth of the FMM tree, ands is the separation criteria. The
computation time depends not only oi, D, andws. The requested threshold and the
kind of distribution, homogeneous or heterogeneous bigked particles have also an im-
pact on the computation time. In our FMM implementation waimize the computation
timet = t(L, D, ws, kind of distribution, threshold). L, D, andws are the variables,
thekind of distribution and thethreshold are the constants. With this approach we have
found a reasonable solution of the problem on separatingdheles in near and far field.

Within the framework of the HPC-Chem project [6] our implemtegion of the FMM to
treat point charges in a very efficient way is the first stepatals the CFMM (Continuous
Fast Multipole Method) to calculate charge distributiorisiag in Density Functional and
Hartree Fock calculations. The ideas of FMM can be appligtig¢cevaluation of Electron
Repulsion Integrals (ERI's). The computation of the ER$sin general a step which
requiresO(n*) work regarding the number of basis functionsBy several computational
technigues [7] the scaling could be improved significandly)(n?). The use of CFMM
gives the possibility to make a further improvement in s@alifromO(n?) to O(n). The
Coulomb interaction of two charge distributions decreasgsnentially with increasing
separation, and the two distributions then interact asidakpoint charges.

2 Theory

The basics of our FMM implementation are described by C. Aitédnd M. Head-Gordon
[8, 9]. In addition, a new scheme of estimating the FMM ereord an approach to evaluate
the Wigner rotation matrices [9, 10] more stable for highaittipole moments have been
implemented.

A. Factorization of inverse distance

The inverse distance between two point charges locatad=ata, ., 8) andr = (r, 0, ¢)
can be written as an expansion of the associated Legendneguoials.

=" Pilcos()) 7 1)

! = . m"’—le(cos(a))Phn(cos(e))cos(m(ﬁ—<z>)) @)



Theory

1 oo m=l l— m |
- Z Z M l+1le(COS( ))Bm(COS(H))e_’m(fB_¢) (3)

The expansion converges under the conditien r. +y is the angle between the two vectors
a andr. Eq. (2) and Eq. (3) represent a complete factorization afitamaction of two unit
charges. On the basis of Eq. (3) one can define moments of goleléxpansiong is the
particle charge.

1

(L + |ml)

Based on Eqg. (3) one can also define the coefficients of a Tayfmansion.

Wim = qO0um = qa Py(cos(a))e™™P (4)
1 imae
Mim = qum = QE(Z - |m|)le(COS(9))€ (5)

Combining Egs. (3), (4), and (5) together a factorizatiorthe inverse distance can be
written in a compact form.

‘I‘ — a‘ Z Z Wim Him (6)

=0 m=—1

The moments of a multipole expansion and the coefficientsTalyéor expansion about a
common origin can of course be summed.

B. Translation operators

Essential to the FMM are the three operators to translatépolé expansions and Taylor
expansions in space. The first operatbyrjs used to shift a multipole expansion franto

a—+b.
l J
wim(@+b) =" Y " A (b)wik(a (7)

J=0 k=—j
The operatord}! is given by
A = Oy jmn (8)

The second operataoRB, transforms a multipole expansion into a Taylor expansion.

Z Z Bltw;, (9)

J=0 k=—j
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The operatorBé.’,? is given by
B = Mjiipm (10)

The third operator, translates a Taylor expansion of a pairtbout the origin to a Taylor
expansion of about a poin.

oo J
,ulm r— a Z Z C]h]? ,u’jk (11)
=0 k=—j
The operatoCi* is given by
Ciwt = Ot p—m (12)

3 The Fast Multipole Method

The FMM consists of several parts. First all particles ardesed by a box with coordi-
nate ranges [0,1]x[0,1]x[0,1]. The parent box which camgaill the particles is divided in
half along each Cartesian axis to yield a set of 8 smalleddfolxes. The child boxes are
subdivided again (Figure 1). The depth of the tree is detegthso that the computation
time becomes a minimum by achieving an error in the energyghvisi less or equal to a
requested threshold. The particles are sorted by box niemiseng the radix sort algo-
rithm [11] which scales linearly. In addition to scaling asating the FMM consists of
four passes schematically shown in Figure 2. In Pass 1 thgehaontained within each
lowest level box are expanded in multipoles about the cearitiére box. The multipole ex-
pansions are translated to the center of the parent boxgsré38). In Pass 2 the multipole
expansions are transformed into Taylor expansions. Thebtwes must be separated by
at least one box on the current tree level, but only provithked parents of the two boxes

z

(A

1)’

X

Figure 1: The particle space is divided in child boxes aldrgg@artesian axes
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depth=0
depth=1
— w
o depth =2 U
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© depth =3 "
Passl Pass 2
depth=0
depth=1
depth =2
M
AN e
u depth =3 \ \ \ \ \ \ \ \
Pass 3 Pass 4

Figure 2: Schematic view on one dimensional FMM with paramnes = 1

are not separated on the next higher tree level. Pass 2 ig liyefanost time-consuming
step of the FMM (Figure 4). In Pass 3 the parent’s Taylor expars are translated to
the centers of the parent’s children. At the end of Pass 3 leaatst level box contains a
Taylor expansion of all far field interactions (Figure 5).Rass 4 for each lowest level box
the multipole expansion and the Taylor expansion are migtlpThe sum over all lowest

level boxes gives the far field energy. Finally, in Pass 5 émeaining near field energy is
computed by the direct method.
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Figure 3: Calculation and shifting of multipole momentsg$a)
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Figure 4: Transformation of multipole moments to Taylorfficents (Pass 2)
3.1 The Wigner rotation matrices

The conventional Fast Multipole Method requi@6L*) work with regard to the length of
the multipole expansions. O(L?) scaling can be achieved by performing the translations
in three steps. First the moments of a multipole expansidhercoefficients of a Taylor
expansion are rotated about the z-axis and y-axis suchhibg@itase factors in Eqg. (4) and
Eq. (5) vanish and the associated Legendre polynoniglsdegenerate to the Legendre
polynomialsP,. In the second step the translations are performed.

Wim = Z (l — J)'w]m (13)
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T T~ B

Him
Wi Wim Wi Wiy

Wim | Wiy | Wi | Wim | Wy | Wy | Wi | WOy

= D!
Him = Z Fiti1 imm (14)
j=m
= —lim 15

Finally, the translated multipole moments and the Tayl@fitcents are rotated back using
the inverse rotation matrices. The rotation about the g-4&simply a complex multiplica-
tion. The only difficult portion is the determination of thegMer rotation matrices., (9)
which correspond to the rotation about the y-axis. The ditalycalculation of thel}, ()
requiresO(L*) work and is numerically instable.

dlp = %\/ (El__”]gi g i Z;),' (1 + sign(k)cos()) ¥ (sin(9))™*

l

.n:T:(_l)l—m—n (l ;’“) (z _lnt’i n) (1+cos(0))" (1 — cos(@)) ™™ (16)

= (1) "d} (17)

1>0 , k=—l,..,1 , |kl<m<I (18)

i = (1)L, (19)

>0 , m=-l,.,0-1 |, k=—l,..,—(m+1) (20)
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The essential recursion relation we will use to determimertitation matrices is given by
White [9] and Edmonds [10].

J k+m sin(0) J
I+ 1) — k(k + 1) 1+ cos(6) "

I(l+1)—m(m—1)
+\/ T+ 1) —k(h D) (21)
(l—m)!
o (ZTZE)!BW m >0 (22)
m [ (L= [m])!
dém = (_1) (l?‘:’i‘)!ﬂm’ m <0 (23)

Unfortunately, Eq. (21) becomes instable in case of highements. We have combined
Eq. (21) with a second recurrence to overcome the numernisthilities.

dimlz\/ll(l—kl)—k(k—kl) y

(1+1)=m(m—1) ™

k+m sin(6) J

I+ 1) —m(m—1)1+cos(d) "™ (24)
P 1 (20)! : Ik k
dy, = E\/(l T k)!(sm(e)) (14 cos(6)) (25)

In addition to the two recurrences the error accumulationsezaluated for both of the
recurrences to decide which recursion relation is more rateuor a given component
of the rotation matrix. Both of the recursion relations dddee used only foros(6) >

0. In case ofcos(f) < 0 addition theorems can be used given by Edmonds [10]. The
combination of the two recurrences show a significant imgnoent of accuracy. Table 1
shows the absolute errors = 7.

3.2 Error estimation
The error estimation by White and Head-Gordon [8] gives greufimit for the error but
is often not practical. We have used a different approaclke.AMM has two error sources,

the truncation of the multipole expansions and the truocat the transformation of the
multipole moments to Taylor coefficients. The errors dependhe three parameters of
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L First recursion relation Both recursion relations

5 1.20-1071° 1.11-10"16
10 3.33-107™ 2.78-10716
15 1.65-10712 7.49-10716
20 1.99 -10710 1.50-10~15
25 1.35-10°8 6.27-1071°
30 1.07-10°6 6.89-10"™
35 9.64-107° 1.38-10°13
40 8.89-1073 1.35-10712
45 5.52-107" 4.48 - 10712
50 1.18 - 10? 3.13.10° 1
55 9.63- 103 1.27-10710
60 1.54 - 10° 6.04-10710
65 9.79 - 107 4.83-107°

Table 1: Maximum absolute errors in computation of dhe,

the FMM, the depth of the tree, the separation criteria, d&edléngth of the multipole
expansions. The distribution is defined by the charges astigs of the particles. The
separation criteria should be 1 to take full advantage oFt¥i& approach. The remaining
parameters, the depth of the tréeand the length of the multipole expansiohscan
be optimized such that the computation times minimal and the energy errakE is
not greater than an user-requested absolute érrdFhe floating-point operations can be
computed separately for the near and far field part.

ot
ot
AE (D, L) < A (28)

In general the solutions of Egs. (26), (27), and (28) are integers. The length of the
multipole expansion, must be an integer. The next larger integer is taken. Thehdept
of tree D need not be an integer. Table 2 shows the number of multigEpending on

requested thresholds.
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Req. abs. error Abs. error L Depth
1072 0.47-1072 1 10.0
1073 0.98-1073 3 8.2
1074 0.99-1074 5 6.5
107° 0.26-107° 7 5.9
106 0.39.10° 10 5.4
1077 0.76 - 1077 13 5.1
1078 0.21-1078 17 4.8
1079 0.29-107° 21 4.7
10~10 0.66 - 10710 25 4.6
1011 0.93-10" ! 30 4.4
10~ 12 0.38-107 12 34 4.3
10713 0.66-10713 39 4.2

Table 2: Number of multipole moments depending on requesdisdlute errors

3.3 Implementation issues

Our FMM implementation is designed to evaluate systemsisting of billions of point
charges. Heterogeneous distributions can be treated sathe efficient way as homoge-
neous distributions. The parameters of the FMM are detexdnsnich that the computation
time is minimal depending on a requested threshold of theggnAll empty boxes on the
tree are completely neglected. Any arrays in the dimensi@il dboxes are avoided. The
maximal depth of the trees depends only on the integer lengibical bit operations are
used for box numbering. A logical right shift by three pasiis of a box number results
in the number of the parent box. A logical left shift by threzsjions of a box number
gives the number range of all child boxes (Figure 6). Our FMipbliementation is fully
based on spherical coordinates. We have made the first ajpproparallelizing our FMM
implementation. An efficiency of more than®up to 16 CPU’s have been seen. In the
parallel version Pass 3 is avoided because it can not bdgleed efficiently. It is easily
possible to shift the work which is done in Pass 3 to Pass 4hAlfour passes of the FMM
are parallelized. Our parallelization strategy is basetheneplicated data model which is
a severe bottleneck. We will implement a data distributedioa.

level
\ - | 1

| 000 I 001 I 010 I 011 I 100 I 101 | 110 I RIE | 2

[:000000].000 001 [.000 010].000 011 000 100 [.000 101 [.000 110 [.000 141 [T I T-110 010 .110011 [.110 100 | HHHHH 3

4

Figure 6: Boxes are numbered by logical bit shifts
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Number of particles Time [hh:mm:ss] Scaling Theoreticallisg
262.144 1:09
2.097.152 10:02 8.7 8.0
16.777.216 1:23:48 8.4 8.0

Table 3: Scaling of FMM regarding the number of particles

3.4 Test calculations

We have performed several calculations on the IBM Rega®@p6ystem at the Research
Centre Julich on a single CPU. We have chosen systems tiaga$ homogeneously dis-
tributed point charges. Table 3 shows the scaling of FMM Hoe¢ systems consisting of
262.144, 2.097.152, and 16.777.216 particles. Each loeeskbox contains 8 charges.
We are capable of computing systems consisting of more thHalli@ of point charges.
The energy computation of a system consisting of 1.073824lparticles required a com-
putation time of only 8 hours on a single CPU. Because of mgrnmitations the FMM
parameters were not optimized. The depth of the tree was Setlhe length of the multi-
pole expansion was equal to 10. Each lowest level box coedletd charges. The relative
error of the energy was less thaf=®. In general, for many applications such a small
relative error is not necessary. A multipole length of Sexast of 10 would reduce the com-
putation time by a factor of 8. The same system could be coaagatl hour. A massively
parallel version of our FMM implementation would be capabi¢reating such a system
within seconds.

4 The Continuous Fast Multipole Method

The interest of using the FMM approach to reduce the scafittgegdCoulomb problems has
shifted to electronic structure calculations, particlylém density functional theory (DFT)

and Hartree Fock calculations. The FMM theory is not immiadyeapplicable to problems

in which charge distributions have a non-zero extent. Inreagedistance two separated
charge distributions can interact as classical point agsawithin a given absolute error.
This approach makes the FMM applicable to treat chargeillisions arising in quantum

chemistry.
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4.1 Separation in near and far field

To obtain the error when treating charge distributions astpbarges we compute the two-
electron integral of four normalized s-type Gaussian fiamstanalytically. The normalized
s-type Gaussian function is given by

s = (2—0‘> toar (29)

™

The product of two basis functions defines a charge distdbudf non-zero extent. The
product of two normalized s-type basis functions havingsidume exponert represents a
delta function for infinite largg which is the expression of a unit point charge. Assuming
the normalized s-type basis functions of the products aratéal at the same positions in
space the two-electron integral can be written as

20 H 209 H 2003 H 20 H e~ i g=dlra—R[?
<8182]8384> = ( ) ( > ( ) ( ) // dr, dry, (30)
T s T T |I‘1 - 1‘2|

o anday are the exponent of the first distributiom; and oy are the exponents of the

second distributiony is the sum oty; andas, § is the sum otyz anday. R is the distance
between the two charge distributions. The integral can lmeilzded analytically.

erf(y/ 35 R)

<5189]8354> = 7 (31)
er f 1s the normalized Gaussian error function defined by
erf(z) = 2 /m e dt (32)
VT Jo

The factorer f (4 /%R) rapidly approaches 1 with increasing separation, and tlee tw

charge distributions then interact as classical pointgdggr Consequently, we define an
errore as

20 R
ctro.m) = L - TV 33)

1 — er f can be substituted by the complementary Gaussian errotidaree fc.

erfe( J—J'F‘ZR)

€(v,0,R) = 0

(34)
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¢ R R, +R;
1078 6.46 9.24
107 6.92 9.87
10710 7.36 10.50
101 7.77 11.08
10712 8.17 11.64
10713 8.55 12.17
10 8.91 12.68
1071 9.26 13.17

Table 4: Minimum distances [a.u.] for far field interaction£ 0.7,6 = 0.7)

Assuming one of the two distributions is a delta function B4) can be used to determine
the extension for a single charge distribution.

(v, ) = IR (35)

R,

Considering two charge distributions having the exponer#add the sum ofRR, and R;
Is always greater thaR. Table 4 shows the accuracy of the approximation& dfy the
sum of R, andR;.

If the two basis functions of a charge distribution are ncated at the same position in
space the threshotds divided by the Gaussian pre-factor. Because the Gaugssafiactor

is always less than or equal to one the extensions of chastr#bdtions of separated basis
functions are always smaller. Charge distributions of argdmgular momenta are treated
as s-type distributions.

4.2 Extensions of products of contracted basis functions
A generally contracted basis functign

J
x = Nzly™z" Z e (36)

=1
with the property
<Xxx>=1 (37)
is approximated by the functiog,

J
Xo = Na'y™e" (Z \ci‘> e (38)
=1
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satisfying the conditiory, > x. The extension of the distributiog, x, is always larger

compared with the extension of the distributigx.

4.3 Multipole moments of charge distributions

In the FMM theory point charges are expanded in multipole mats. Now we have to

expand charge distributions instead of point charges. eca charge distribution has
non-zero extent contributions of the distribution are &g everywhere in space. Com-
pared with FMM where one sums over all point charges we misgrate over the charge
distributions in the Continuous Fast Multipole Method (CHM

, Pim (sin (8;) , cos (6;))
(I +m)!

FMM: wy, = Z qr ] (cos (mg@;) — i - sin (me;)) (39)

CEMM: wy, = / / / vaxyrt Fim (37 (8) , cos (8))

I+ m)!
(cos (m@) — i - sin (me)) r2sin (0) dp do dr (40)
The distributiony, x, can easily be expressed in spherical coordinates.
XaXo = No Ny z ™ 2 e~(Caton)® (41)

XaXp = Na Ny 77 HMAN inTHM (9) cosMN () cos™ (¢) sin™ (@) e~ (@)™ (42)

The multipole moments are computed first at the positione@tharge distributiog, xs.
Using theA operator a multipole expansion can be shifted to any pasitiepace. The
associated Legendre polynomials can be written as a sunpoy@ucts of sine and cosine
functions.

Py (sin (0) , cos ( Z Z ¢ sin' (0) cos’ (6) (43)

Thec! are constants:os (m¢) andsin (m¢) can be expanded in a similar way.
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cos (meo) = ZZ g sin’ (0) cos’ (0) (44)

sin (me) = ZZ R sin' (0) cos? (0) (45)

The integral (40) can be written as a product of three singkegrals. Only three types of
CFMM integrals remain which can easily be calculated by rgion relations. The CFMM
integrals do not have any restrictions with regard to theularxgmomenta of the basis
functions. The CFMM integrals are computed once at the Im@ggrand the computational
cost is negligible.

/00 rie ™ rdr (46)
0

/ " sint (6) cos’ () do (47)
/ " sin (8) cos’ () sin (0) db (48)

The integrals (47) and (48) are calculated by numericayplstrecursion relations. The
shifting of a multipole expansion from the position of theadde distribution to the box
center require®(L*) work. L is the length of the multipole expansion. Usually,npaf
the CFMM integrals are zero and the multipole expansione@apbsitions of the charge
distributions are sparse which reduces the scaling ffi*) to O(L'%). Any zero-tasks
in the translations of the multipole expansions to the baxters are skipped.

4.4 Structure of CFMM

At the beginning of a CFMM calculation all CFMM integrals amemputed and stored in
a four-dimensional array. The first dimension is used toes&drthe multipole moments
for each combination of the angular momenta of x, y, and z.s&haultipole expansions
can be shifted to any locations in space. In the second dtepabe distributions which
contribute very little to the Fock matrix are pruned from tBEMM tree. Usually, more
than the half of all distributions can be skipped. In the CFMpproach the FMM is
embedded in the outer loops over shells. In general, theeseguof the shell pairs is
arbitrary. Each Fock matrix element can be computed incigratty of the others. The use
of CFMM requires a certain sequence of the distributions itamize the transformations
on the CFMM tree. We have to ensure that the multipole expansi a given box is
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transformed only once to a certain remote box. Assuming@keb on each tree level
contain at least one distribution the shell pairs of box 1 thestreated first. After box 1
has completed the shell pairs of box 2 are computed and somthé&nhext lower level of

the CFMM tree all children of box 1 on the parent level are cated in the order box 1 to
box 8. After the child boxes of box 1 on the parent level havaepieted the 8 child boxes
of box 2 on the parent level are treated and so on. The algoiighapplied for each tree
level giving the sequence of the shell pairs on the lowestleeel. Each transformation of
a multipole expansion to a Taylor expansion is done only doca given pair of boxes.

Each box has an extension equal to the largest extensiandistributions. Two boxes can
interact via multipoles if the distance between the boxéssis than or equal to the sum of
the extensions of the two boxes. Because a box containdyisuale than one distribution
shell pairij located in boxA for example can interact via multipoles with shell pair
of box B but not vice versa. Because index symmetry is used in the etatipn of the
near field interaction incorrect results would occur. Onltieest level on the tree we have
to split the distributions of a box in distributions whichnceateract via multipoles with a
given distribution and which have to be computed in the netdl part. The distributions
of a box must be sorted according to their extensions to axzdditional computational
effort. A logarithmic search algorithm is implemented tanimize the number of search
steps. Only on the lowest tree level boxes are divided.

In case a box extension is to large to interact via multipolgk a given distribution the
box is divided in its child boxes and the interaction is cotepon the next lower level. If
the lowest level was already reached the box is split and anteopthe distributions must
be calculated conventionally.

Because of the non-zero extents all possible values foreaparation criteria can occur.
The most time-consuming step within the CFMM is the transfation of the multipole to

Taylor expansions as it is for the FMM. Unfortunately, we é&v calculate more rotation
matrices compared to FMM. The number of rotation matricesvgrwith the separation
criterion. Nevertheless, like in the FMM implementatiorleaotation matrix is calculated
only once and used for many transformations. The compuitatieffort to compute the
rotation matrices is negligible compared with the compatetime for the transformations
of the multipole expansions.

For each distributiony the contribution to the Fock matrix element is computed foree
levels separately.

tree levels L l

F§=F5+ Y > Wi i (49)

1=3 =0 m=-1

The sum over the tree levels starts at 3 because level 3 isrshdefiel having separated
boxes. L is the length of the multipole expansions. After the compateof the far field
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interaction the near field contribution is still to evaluatéhe CFMM routine returns a
list of distributions which cannot interact with the disuitioni; via multipole moments
because the sum of the extensions is greater than the disb@tween the distributions.
This list is passed to the routine which computes the twoteda integrals conventionally.

4.5 CFMM implementation in TURBOMOLE

In the DSCF routine shloop the loop structure has been cloaiges original structure of
the routine was as follows.

Scheme 1 Original structure of routine shloop

do i =1, n: First loop over shells
doj=1, i: Second loop over shells
do k=1, i: Third loop over shells
if(k.eqi) then
do | =1, j: Fourth loop over shells
Computation of two-electron integrals
end do
else
do | =1, k: Fourth loop over shells
Computation of two-electron integrals
end do
endif
end do
Fock matrix update
end do
end do

Indexn is the number of shells. The most outer loops are replaceddnyge loop over
shell pairs. The loop over shell pairs is implemented as p meer all occupied lowest
level boxes and a second loop over the shell pairs in eacledbttest level boxes.
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Scheme 2 Current structure of routine shloop

do ibox= 1, nboxes Loop over all occupied lowest level boxes
do ij =1, number of shell pairs in bakox Loop over shell pairs
call cfmm(ij, length of kl-list kl-list): FMM
if(length of kl-list.gt. 0) then
do kl = 1, length of kl-list
Computation of near field contribution
end do
endif
end do
end do

nbozes is the number of occupied lowest level boxes. The transfoamaf multipole
expansions to Taylor expansions is done once for each dedarair of boxes. The evalu-
ation of any multipole moments is only done if a multipolesirgiction has been recognized.
No multipole expansions are computed in advance. No saoofititg list passed to the con-
ventional integral calculation is necessary.

4.6 Accuracy of CFMM

We have compared several two-electron integrals computedentionally and by the

CFMM approach for normalized basis functions of s- and petyphe shell pairs are sep-
arated by 8 a.u., the exponents are 0.5. Table 5 shows thlusbeaors for a length of

the multipole expansions of 6, Table 6 for a length of 10. Asr@éase of the length of the
multipole expansions by four moments decreases the absaiars by approximately two
magnitudes.

4.7 Test calculations

We have tested our CFMM implementation on two systems ofstrdl interest. The
calculations were performed on the new IBM computer at theeRech Centre Julich
equipped with Power4+ processors p690, 1.7 GHz. The firsesyss a cobalt catalyst
consisting of 213 atoms (Figure 7). The second one is a rhodamplex consisting of 99
atoms (Figure 8). Tables (7) and (8) show the computatioagiand the absolute errors of
the CFMM based DFT compared to conventional DFT for lengfhmsudtipole expansions
of 6 and 10.
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Integral Iervm — Leony. |
<ss|ss> 2.7-107°
<ss|sp> 2.9-107¢
<sp‘sp> 3.0-10°°
<ss|pp> 3.2-1076
<sp|pp> 3.2-10°
<pplpp> 34-10°°

Table 5: Accuracy of the CFMM integral calculation for noflimed basis functions (L = 6, Exponent = 0.5,
Distance of shell pairs: 8 a.u.)

Integral ‘ICFMM - Iconv.‘
<ss|ss> 1.9-1078
<ss|sp> 2.2-108
<5p‘5p> 2.4-1078
<55‘pp> 2.7-1078
<sp|pp> 3.0-1078
<pplpp> 3.2-10°°

Table 6: Accuracy of the CFMM integral calculation for nofimed basis functions (L = 10, Exponent = 0.5,
Distance of shell pairs: 8 a.u.)

Length of Multipole expansion t[s] cbvm[S] |E — Ecrvu|
6 5833 878 49-10°°
10 5833 951 4.3-1078

Table 7: CPU time for routine shloop for conventional and @QFldased DFT (Cobalt catalyst)

Length of Multipole expansion t[s] cbvml[S] |E — Ecrvu|
6 4550 907 6.3-10°
10 4550 971 7.8-10°8

Table 8: CPU time for routine shloop for conventional and QFldased DFT (Rhodium complex)
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Figure 7: Cobalt catalyst: 213 atoms, 814 shells, 1683 asitions

Figure 8: Rhodium complex: 99 atoms, 650 shells, 1312 basistions

Table 8 shows timings and errors for the rhodium complex. fiinéngs in Tables (7)
and (8) are average times for one iteration. The absoluteseare the errors in the total
energies after convergence has been reached.
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Iteration |AE|

6.3-1076
5.9-1076
2.8-10°6
7.5-1076
3.4.10°6
6.9-10°6
2.2-10°
7.6-1076
8.4-107°
3.7-10°6

OQOOWoO~NOO”OLPA, WN PR

H

9.6-107°

o

Table 9: Error accumulation in the SCF iteration for an exgi@mlength of 15 (Rhodium complex)

Iteration |AE|

1.2-1078
3.7-1078
49-.10°8
3.6-108
9.7-107°
4.5-1078
2.8.1078
22.10°8
9.6-107°
43-10°8

©Ooo~NOoOUahr~wNPRE

N
o

30 3.8-1078

Table 10: Error accumulation in the SCF iteration for an egian length of 25 (Rhodium complex)

The accumulation of errors in the SCF iteration has beerddst the rhodium complex.
Table 9 shows the error accumulation for a multipole exgankngth of 15, Table 10 for
a length of 25. The energies are compared to the energies abtiventional DFT calcu-
lation. An increase of the expansion length by 10 decredsesrrors by approximately
three orders of magnitude.
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Its. Energy AE CPU time per iteration [s]
CFMM-DFT 26 -2918.641427 -0.00001 923
RI-DFT 27 -2918.647531 -0.006 322

Table 11: Comparison CFMM-DFT with RI-DFT (Rhodium complex

In comparison with RI-DFT our CFMM based DFT implementatisrstill a factor be-
tween two and three slower. The accuracy of the energy istdbie orders of magnitude
higher. Table 11 shows the timings and the energy errorsioCé#MM based DFT im-
plementation compared to RI-DFT.

5 Summary and outlook

We have described an improved implementation of the rotétésed Fast Multipole Method
to evaluate systems of point charges as the basis for theMDons Fast Multipole Method
to treat charge distributions. First steps in parallefizine program have been made. Fur-
ther work to improve the parallel performance is necessary.

The serial version of our FMM program is able to treat vergéasystems of point charges
up to several billions of particles. We have proposed a ngwageh for the separation of
near and far field within the theory of FMM to minimize the caumtgtion time depending
on an user-requested threshold. Within the framework dBthe Gene/L project our FMM
program will further optimized with regard to the IBM powaogessor architecture.

The CFMM implementation is based on our FMM program. It is Haraative to DFT
and RI-DFT. Depending on the geometry of the molecule ands st more than 90%
of all electron repulsion integrals can be computed via ipolé expansions which takes
approximately 15% of the total computation time. Our CFMNMplementation is still at
least a factor of two slower compared to RI-DFT whereas tloaracy of the total energy
is about three magnitudes higher.
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The treatment of solute-solvent interactions in quantuenabal calculations has become
an important field, because most of the problems, which caaddeessed with modern
guantum chemical methods, are dealing with liquid phasengdtey. The continuum sol-
vation models (CSMs), such as the polarizable continuumemn@{LCM) [1], the solvation
models of Truhlar and Cramer (SMx) [2], COSMO [3], and othédrave become well-
established models, which take into account solvent effestmolecular energies, prop-
erties, and structures. An overview is given in the Refs5[4]. The following chapters
will give an overview of the COSMO theory and implementatomade in the HPC-Chem
project.

1 Basic theory

The basic idea of the CSMs is to present the solvent by a aantinwhich describes the
electrostatic behavior of the solvent. The polarizatiothefdielectric continuum, induced
by the solute, is represented by the screening charge gexpgearing on the boundary
surface between the continuum and the solvent. Usually xhetalielectric boundary

condition is used to calculate the screening charge deriBitg basic idea of COSMO is
to replace this condition by the simpler boundary conditbmhe vanishing potential on

the surface of a conducting medium. Using a discretizatfdhesolute-solvent boundary
surfaceS into m sufficiently small segments with center-coordinatgsand the segment
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areasS,, this condition reads
P = &' + &7 = 0. (1)

Here them-dimensional vecto®! denotes the total electrostatic potential ontheur-
face segments, which consists of the solute poteditiél (electronic and nuclear) and the
potential arising from the screening charges on the segn@®ht The last term can be
expressed by the product of thex m-dimensional Coulomb interaction matixand the
m-dimensional screening charge veadiprThen we have

0 = &+ Aq 2)
q = _A—lq,sol (3)
which gives an exact expression for the screening chargesamducting continuum. The

screening charges in a dielectric medium are approximatéaebintroduction of a scaling
function that depends on the dielectric constant of theestlv

¢ = flOq @)
flo = 1 (5)
e—i—%.

It can be shown that the relative error introduced by this@pgmation is very small for
strong dielectrics and within 10 % for weak dielectrics andsequently within the accu-
racy of the dielectric continuum approach itself [3].

The interaction energ¥;,; of the solute and the continuum, i.e. the screening chaiges,
given by the dot product ab** andqg*. To obtain the total dielectric enerdyy;.; one has to
add the energy that is needed to create the screening c@cﬁé@q). Using®? = — @
we get

1 1 1
Fuw = 10 [a# + Sa1#7] = (0 [ - Ja'#*!] = Jrga' e (6)

As usual for linear response theory the free electrostagrgy gained by the solvation
process is half of the total interaction energy. Non-etestatic terms as for instance used
in the PCM [11] or COSMO-RS [10] models, will not be discuskede.

2 Implementation in HF/KS SCF calculations

The standard implementation scheme of the COSMO model in @6§rams is given

in Scheme 1. After the input parameters have been set theculatesurfaceS can be
constructed, followed by th&-matrix setup. This has to be done only once for a given
molecular geometry. During the SCF cycles the current dersused for the calculation
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Scheme 1:Work Schedule of a COSMO SCF Calculation
0) COSMO parameter setup
1) Cavity construction
2) A-matrix setup
LOOP until SCF convergence is reached
3) Evaluation of the solute potentid*°
4) Evaluation ofq and F ;¢
5) Computation ofE = E(¥*W) + E4, and in-
sertion of the scaled screening chargémto the
solute Hamiltonian

END LOOP
6) Outlying charge correction

of the solute potential, which is used in step 4 to calculagescreening charges and the
dielectric energy according to Egs. (3) and (6). The scalezkning charges are introduced
into the Fock or Kohn-Sham operator, respectively. Thd @argy is defined as the sum
of the energy calculated with the solvated orbitals and tekectric energy

E = E(U*") + Eyq. (7)

The outlying charge correction at the end of a converged S@kilation corrects the error
due to small residual solute density that reaches into théraoum.

3 Technical details

Cavity Construction: For molecular shaped cavities the efficient and sufficieatiyu-
rate segmentation of the surface is an important aspeaypbedt has strong influence on
the accuracy and the speed of the calculation. All the caabstruction techniques define
the interior of the molecule as the union of atom centere@gsh(see Figure 1). The radii
of this spheres can be assigned element specific, as atoamgecbr electronic density
depended radii [12], or by using the information about thensital surrounding, i.e. by
using atom-types also known from molecular mechanic catms. The later definitions
obviously introduce more flexibility with the potential oh@re accurate reproduction, but
also with the danger of a loss of predictive power of the mo@eérefore, we use element
specific radii. Presently optimized radii, which are adgdsto thermodynamic properties,
are available for H, C, O, F, Cl, Br, I, N, and S. For other elataescaled v.d.W. radii are
used. The scaling factor 1.17 is in the range of findings oéiogroups [1]. A second
important aspect of the cavity construction is the treatnoérihe intersection seams of
the atomic spheres. These surface areas exhibit sharpttagpsad to unreasonable high
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electrostatic fields, and therefore to a physically unreabte description and mathemat-
ical instabilities. Thus, any sphere-based construceguires a smoothing algorithm for
these areas. The cavity construction in the COSMO impleatiemnts starts with a union

COSMO open cavity COSMO closed cavity

Figure 1: lllustration of the intersection smoothing metso

of spheres of radiR, + RSOLV for all atomsa. The default for the auxiliary radius
RSOLYV is the optimized H radius. The segmentation of the atomiegshstarts from a
regular icosahedron with 20 triangles. A refinement of tlggrsentation is reached in two
steps. First the triangle edges midpoints are used as néiwegand second the triangle
centers are used as new vertices. The first step increasagrttieer of triangles by a factor
4, while the subsequent step increases the number by a factor general the triangle
edges can be subdivided by any integgieading to an increase of triangles by a faetér
Thus triangulations wittk = 20 x 3* x n?(i = 0, 1) triangles can be generated. Eventually
we do not use the triangles as segments but the correspdmeliagons and 12 pentagons.
Therefore, we consider each vertex of a triangle as a centticannect the midpoints
of the six or five neighbor triangles. Because the number ofggons and hexagons is
k' = k/2 + 2, we can construct surfaces with = 10 x 3' x n? +2 = 12,32,42,92...
segments. This procedure has two advantages: first it redheenumber of segments
and second the center-center approximation used idtneatrix setup is better justified
for pentagons and hexagons than for triangles. In order hteae a properA-matrix
with a tolerable number of segments, we use a two-grid proeednitially a basis grid
with NPPA (default: 1082) segments per non-hydrogen atopndgected onto the atomic
spheres of radiR, + RSOLV. All the points, which are not in the interior of another
sphere, are defined as remaining and projected downwardgtetadiusk,,. This con-
struction prohibits the generation of points in the prokdéimintersections. In the next step
a segment grid of NSPH segments per H atom and NSPA segmetmite fother atoms is
projected onto the spheres definedRy. NSPA (default: 92) and NSPH (default: 32) are
out of thek’ set. Now the remaining basis grid points are associatecktoghrest segment
grid centers. Segments without basis grid points are diechrThe remaining segments
coordinates are redefined as the center of area of theiriag=mbbasis grid points, while
the segment area is the sum of the basis grid areas. In or@gistoe nearest neighbor
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association for the new centers, this procedure is repesesl Now the spherical part of
the surface is ready and the intersection seams of the sphave to be closed. There-
fore, a ring is generated for each pair of intersecting sghef radiiR, + RSOLV. The
parts of these rings, which do not penetrate other spheregqrajected onto the surface
defined byR,, towards each of the two atom centers. The resulting two apgesgs are
filled with triangles, each having two corners on one ring and on the other. The sole
corner of the triangles moves a bit towards the center of gp@sing ring resulting in an
inclination. The tilt angle is a function dRSOLYV, the two atomic radiz, and Rz and
the atomic distance. At the end of the surface constructiertriiangular regions which
arise from the intersections of three spheres, the soectllfde points, are paved with ad-
ditional triangles. The ring and triple points segmentsiadé/idual segments, they do not
hold associated basis grid points.

A-Matrix Setup: The Coulomb interaction matrix elements; are calculated as the
sum of the contributions of the associated basis grid pahthe segments and j if
their distance is below a certain threshold, the centersefégments are used otherwise.
For all segments that do not have associated basis gridspaiat ring and triple point
segments, the segment centers are used. The diagonal &detpahat represent the self-
energy of the segment are calculated via the basis gridgpoamttributions, or by using the
segment ared,;; ~ 3.8+/S;, if no associated basis grid points exist. Numerical irititas
can arise due to the lack of positive definiteness of Arenatrix, which is very often
caused by matrix elements between two very close segmenssich cases the Coulomb
interaction leads to an unphysical description due to alde@tageous cavity. To avoid this
problem, one has to provide proper cavities for all possinbdecular structures. Because
this problem is hardly solvable, we introduced the follogvinteraction term:

A;j = afj + iﬂ <i — a%) VTZ‘]' < Tij- (8)
7',']' Tij
The termus; ~ 2.1/7;; is the self-interaction of a segment with the radiys= (r; + %) /2,
which is the average segment radius of the two segments godsideration. If the dis-
tance of the two segments; is less than or equal to the average segment ragjushe
interaction is scaled between the self-interactignand the Coulomb interactiohy/r;;,
dependent on the ratig, /7;;. This procedure can also be applied to the basic grid interac
tions. Iterative biconjugate gradient techniques haveathantage that a positive definite
matrix is not required [9] but they do not handle the physarain of the lack of positive
definiteness.

Potential Calculation and Operator Update: The full solute potential on the segments
consists of an electronic and a nuclear part.

(I)sol — (I,el + ‘I’N (9)
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In the LCAO-formalism the electronic part can be expresaddrms of potential integrals
over basis functions.
1/> (20)

p(r) 1
o = dr=-» PV, 6 Vi =
s /\r—u ' Z S <“‘\r—t5\

Z
eV = E > 11
§ - R, — ts] (11)

Wheres is the segment index artg are center coordinates of the segment. The nuclear
coordinates and charges are denoted \Rithand Z,,, respectively. For DFT calculations

it can be more efficient to calculate the electronic poténiea numerical integration of
the electronic density. The COSMO update of the operatorixnedn be calculated from
the screening charges on the segmentnd the potential integrals:

VoS =—f(e)> a5, (12)

If the energy is calculated using the updated operator ryatnie has to subtract the expec-
tation value of the COSMO operator and add the dielectrieggn&y;.; in order achieve
consistency with the definition in Eq. (7).

Outlying Charge Correction: The use of a cavity close to the v.d.W. surface, like in
COSMO and other CSMs, implies that a significant portion efdblute electron density
reaches into the continuum. This part of the charge didiohyproduces screening charges
in the volume of the dielectric continuum and thus leadstifi@al screening effects. One
advantage of the COSMO approach is that it exhibits a smaili#ying charge error than
models that use the electric field and the exact dielectimtary condition. Nevertheless,
the error should be corrected. Therefore, we use the doawiey@approach introduced
in Ref. [7]. This procedure uses a second cavity, which isstraoted by an outward
projection of the spherical part of the surface onto theusd, + ROUTF « RSOLV
(default: ROUTF = 0.85). The corrected values can be calculated as follows:

P = A’q+P° (13)

qot — _Aofléot (14)

® = —-A(qeq”) (15)
1

Eeorr — f(e)iqcféc—Ediel. (16)

Here theA’ denotes the Coulomb interaction matrix between the changéise inner and
the charges on the outer surfad¥, is the solute potential on the outer surface, afds

the Coulomb interaction matrix of the charges on the outdiasa. The full potential on
the outer surfac@® results from the outlying solute density only and is usedaiouate
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the corresponding charge correctigtd. The fully corrected screening charge on the inner
surface ¢ ® q°) can be used to calculate the corrected potential on the suréace®©.
The symboks denotes that a smaller array is added to the correspondgmyeses ofq.
The energy correctio&’*” for the dielectric energy, and thus also for the total engsgyy
defined as the difference between the corrected and therected dielectric energy.

Gradients: From the definition of the total energy in HF/KS-SCF caldolas in Eq. (7)
it is clear that the gradient consists of the SCF gradietutated from the solvated wave
function, and the derivative of the dielectric energy.

Ef = E(‘I’SOlv)é"‘Egiez (17)
1

Eq = [(e) 5qTA§q+q"<1>“l§ (18)

(:bsolg — ‘Pelé—l-@Ng (19)

The first term in the derivative of the dielectric energy canchlculated easily using the
already known screening charges and the derivative ofAthmatrix. The derivativeA¢
includes an estimate for the surface derivative, which balset taken into account for
the diagonal elements. The solute potential derivativitsspito the nuclea®™* and

the electronic par®<‘. The first term can be computed by COSMO routines, whereas
the integral derivatives needed for the second term have fortvided by the quantum

chemical code.
3
(Ifl‘5 =— Z P, <,u z/> (20)
177%

Like the potential itself, the derivative is known in commqguantum chemical codes,
because it is similar to the nuclear-electron attractiaegral derivative. To ensure a fast
gradient calculation the segment center approximatiorséxluring the whole gradient
calculation. It should be noted that numerical derivatis€she energy should not be
calculated with the COSMO model, because due to the cavitgtoaction mechanism the
energy is not continuous.

1
Ir — ts

4  Frequency calculation

The calculation of harmonic frequencies raises the proldénon-equilibrium solvation

in the CSM framework. In the case of long-living states ofsbkite, the solvent is able to

respond with its full re-orientational and electronic p@ation. But processes that are on

time scales that do not allow a re-orientation of the solveatecules, such as electronic

excitations or molecular vibrations for instance, haveddrbated as non-equilibrium pro-

cesses. Therefore, the total response of the continuunliisrgp a fast contribution,
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described by the electronic polarization, and a slow tetated to the orientational relax-
ation. The patrtition depends on the susceptibility of tHeesat, which can be written as
the sum of the electronic and the orientational part

Xtot = Xei + Xor; Xa=n>—1; Xor =€—n? (21)

wheren is the refractive index of the solvent. For the initial stat@ich is characterized by
the densityP® and the dielectric constant the response of the solvent, i.e. the screening
charges, split into an orientational part and an electrpait:

or Xor e Xel
Q"7 (P%) = =X f(e)q(P?); g (P°) = == f(e)q(P?). (22)
Xtot Xtot
During fast processes the orientational part is kept fixeitlevthe electronic part is allowed
to respond instantaneously to the disturbance. For anramnpitisturbed state with the
densityP = P° 4+ P the total potential reads:

3' = &(P) + Aq™”. (23)

WhereA q*°" is the negative potential arising from the frozen initialtstscreening charges
q*". The full potential is screened by the electronic polaritigionly and thus the di-
electric constant in Eq. (5) has to be replaced by the squatteearefractive index:?.
The electronic response contribution to the screeninggesanf the disturbed state can be
obtained from:

q* = —f(n*)A"'® (24)

After adding the frozen chargeg " (P°) and some re-arrangements one obtains a simple
expression for the total scaled screening charge of therted state.

a’* = f(n*)a(P?) + f(e)a(P°) (25)
As can be shown [8] the dielectric energy for the disturbatestan be written as follows:

S (©a(PYB(PY) +  f(7)a(PY)B(PY) + f()a(P)B(PY).  (26)

Etcllz'el =
The interaction is composed of three contributions: theahstate dielectric energy, the
interaction of the potential difference with the initiaht# charges, and the the electronic
screening energy that results from the density difference.
Using this theory we developed an implementation schem#hécalculation of numeri-
cal frequencies by numerical differentiation of the anabjtgradients, which is given in
Scheme 2. In opposition to excited states, which can beetleaith one cavity and the
correspondingA-matrix, the distortions of the numerical procedure chatingeCOSMO
cavity at every step. In an early implementation of numéR&M frequencies [18] a fixed
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Scheme 2:Work Schedule of a Numerical Frequency Calculation with GAQ5
0) Do astandard COSMO calculation and save the screeningeshand poten-
tials asq(P?) and®(P?)
LOOP over distorted structures
1) Set up the cavity and th&-matrix for the distorted geometry
2) Map the frozen potential on the new cawB(P?) — &™(P?)
and recalculate the screening charg@{P°) = —A~1&™(P?)
LOOP until SCF convergence is reached

3) Calculate the currerd(P) andq(P) and build®(P2) =
&(P) — @™ (P°) andq(P*) = q(P) — q"(P°)

4) Calculate the dielectric energy according to Eq. (26) us-
ing the mapped values for the initial state charges and
potentials

5) Calculateg® from Eqg. (25) using the mapped initial state
potentials and insert the charges into the Hamiltonian

6) Calculate the new density and the corresponding energy:
E = E(7*") + B,

END LOOP
7) Calculate the gradient according to Eq. (27)
END LOOP

8) Calculate the numerical derivate of the gradient

cavity approach and a density adjusted cavity were examihedrned out that the fixed
cavity gave reasonable results for diatomic HF moleculeé,cannot be expected to be
applicable to polyatomic molecules. To solve the cavitybpeo we map the initial state
potential on the cavity of the disturbed state and recaleulee screening charges from the
new potential. The mapped potential of a segment of the neityda calculated from the
distance-weighted potentials of all segments of the oldtg#vat fulfill a certain distance
criterion. This procedure should be more stable than a tdimapping of the screening
charges. The gradient of the distorted states can be ddrive&dEq. (26) and the fact that
the gradients of the frozen initial state valug®") and®(P?) vanish.

€ 1
%q(rﬂ)) (P)

Numerical results for the(C=0) frequency of 4-(Dimethylamino)-benzaldehyde in six
different solvents are given in Table 1. The deviations fittv& experimental data show
that the implementation of Scheme 2 leads to a small imprewmeof the calculated fre-
qguencies compared to the fully relaxed COSMO calculatiafssFu). Nevertheless, the
fully relaxed COSMO frequencies exhibit the same trendssaan to be a good approxi-
mation.

1

Bl = 507) |5 (a (P)A%(P) + (a(@%) + @)
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Table 1: Solvent Effects on thg(C=0) Frequenci¢s[cm~!] of 4-(Dimethylamino)-benzaldehyde on the
RI-DFT BP/TZVP Level.

Solvent € ney Exp?® V5.50 V5.5u- new new-Exp.
Exp.
CCly 2.23 1.46 1683.0 1662.3 -20.7 1664.7 -18.3
Benzene 2.25 1.501 1677.8 1661.6 -16.2 1664.0 -13.8
Chloroform 4.9 1.446 1662.2 1644.4 -17.8 1652.7 -9.5
Ethanol 24.6 1.361 1658.2 1628.7 -29.5 1644.0 -14.3
Methanol 32.6 1.323 16574 1628.1 -29.3 1643.5 -13.9
Acetonitrile  36.6 1.344 1673.6 1628.0 -45.6 1643.3 -30.3
Vacuum 1685.6

@ from Ref. [19]. ® TURBOMOLE version 5.5 using uncorrected screening chafgeshe gradient
calculation. ¢ Implementation of Scheme 2 in TURBOMOLE version 5.6.The calculated values are
numerical harmonic, un-scaled frequencies (SCF convef,sre 0.02 a.u.). The molecular structures have
been optimized for the given dielectric constant.

5 COSMO atthe MP2 level

For ab initio MP2 calculations within the CSM framework taralternatives, originally
introduced by Olivares et al. [15], can be found in the litera. The first approach, often
referred to as PTE, performs a normal MP2 energy calculatiothe solvated HF wave
function. The response of the solvent, also called readigdah, is still on the HF level. In
the so-called PTD approach the vacuum MP2 density is usealdalate the reaction field.
The third approach, often called PTED, is iterative so thatreaction field reflects the
density of the first-order wave function. In contrast to tAié&Rpproach the reaction field,
i.e. the screening charges, change during the iteratiotilsseif consistency is reached.
This is important if the screening charges are used afteisvaug. as input for a COSMO-
RS [10] calculation, which allows the prediction of thermgodmic properties of solutions.
The PTE algorithm is less cumbersome than the PTED and duitdte analytical gradient
calculations. Furthermore, it was shownAggyan that PET is formally consistent in the
sense of second-order perturbation theory [13, 14]. Inphigect we implemented the
PTED method given in Scheme 3. The MP2 density in step 1 ofi8elteis the relaxed
density, which can be obtained from a coupled perturbedréffock (CPHF) procedure
for solvated systems. Such a procedure has been propogbd €M model by Cammi et
al. [17]. The authors gave a full implementation of anabfttigradients for a PTE like MP2
scheme. To adopt this procedure for the COSMO model, thesitrg charges have to be
divided with respect to the two potential components théyimate from. Thus, we obtain
charges, which arise from the electronic potential and tfeges that originate from the
nuclear potential denoted by the supersarignd NV, respectively.

¢ == A P}, z=N,el (28)
t
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Scheme 3:PTED Implementation Scheme
0) Do astandard COSMO HF calculation
LOOP until convergence is reached gt/ F? and EMP?2
1) Calculate the MP2 energy and density

2) Calculate new screening charges and dielectric eneogy fr

the MP2 density according to Eqg. (3)
3) CalculateEX? as defined in Eq. (34)
4) Perform a HF COSMO calculations with frozgf! 2
END LOOP

5) Perform the outlying charge correction for the MP2 dgnsit

Here the indices, t refer to the segments of the COSMO cavity. Introducing tefadtion
in Eq. (12) the COSMO part of the Fock matrix reads:

coS _  1,COS,N COS,el
Vi = V. + V. (29)

VEOST = fe)D Y AV, (30)
S t

Using the expression for the electronic potential from EdL) ,5°%¢ can be written as
follows:

VoS = F()Y P Y @V = Prolun (31)
Ao s Ao
q;a = - Z A‘;l V)fa' (32)
t

In this definitiong,, ». is the contribution due to the screening charge portionrayisom
the charge distribution of the AO paif; x,. The two COSMO parts derived above can be
added to the one-electron and the two-electron part of tlo& Fatrix, respectively. The
solvated Fock matrix elements read:

Fie® = (b + VSON) 137 Py (v [| A0) + Guao) (33)
Ao

Using this operator in the CPHF procedure one obtains a Iregjuation where both
sides includej,, », contracted with the current density, which take into actaha re-
sponse of the continuum due to the perturbed density [17 ron-iterative PTE calcu-
lation the relaxed MP2 density can be used to compute anel@w-on property. As can
be seen from Scheme 3 this is simply the first step of the PTHDeimentation. The last
steps of the PTED scheme are straightforward. The MP2 sageharges are calculated
from the full MP2 potential arising from the MP2 density ahd tuclei. These charges are
used to calculate the MP2 dielectric energy that is part efftii MP2 energy expression
of the solvated system

EMP? — pHE | p@) _ pht | plP2 (34)
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Table 2: MP2 Solvation Energies [kcal/mol] in a Conductpfe] =1) at the RI-MP2/TZVP//RI-BP/TZVP

Level
iterd PTED-PTE PTED- AE*W(MP2)¢ AE*°%(HF)*
PTED®
CyH50H 4 0.51 -0.04 -5.49 -6.55
CRCOO 4 1.41 -0.32 -59.83 -63.43
CH3OH 3 0.48 -0.03 -5.77 -6.75
CHCl; 4 0.75 -0.12 -2.20 -3.86
Chlorobenzene 4 0.87 -0.14 -2.39 -4.33
Cly 2 0.06 0.00 -0.90 -1.02
Clo, 4 0.51 -0.22 -58.73 -60.28
CO, 4 1.18 -0.39 -0.66 -3.89
Cyclopropane 2 -0.04 0.00 -1.56 -1.48
Diethylether 4 0.47 -0.05 -3.31 -4.29
DMSO 6 3.33 -0.35 -9.00 -16.16
Ethylamine 3 0.16 -0.01 -5.13 -5.46
Ethylene 3 0.34 -0.05 -1.13 -1.89
HCOOH 6 1.99 -0.57 -5.16 -10.20
Furane 7 3.00 -1.26 -2.35 -10.50
H,O 3 0.45 -0.02 -8.00 -8.92
H;0OT 3 0.05 -0.01 -93.96 -94.08
lo 2 0.23 -0.02 -1.80 -2.30
Methylamine 3 0.09 -0.01 -5.18 -5.39
NH; 3 0.13 -0.01 -6.18 -6.46
Nitrobenzene 6 2.53 -0.90 -2.93 -9.70
NO; 3 0.47 -0.13 -66.45 -67.71
OH~ 3 0.92 -0.01 -95.85 -97.70
PF, 3 -0.03 -0.04 -55.53 -55.58
Phenol 5 0.98 -0.14 -6.20 -8.39
SO?[ 4 0.44 -0.24 -238.25 -239.80

@ COSMO optimizations? PTEDO is the first cycle of the PTED scheme including the éagjyharge cor-
rection.¢ Solvation energ\ E#°v(X) = E¢OSMO(X) — E995(X), X = HF,PTED. ? Convergence
criteria: energy 10°; screening charges 10 (maximum) and 10° (rms).

whereE® denotes the second order perturbation energy of the sdli#Eavave function.

If the energy and the screening charges are not convergde caleulation in the presence
of the fixed MP2 screening charges provides the wave funétiothe next cycle. Some

results obtained with the PTED approach are given in Tabl@2e results are similar

to that reported from an earlier PTED implementation in thegpam package GAMESS

[16]. As can bee seen from the energy difference betweenrtteyicle (PTEDO) and the

converged PTED, the relative small improvement of the PTED€rgies does not justify

the iterative procedure. Only four compounds exhibit alsoimprovements that exceed
0.5 kcal/mol. The largest effects have been found for FueameNitrobenzene. We used
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Figure 2:0-profiles of Furane and Nitrobenzene.

this compounds to check the influence of the iterative proeedn the screening charges.
The plots in Figure 2 show the distributions of the screecimayge densities, the so-called
o-profiles, for the different iterations. The graphs showssabtial differences between the
HF profiles and the profiles of the first PTED iteration, wherea significant changes can
be observed among the MP2 profiles.

6 Implementationin TURBOMOLE

The starting point for the implementations of this projeasvthe already existing COSMO
SCF and gradient implementation in the progratesf andgr ad and the corresponding
RI-DFT routinesri df t andr dgr ad [20]. This implementation was done by the BASF
and used extensively in industries and academics. Thehighel parametrizations of the
COSMO-RS model, which became an important tool for the joteah of thermodynamic
data of solutions, have been done with these programs [1Gho#gh this first imple-
mentation turned out to be very stable, the lack of positeniteness of the\-matrix,
occurring in the Cholesky factorization, has been repdriesome users. Thus, we started
this project with the analysis of th&-matrix problem. As discussed in section 3, it turned
out, that in most of the cases the problem was caused by swséments located in the
intersection seams of the atomic spheres. In some casesahefiling procedure leads
to small segment-segment distances and thus to huge Coydotebtials. To overcome
this problem, we introduced the modified interaction teraegiin Eq. (8) in theA-matrix
setup routine. This modification leads to a more stable phaee A second modification
of the basic implementation was a small change in the grathetines. Since the outlying
charge correction is not included in the gradient, the uobed screening charges will be
used in the gradient calculation in future versions.
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MP2 Cosmo Calculations: The PTED scheme (cf. section 5) has been implemented
for the conventional MP2 and the RI-MP2 method. Because theBOMOLE package
consists of stand-alone programs, we used a transfer filedhtains the needed COSMO
information e.g. coordinates of the surface segments arakising charges of a certain
level of theory. Keywords in the control file are used to aivthe features in the HF
program and the MP2 modules needed for the iterative praeedushell script is used to
manage the keyword settings and program calls needed f&TtE® calculation. The user
can choose the convergence criteria for the energy and teersng charges and the max-
imum number of iterations. A restart of the iterative pragedis possible. The COSMO
related potential has been added in the CPHF procedurepithe Z-vector equation. In
the case of the non-iterative PTE procedure, which is sintpdyfirst step of the PTED
approach, this leads to a consistent MP2 density that carsée for the calculation of
one-electron properties. The density has been checked dgnle moments calculated
by numerical derivatives. Some results obtained with theedieed implementation have
been given and discussed in section 5. PTEDO results on tMPRITZVP//RI-BP/TZVP
level of 331 molecules have been used to optimize and valithet parameter set of the
COSMO-RS model. It turned out that the new MP2 parametoras inferior to the DFT
parametrization BAFZVP_C12.0104 [21]. The free energy root mean square deviation
over all properties used in the optimization is 0.56 kcal/imathe MP2 case and 0.39
kcal/mol for the DFT parametrization. Nevertheless, tlsilts may be improved by the
use of the fully optimized PTED results, a better basis seiB2 optimized structures.
Further work has to be done to check these opportunities.

Cosmo Frequency Calculations: The implementation scheme for the calculation of nu-
merical frequencies including the COSMO model, given intisac4, has been imple-
mented for the RI-DFT method. The programsdf t andr dgr ad that perform the SCF
and gradient calculations, respectively, have been maddifierder to enable the treatment
of the different charge and potential contributions andemdiwrite the COSMO data file
that is needed for the data transfer between the stand-alodeles. The shell scriplum

For ce that controls the numerical frequency calculation has lesénded to handle new
COSMO keywords. First results have been given in section 4.

7 Implementation in MOLPRO

The present implementation of COSMO in MOLPRO was the firglization of a CSM in
the MOLPRO code. Therefore, we started with the implementatf COSMO in the SCF
routines of the program following Scheme 1. This has beee fmmHF/UHF and KS/UKS
calculations using the modifieAl-matrix setup discussed in the sections 6 and 3. During
this implementation we tried to introduce symmetry into @@SMO routines. Since the
cavity construction described in section 3 cannot be matifie the use of symmetry in
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a straightforward way, we tried to symmetrize tfiecavity. The segments which belong
to the irreducible representation and their associateis lgaisl points are replicated when
the symmetry equivalent segments or basis grid points apgrezl for the calculation of
the A-matrix elements. After thé-matrix is set up for the irreducible representation, at
the beginning of the calculation, only segments that belorttpe irreducible representa-
tion have to be taken into account in the next steps. The drekvbf this procedure is
the symmetry dependence of the energy. If a high symmetrgad for a small molecule
the deviation from th€'; energy can be substantial. Furthermore, the segmentudistmn

on the symmetrized cavities is worse than in ffiecase. Because the edge segments of
the cut out irreducible representation do not lie on the oniplanes, the replication can
generate very small segment distances or holes. After sestg it turned out that the
simpler approach of using the full; cavity also for higher symmetries leads to a more
stable procedure with negligible energy deviations betweéeand higher symmetries. In
the next step the COSMO gradient given in Eq. (18) has bedd luusing the uncor-
rected screening charges. The MP2 COSMO calculations res implemented similar
to the TURBOMOLE package as described in section 5. BecauSeRRO is able to
handle control structures and variables in the input, tis¢ Version of the iterative PTED
procedure has been implemented using a loop in the inpuffiie.results match the data
obtained with the conventional TURBOMOLE MPg{gr ad) and they are close to the
RI-MP2 results presented in Table 2.

8 Implementation in QUICKSTEP

The COSMO implementation in Gaussian plane wave (GPW) clikeeQUICKSTEP fol-
lows the procedure given in Scheme 1. The substantial diffegs to the implementationin
pure LCAO codes, which has been discussed in section 3, amtdrfaces to the quantum
chemical program, i.e. the calculation of the solute paaéon the surface segments and
the COSMO contribution to the Kohn-Sham (KS) matrix.

Following the QUICKSTEP philosophy we decided to keep the changes due to the COSMO
implementation, especially the COSMO data structuresy@d hs possible. The COSMO
routines have been combined in a Fortran 90 module definiddirthe relevant COSMO
data are keptinside the module. The Fortran (§98MO DATA holds all COSMO parame-
ters like the radii and the dielectric constant. A set of gatd set-functions is used to access
the data from the QM program. A second Fortran type callé8MO_SEGVENT _DATA is
used to store the segment related data, e.g. the screerdrggeshand the potentials on the
surface. Because these data change during the SCF caloytaey are directly accessible
from both sides. The needed memory is allocated interndtignever needed. A cleaning
routine at the end of the calculation frees all allocated wmThe calls of the COSMO
module routines from the SCF program are given in Scheme 4.
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Scheme 4:Implementation of the COSMO Module in a SCF Program

cosnmoinitialize Initialize data of thecosno_dat a type, set default parameter
and radii. User defined parameters can be set using the set
routines after the initialization

cosno_check_rad Check if all radii have been set. Only optimized radii for the
most common elements are set in the initialization
cosno_surf _amat Calculate the surface and tematrix

LOOP until SCF convergence is reached
Provide the solute potential
cosno_charges Calculate the screening charges

cosno_edi el Calculate the dielectric energy
Update KS matrix and calculate the energy according to BEq. (7
END LOOP
Provide the solute potential on the outer surface
cosno_oc._corr Perform the outlying charge correction
cosmowite Write the corrected values to the output file
cosno_cl ean Deallocate the internally allocated memory
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