001     41883
005     20200423203929.0
017 _ _ |a This version is available at the following Publisher URL: http://jcp.aip.org
024 7 _ |a pmid:15485279
|2 pmid
024 7 _ |a 10.1063/1.1801271
|2 DOI
024 7 _ |a WOS:000224456500069
|2 WOS
024 7 _ |a 2128/1384
|2 Handle
037 _ _ |a PreJuSER-41883
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |a Ballone, P.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a A reactive force field simulation of liquid-liquid phase transitions in phosphorus
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2004
300 _ _ |a 8147 - 8157
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Chemical Physics
|x 0021-9606
|0 3145
|v 121
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A force field model of phosphorus has been developed based on density functional (DF) computations and experimental results, covering low energy forms of local tetrahedral symmetry and more compact (simple cubic) structures that arise with increasing pressure. Rules tailored to DF data for the addition, deletion, and exchange of covalent bonds allow the system to adapt the bonding configuration to the thermodynamic state. Monte Carlo simulations in the N-P-T ensemble show that the molecular (P(4)) liquid phase, stable at low pressure P and relatively low temperature T, transforms to a polymeric (gel) state on increasing either P or T. These phase changes are observed in recent experiments at similar thermodynamic conditions, as shown by the close agreement of computed and measured structure factors in the molecular and polymer phases. The polymeric phase obtained by increasing pressure has a dominant simple cubic character, while the polymer obtained by raising T at moderate pressure is tetrahedral. Comparison with DF results suggests that the latter is a semiconductor, while the cubic form is metallic. The simulations show that the T-induced polymerization is due to the entropy of the configuration of covalent bonds, as in the polymerization transition in sulfur. The transition observed with increasing P is the continuation at high T of the black P to arsenic (A17) structure observed in the solid state, and also corresponds to a semiconductor to metal transition.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Jones, G. J.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB2298
773 _ _ |a 10.1063/1.1801271
|g Vol. 121, p. 8147 - 8157
|p 8147 - 8157
|q 121<8147 - 8157
|0 PERI:(DE-600)1473050-9
|t The @journal of chemical physics
|v 121
|y 2004
|x 0021-9606
856 7 _ |u http://dx.doi.org/10.1063/1.1801271
|u http://hdl.handle.net/2128/1384
856 4 _ |u https://juser.fz-juelich.de/record/41883/files/58142.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41883/files/58142.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41883/files/58142.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41883/files/58142.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:41883
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-TH-I
|l Theorie I
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB30
|x 0
970 _ _ |a VDB:(DE-Juel1)58142
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21