000041925 001__ 41925 000041925 005__ 20240712100850.0 000041925 017__ $$aThis version is available at the following Publisher URL: http://dx.doi.org/10.1256/qj.04.47 . Copyright 2005 Royal Meteorological Society 000041925 0247_ $$2DOI$$a10.1256/qj.04.47 000041925 0247_ $$2WOS$$aWOS:000227971200009 000041925 0247_ $$2Handle$$a2128/607 000041925 037__ $$aPreJuSER-41925 000041925 041__ $$aeng 000041925 082__ $$a550 000041925 084__ $$2WoS$$aMeteorology & Atmospheric Sciences 000041925 1001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b0$$uFZJ 000041925 245__ $$aHow homogeneous and isotropic is stratospheric mixing? Comparison of CRISTA-1 observations with transport studies based on the Chemical Lagrangian Model of the Stratosphere (CLaMS) 000041925 260__ $$aWeinheim [u.a.]$$bWiley$$c2005 000041925 300__ $$a565 - 579 000041925 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000041925 3367_ $$2DataCite$$aOutput Types/Journal article 000041925 3367_ $$00$$2EndNote$$aJournal Article 000041925 3367_ $$2BibTeX$$aARTICLE 000041925 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000041925 3367_ $$2DRIVER$$aarticle 000041925 440_0 $$05221$$aQuarterly Journal of the Royal Meteorological Society$$v131$$x0035-9009$$y606B 000041925 500__ $$aRecord converted from VDB: 12.11.2012 000041925 520__ $$aThe Chemical Lagrangian Model of the Stratosphere (CLaMS) is used for the interpretation of N2O observed during the CRISTA-1 experiment in early November 1994. By comparing CRISTA data with CLaMS simulations, the impact of the large-scale horizontal deformations on mixing is studied. Using the probability density function technique (PDF) quantifying the statistics of N2O variability, the critical deformation gamma(c) was inferred that triggers the mixing algorithm in CLaMS. The critical deformation gamma(c) measures the ratio between the major and minor axes of the ellipse resulting from the stretching of a circle surrounding a given Lagrangian air parcel, i.e. only deformations stronger than gamma(c) are relevant for mixing in CLaMS.The PDF derived from CRISTA observations at 700 K and on horizontal scales of the order of 200 km is characterized by a Gaussian core and non-Gaussian tails indicating filamentary structures typical for 2D turbulence. The PDFs obtained from CLaMS simulations strongly depend on gamma(c) but only weakly on the horizontal resolution r(0) that was varied between 45 and 200 km. The choice gamma(c) = 0.8 in the model best reproduces the observed PDE This implies that the large-scale isentropic transport leads to scale collapse and subsequent mixing in those parts of the flow where on a time scale approximate to 12 hours and a spatial scale approximate to 200 km the flow stretches a circle to an ellipse with the ratio between the major and minor axes exceeding 5. Owing to the spatial resolution of the CRISTA instrument that smooths out the non-Gaussian tails, the elongation rate approximate to 5 estimates only the lower bound of the critical deformation.Furthermore, our simulations show that air masses of low N2O amounts observed by CRISTA between 20 degrees and 40 degrees S are fragments of the polar vortex that have been peeled from the vortex edge. The history of these fragments can be divided into two phases: formation and mixing of filaments at the vortex edge where gamma > gamma(c) and pure advection of the remnants of such filaments into midlatitudes in flow regions with gamma < gamma(c). Here, the lifetime of such remnants may exceed two weeks due to negligible mixing in these parts of the flow. 000041925 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0 000041925 588__ $$aDataset connected to Web of Science 000041925 650_7 $$2WoSType$$aJ 000041925 65320 $$2Author$$achaotic advection 000041925 65320 $$2Author$$afilamentation 000041925 65320 $$2Author$$apolar vortex 000041925 65320 $$2Author$$aturbulent diffusion 000041925 7001_ $$0P:(DE-Juel1)VDB1549$$aSpang, R.$$b1$$uFZJ 000041925 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b2$$uFZJ 000041925 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b3$$uFZJ 000041925 7001_ $$0P:(DE-HGF)0$$aMcKenna, D. S.$$b4 000041925 7001_ $$0P:(DE-HGF)0$$aOffermann, D.$$b5 000041925 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b6$$uFZJ 000041925 773__ $$0PERI:(DE-600)2089168-4$$a10.1256/qj.04.47$$gVol. 131, p. 565 - 579$$p565 - 579$$q131<565 - 579$$tQuarterly journal of the Royal Meteorological Society$$v131$$x0035-9009$$y2005 000041925 8567_ $$uhttp://hdl.handle.net/2128/607$$uhttp://dx.doi.org/10.1256/qj.04.47 000041925 8564_ $$uhttps://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.pdf$$yOpenAccess 000041925 8564_ $$uhttps://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.gif?subformat=icon$$xicon$$yOpenAccess 000041925 8564_ $$uhttps://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000041925 8564_ $$uhttps://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000041925 8564_ $$uhttps://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000041925 909CO $$ooai:juser.fz-juelich.de:41925$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000041925 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0 000041925 9141_ $$y2005 000041925 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000041925 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000041925 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0 000041925 970__ $$aVDB:(DE-Juel1)58223 000041925 9801_ $$aFullTexts 000041925 980__ $$aVDB 000041925 980__ $$aJUWEL 000041925 980__ $$aConvertedRecord 000041925 980__ $$ajournal 000041925 980__ $$aI:(DE-Juel1)IEK-7-20101013 000041925 980__ $$aUNRESTRICTED 000041925 980__ $$aFullTexts 000041925 981__ $$aI:(DE-Juel1)ICE-4-20101013 000041925 981__ $$aI:(DE-Juel1)IEK-7-20101013