001     41925
005     20240712100850.0
017 _ _ |a This version is available at the following Publisher URL: http://dx.doi.org/10.1256/qj.04.47 . Copyright 2005 Royal Meteorological Society
024 7 _ |a 10.1256/qj.04.47
|2 DOI
024 7 _ |a WOS:000227971200009
|2 WOS
024 7 _ |a 2128/607
|2 Handle
037 _ _ |a PreJuSER-41925
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Konopka, Paul
|0 P:(DE-Juel1)129130
|b 0
|u FZJ
245 _ _ |a How homogeneous and isotropic is stratospheric mixing? Comparison of CRISTA-1 observations with transport studies based on the Chemical Lagrangian Model of the Stratosphere (CLaMS)
260 _ _ |a Weinheim [u.a.]
|b Wiley
|c 2005
300 _ _ |a 565 - 579
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Quarterly Journal of the Royal Meteorological Society
|x 0035-9009
|0 5221
|y 606B
|v 131
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The Chemical Lagrangian Model of the Stratosphere (CLaMS) is used for the interpretation of N2O observed during the CRISTA-1 experiment in early November 1994. By comparing CRISTA data with CLaMS simulations, the impact of the large-scale horizontal deformations on mixing is studied. Using the probability density function technique (PDF) quantifying the statistics of N2O variability, the critical deformation gamma(c) was inferred that triggers the mixing algorithm in CLaMS. The critical deformation gamma(c) measures the ratio between the major and minor axes of the ellipse resulting from the stretching of a circle surrounding a given Lagrangian air parcel, i.e. only deformations stronger than gamma(c) are relevant for mixing in CLaMS.The PDF derived from CRISTA observations at 700 K and on horizontal scales of the order of 200 km is characterized by a Gaussian core and non-Gaussian tails indicating filamentary structures typical for 2D turbulence. The PDFs obtained from CLaMS simulations strongly depend on gamma(c) but only weakly on the horizontal resolution r(0) that was varied between 45 and 200 km. The choice gamma(c) = 0.8 in the model best reproduces the observed PDE This implies that the large-scale isentropic transport leads to scale collapse and subsequent mixing in those parts of the flow where on a time scale approximate to 12 hours and a spatial scale approximate to 200 km the flow stretches a circle to an ellipse with the ratio between the major and minor axes exceeding 5. Owing to the spatial resolution of the CRISTA instrument that smooths out the non-Gaussian tails, the elongation rate approximate to 5 estimates only the lower bound of the critical deformation.Furthermore, our simulations show that air masses of low N2O amounts observed by CRISTA between 20 degrees and 40 degrees S are fragments of the polar vortex that have been peeled from the vortex edge. The history of these fragments can be divided into two phases: formation and mixing of filaments at the vortex edge where gamma > gamma(c) and pure advection of the remnants of such filaments into midlatitudes in flow regions with gamma < gamma(c). Here, the lifetime of such remnants may exceed two weeks due to negligible mixing in these parts of the flow.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a chaotic advection
653 2 0 |2 Author
|a filamentation
653 2 0 |2 Author
|a polar vortex
653 2 0 |2 Author
|a turbulent diffusion
700 1 _ |a Spang, R.
|0 P:(DE-Juel1)VDB1549
|b 1
|u FZJ
700 1 _ |a Günther, G.
|0 P:(DE-Juel1)129123
|b 2
|u FZJ
700 1 _ |a Müller, R.
|0 P:(DE-Juel1)129138
|b 3
|u FZJ
700 1 _ |a McKenna, D. S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Offermann, D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Riese, M.
|0 P:(DE-Juel1)129145
|b 6
|u FZJ
773 _ _ |a 10.1256/qj.04.47
|g Vol. 131, p. 565 - 579
|p 565 - 579
|q 131<565 - 579
|0 PERI:(DE-600)2089168-4
|t Quarterly journal of the Royal Meteorological Society
|v 131
|y 2005
|x 0035-9009
856 7 _ |u http://dx.doi.org/10.1256/qj.04.47
|u http://hdl.handle.net/2128/607
856 4 _ |u https://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/41925/files/Konopka_2005_How_n-2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:41925
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k ICG-I
|l Stratosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB47
|x 0
970 _ _ |a VDB:(DE-Juel1)58223
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)IEK-7-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21