001     4228
005     20240610115526.0
024 7 _ |a pmid:19355769
|2 pmid
024 7 _ |a 10.1063/1.3096987
|2 DOI
024 7 _ |a WOS:000265053200060
|2 WOS
024 7 _ |a 2128/18972
|2 Handle
037 _ _ |a PreJuSER-4228
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |a Belushkin, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB75398
245 _ _ |a Twist grain boundaries in cubic surfactant phases
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2009
300 _ _ |a 134712
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Chemical Physics
|x 0021-9606
|0 3145
|v 130
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Twist grain boundaries in bicontinuous cubic surfactant phases are studied by employing a Ginzburg-Landau model of ternary amphiphilic systems. Calculations are performed on a discrete real-space lattice with periodic boundary conditions for the lamellar L(alpha), gyroid G, diamond D, and the Schwarz P phases for various twist angles. An isosurface analysis of the scalar order parameter reveals the structure of the surfactant monolayer at the interfaces between the oil-rich and water-rich regions. The curvature distributions show that the grain boundaries are minimal surfaces. The interfacial free energy per unit area is determined as a function of the twist angle for the G, D, P, and lamellar phases using two complementary approaches: the Ginzburg-Landau free-energy functional and a geometrical approach based on the curvature energy of a monolayer. For the L(alpha), G, and D phases the interfacial free energy per unit area is very small, has the same order of magnitude, and exhibits a nonmonotonic dependence on the twist angle. The P phase is found to be unstable with respect to the nucleation of grain boundaries.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a diamond
653 2 0 |2 Author
|a free energy
653 2 0 |2 Author
|a Ginzburg-Landau theory
653 2 0 |2 Author
|a liquid crystals
653 2 0 |2 Author
|a monolayers
653 2 0 |2 Author
|a surface energy
653 2 0 |2 Author
|a surfactants
653 2 0 |2 Author
|a twist boundaries
700 1 _ |a Gompper, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1063/1.3096987
|g Vol. 130, p. 134712
|p 134712
|q 130<134712
|0 PERI:(DE-600)1473050-9
|t The @journal of chemical physics
|v 130
|y 2009
|x 0021-9606
856 7 _ |u http://dx.doi.org/10.1063/1.3096987
856 4 _ |u https://juser.fz-juelich.de/record/4228/files/1.3096987.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/4228/files/1.3096987.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/4228/files/1.3096987.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/4228/files/1.3096987.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:4228
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2009
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IFF
|k IFF-2
|l Theorie der Weichen Materie und Biophysik
|0 I:(DE-Juel1)VDB782
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)110977
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21