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Twist grain boundaries in bicontinuous cubic surfactant phases are studied by employing a
Ginzburg-Landau model of ternary amphiphilic systems. Calculations are performed on a discrete
real-space lattice with periodic boundary conditions for the lamellar L,, gyroid G, diamond D, and
the Schwarz P phases for various twist angles. An isosurface analysis of the scalar order parameter
reveals the structure of the surfactant monolayer at the interfaces between the oil-rich and water-rich
regions. The curvature distributions show that the grain boundaries are minimal surfaces. The
interfacial free energy per unit area is determined as a function of the twist angle for the G, D, P,
and lamellar phases using two complementary approaches: the Ginzburg—Landau free-energy
functional and a geometrical approach based on the curvature energy of a monolayer. For the L,, G,
and D phases the interfacial free energy per unit area is very small, has the same order of magnitude,
and exhibits a nonmonotonic dependence on the twist angle. The P phase is found to be unstable
with respect to the nucleation of grain boundaries. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3096987]

I. INTRODUCTION

Amphiphilic molecules added to an immiscible oil-water
system self-assemble into a large variety of structures.'™
Phases with cubic symmetry often feature a triply-periodic
minimal surface (TPMS) configuration of the surfactant
monolayer.“"ﬁ’lo_12 Examples of such phases include the
gyroid G, diamond D, Schwarz P, Schoen I-WP, F-RD,
Neovius C(P), and others, which are encountered in
physical systems. Properties of cubic surfactant phases
have been a subject of extensive theoretical'''°
and e:xpe:rimental4_6 interests, with applications in bio-
logical systems,(”17 as templates for mesoporous systems18
and for the crystallization of membrane proteins.19
Cubic surfactant phases are liquid crystalline struc-
tures”” with the fundamental building block—the unit
cell—repeating itself in all directions. The lattice con-
stant in amphiphilic systems is large, of the order of
10 nm.

In amphiphilic systems many kinds of interfaces occur:
between two ordered phases, between ordered and disordered
phases, and between two grains of the same ordered phase
which differ by their spacial orientation. Recently, interfaces
between coexisting lamellar, hexagonal, and disordered
phases,zl_23 interfaces between lamellar and gyroid
phases,24’25 dislocations in cubic phases,26 and grain bound-
aries in the lamellar phasezzm’28 have been studied. Twist
grain boundaries are interfaces between two grains of the
same phase which differ only by a rotation around an axis
perpendicular to the grain boundary. Twist grain boundaries
in the lamellar phase have been investigated within
self-consistent field theory for diblock copolymers28 and
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observed experimentally29 to have a structure similar to
Scherk’s minimal surface. Tilt grain boundaries in the lamel-
lar phase, where the normals of the lamellae of the
two grains define a plane perpendicular to the boundary,
have been shown within a Ginzburg-Landau theory to be
chevron-shaped at small tilt angles and omega-shaped at
large tilt angles,zz’27 in agreement with experimental
results.”” The nucleation of defects in the gyroid cubic me-
sophase has recently been observed in Lattice-Boltzmann
simulations.”

We investigate here twist grain boundaries in cubic sur-
factant phases. The calculations are based on a Ginzburg—
Landau theory with a single scalar order parameter ¢(r),
which describes the local oil-water concentration
2 The geometrical properties of the grain
boundaries are evaluated on the isosurface ¢(r)=0,
which defines the position of the surfactant monolayer. The
interfacial free energy per unit area of a grain boundary de-
pends on the angles with respect to the crystalline axes.
It is determined using the Ginzburg-Landau theory and a
complementary geometrical approach based on the Canham—
Helfrich curvature Hamiltonian. For simplicity, we use the

difference.

notation “interfacial tension” in the remainder of this
paper.

The paper is organized as follows. First, we introduce
the elements of the Ginzburg-Landau theory used to
describe the cubic surfactant phases. In Sec. III we describe
the computational methods. Section IV deals with the
methods of analysis of the order parameter configurations
obtained from the Ginzburg—Landau theory and presents the
methods used to extract the interfacial tension. Our results
for the twist grain boundaries in the lamellar L, and the
cubic G, D, and P phases are presented in Sec. V.

© 2009 American Institute of Physics
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Il. THEORY
A. Ginzburg-Landau theory

A Ginzburg-Landau theory of ternary amphiphilic sys-
tems, which successfully describes their phase behavior and
mesoscopic structure, was proposed in Ref. 32. The model
contains a single scalar order parameter ¢(7), which de-
scribes the local oil-water concentration difference. The am-
phiphilic degrees of freedom are considered to be integrated
out in this approach.33 The model is based on the free-energy
functional

f[¢]=fdF[(A¢)2+g(¢)(V¢)2+f(¢)]- (1)

In order to obtain three-phase coexistence, the function f(¢)
is taken to be**

f(@) =(d+ 1)d=1D*(P +fo), 2)

where the three minima at ¢=-1,0, + 1 correspond to excess
water, microemulsion, and excess oil phases, respectively.
The parameter f, acts as a chemical potential for am-
phiphiles. The surfactant monolayer is given by the isosur-
face ¢(r)=0. The function g(¢) has the form™*

g(P)=go+g:9". 3)

Here the parameters g, <0 and g, >0 are related to the am-
phiphilic strength and the solubility of the amphiphile.7

Alternatively, the elastic properties of the amphiphilic
monolayer can be described by the Canham-Helfrich
Hamiltonian®-°

H= f dA[o + 2k(H - co)* + kK], (4)

where o is the surface tension, « is the bending rigidity, « is
the saddle-splay modulus, ¢, is the spontaneous curvature,
and H and K are the mean and Gaussian curvatures, respec-
tively. The integration in Eq. (4) extends over the surfactant
monolayer. Due to the oil-water symmetry in balanced mi-
croemulsions, the spontaneous curvature c, vanishes.

Approaches based on the Canham—Helfrich Hamiltonian
(4) and on the Ginzburg-Landau free-energy functional (1)
have been shown to be related, and the elastic constants k
and k of the curvature energy have been calculated in terms
of the parameters of the Ginzburg—Landau theory.7’37’38

B. Cubic surfactant phases

The Ginzburg—Landau theory has been successfully used
to describe a large number of triply periodic minimal surface
structures of the surfactant monolayer using real—space39 and
Fourielr-space13 representations. The TPMS configurations
arise as local minima of the free-energy functional (1). How-
ever, the cubic phases are only metastable with respect to the
lamellar phase for the parameter values investigated in Ref.
13. Since we use the same parameter values as Ref. 13, the
cubic phases are also metastable in our calculations.

In the present analysis, we generate the gyroid G, dia-
mond D, and Schwarz P structures by initializing ¢(7) by the
leading order term of the Fourier expansion and minimizing
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FIG. 1. (Color) Structure of the gyroid G (left), diamond D (center), and
Schwarz P (right) minimal surface configurations obtained by minimizing
the free-energy functional (1).

the free energy (1) with respect to the order parameter and
the unit cell size a. Following Ref. 13, we fix the parameters
of the Ginzburg-Landau theory as f,=0.0, go=-3.0, and
g2=7.01.

The resulting unit cells are shown on Fig. 1. The unit cell
sizes of the G, D, and P configurations are a;=10.9,
ap=13.2, and ap=7.6, respectively, in good agreement with
the values obtained from the Fourier analysis in Ref. 13.

lll. CALCULATION METHOD

We follow Ref. 40 for the discretization of the free en-
ergy (1) on a NX N X N_ spatial lattice. The number of lattice
sites per unit cell is fixed to N,=40 for the lamellar, gyroid
G, and diamond D phases, and to N,=20 for the P phase.

First, we generate lattices containing bulk phases twisted
by angles a/2 in the xy plane. This is achieved by using the
leading order Fourier explressions41 to initialize the lattices in
real space. Since we keep the resolution per unit cell fixed,
the lattice size N depends on the twist angle a/2 to satisfy
periodic boundary conditions. Simulations can only be per-
formed for angles at which the rotated structure is periodic in
the xy plane of size N X N, with N sufficiently small to keep
computational time reasonable (see Table I below).

The free energy is then minimized with respect to the
order parameter to achieve equilibrium configurations. The
minimization of the free-energy functional (1) with respect to
the discretized field ¢;;, where ijk represent indices of the
discrete lattice sites, is based on the method of gradient de-
scent. During the calculation, random lattice sites ijk are
selected and the gradient dF/dd¢;j; is computed locally. An
adjustment ¢ — ¢y~ BiudF/dejy is attempted. The ma-
trix 3, is adaptively adjusted: if the adjustment minimizes
the local contribution of the lattice site ijk to the total free

TABLE 1. List of angles and phases in which corresponding twist grain
boundaries have been calculated. The computation box dimensions are the
same for the L,, G, and D phases and smaller for the P phase for which we
have chosen a smaller resolution per unit cell.

Twist angle Calculated Box dimension
(deg) in phases N(L,,G,D/P)
22.6 L,.G,P 204/103
27.8 L,.G,D,P 165/83
36.8 P -++/64
53.0 L,.G,D,P 89/45
67.2 L,.G,D 1447---
73.8 L,.G,P 200/101
90.0 L,.G,D,P 113/29
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FIG. 2. (Color) A schematic view of the computation box. N; denotes the
thickness of the grain boundary at the end of the calculation and N, corre-
sponds to the thickness of the bulk-phase regions not affected by the grain
boundaries as determined by the similarity integral (5).

energy (1), By is increased; if the change in ¢;; does not
decrease the free energy, B, is decreased. In total, more than
10 000 adjustments per lattice site are made to reach an equi-
librium configuration. The gradient descent method ap-
proaches the solution asymptotically. Our stopping criteria
are based on the average magnitude of the values in the line
search matrix (B, dF/dd;;) being of the order of 107%.

We obtain a very good agreement with the Fourier analy-
sis in Ref. 13 for the free-energy densities and unit cell sizes
for the lamellar G and D phases and good agreement for the
P phase where discretization effects play a more pronounced
role due to fewer lattice sites N, per unit cell.

The bulk-phase lattices are then combined to produce the
grain-boundary system. Given a fixed size N, in the z direc-
tion, half of the box is filled with an equilibrated bulk phase
rotated by an angle —a/2 and the second half with an equili-
brated bulk phase rotated by an angle +«/2. Periodic bound-
ary conditions are imposed in the x, y, and z directions. The
z direction is perpendicular to the grain boundaries. Due to
periodic boundary conditions, two grain boundaries
develop—one in the middle of the box between the bulk-
phase regions and one at both ends of the box in the z direc-
tion. A schematic view of the system is given in Fig. 2. The
choice of the box size N, in the z direction is discussed in
Sec. V A.

IV. ANALYSIS OF COMPUTATION RESULTS
A. Location and geometry of the grain boundaries

In order to quantitatively determine the locations of the
grain boundaries, we relate the final result for the order pa-
rameter configuration to the original bulk phases by a simi-
larity integral

J dxdy(¢y— ¢')2
N Bttt o S o
S(z) = [ dxdy 12 s (5)

where ¢; corresponds to the initial bulk phases and ¢ cor-
responds to the final result of free-energy minimization. The
integral vanishes if and only if ¢;= ¢/, which corresponds to
preserved bulk-phase regions. Nonzero values of S(z) corre-
spond to grain boundaries.

J. Chem. Phys. 130, 134712 (2009)

The surfactant monolayer corresponding to the isosur-
face ¢=0 is extracted as a triangulated surface using the
GNU Triangulated Surface Library.42 For each phase and
twist angle, the distributions of the mean square H? and
Gaussian K curvatures on the isosurface are extracted. The
curvature distributions are then compared between the bulk-
phase and grain-boundary regions and further analyzed using
the Canham—Helfrich curvature Hamiltonian (4).

B. Determination of the interfacial tension

We determine the interfacial tension 2 using two
complementary approaches.

1. Interfacial tension from the Ginzburg—Landau
theory

The first approach is a direct calculation using the
Ginzburg-Landau free-energy functional (1),

F = Fyoux

2% = 1

, (6)
where A is the area of the grain boundary and F and Fi; are
the free energies of the full system and the bulk-phase re-
gions of equal size, respectively. The factor 2 in Eq. (6)
arises from the presence of two grain boundaries due to pe-
riodic boundary conditions.

2. Interfacial tension from geometrical considerations

Geometrical approaches are based on the Canham-—
Helfrich Hamiltonian (4) for the isosurface corresponding to
the surfactant monolayer. We will show in Sec. V below that
the surfactant monolayer in the grain boundaries is very well
described by a minimal surface. Therefore, the mean-
curvature squared term H?dS in Eq. (4) vanishes. We adopt
an approach similar to Ref. 20 to extend the Canham-
Helfrich Hamiltonian to include a higher-order term. Since
the mean curvature nearly vanishes, the next nonzero contri-
bution arises from the squared Gaussian—curvature term, so
that

H= f dA[o + kKK + kK?]. (7)

First, we consider the isosurface ¢=0 as a fluid mem-
brane. In this case, the surface tension term odA in Eq. (7)
can be neglected.zo For minimal surfaces the Gaussian cur-
vature K=0 on the whole surface. The requirement that
minimal surfaces of nonplanar configuration be stable leads
to k>0 such that the second term in Eq. (7) is negative. In
order for the Hamiltonian (7) to be stable with respect to the
creation of infinitely narrow necks (K——) the last term
has to be positive, thus x>0. For a fixed value of &, the
value of « is determined by the length scale of the unit cell
such that the cubic phases are local minima of the Hamil-
tonian (7). The Hamiltonian in this approach is then given by

H1=fdA[EK+ KK?], (8)

where k>0 and x>0.
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On the other hand, it has been shown that the Ginzburg—
Landau model and the model based on the Canham-Helfrich
Hamiltonian (4) are related, and the elastic bending moduli
have been derived from the Ginzburg—Landau theory.37’38
For g,<0, g,>0, and f close to zero, the calculation yields
<0, k>0, and k<0. Here o corresponds to the chemical
potential of the amphiphile. The value of o sets the normal-
ization of the Hamiltonian (7). We choose o=-1.0 and find
the value of the saddle-splay modulus «,, which minimizes
the Hamiltonian (7) for the cubic phases with k=0. How-
ever, the curvature energy is very insensitive to the geometry
of the monolayer in this case because it only depends on the
total area and the Euler characteristic, both of which are
topological invariants. Sensitivity to the monolayer geometry
arises from the kKK’dS term. In order to obtain a nonzero
value for k, we set K=i,— Ok and determine x by the re-
quirement that the cubic phases are local minima of the
Hamiltonian (7) with the new value k. In our calculations we
choose the ratio k/ky,=0.3, so that |k|<|i,|. The Hamil-
tonian in this approach is thus given by

H2=Jlﬂﬂo+EK+EKﬂ, 9)
where <0, k<0, and k>0.

V. RESULTS

We have performed calculations of twist grain bound-
aries in the L,, G, D, and P phases for a variety of twist
angles listed in Table I. Figure 3 shows the configuration of
the surfactant monolayer in the full computation boxes for
the lamellar, gyroid, and diamond phases at different twist
angles.

A. Grain boundary geometry

The similarity integral (5) is used to quantitatively deter-
mine the locations of the grain boundaries. The results for
the G phase at a twist angle of 67.2° and the D phase at a
twist angle of 22.6° are shown in Fig. 4. For all angles in the
G and D phases we observe the grain-boundary thickness to
be about 1 u cell of the bulk phase. This property of the grain
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FIG. 3. (Color) Configuration of the
surfactant monolayer for the lamellar
phase at a twist angle of 53° (left), gy-
roid phase at a twist angle of 90° (cen-
ter), and diamond phase at a twist
angle of 67.2° (right). The grain
boundaries are located in the middle
and at the top/bottom of each box in
the z direction.

boundaries to preserve the length scales of the bulk phases
was observed in initial calculations for the G phase in which
N, was varied between 4.5N,, and 6N,, where N, =40 is the
number of lattice sites per unit cell in the z direction. There-
fore, in all our calculations we use a thickness N; of one unit
cell for the grain boundaries and a thickness N, of two
unit cells for the bulk phases. Thus, N,=2N,+2N;=6N,, (see
Fig. 2).

In the lamellar, G, and D phases, the positions of the
grain boundaries are well determined. The behavior of the P
phase is different. The similarity integrals for the P phase for
twist angles of 22.6° and 73.8° are shown in Fig. 5. Signifi-
cant modifications in the original bulk regions occur. In what
follows for the P phase, we define the grain boundaries as
layers 1 u cell thick in the z direction around the maximum
peaks of the similarity integral and the regions of two unit
cell thickness in between as the bulk regions. The initial P
phase, rotated by an angle «/2 used to initialize the system,
is called the original bulk. A comparison of the geometry of
the original bulk P phase rotated by a/2=26.5° and the final
bulk region is shown in Fig. 6. Significant deviations are
evident, including a rotation and distortion of the central unit
cell.

The full isosurface ¢p=0 is separated in the z direction
into the bulk and grain-boundary regions. The grain-

L B L B
05| Jos| §
041 %41 p.a=226°

So3 03
0.2 02
0.1 oaf |
oL DA BN R W S W

0 s 60 I 2 3 4 5 6

z [unit cells] z [unit cells]

FIG. 4. Similarity integral S(z) for the G phase at a twist angle of 67.2°
(left) and the D phase at a twist angle of 22.6° (right). Regions of nonzero
values of S(z) indicate the positions of the grain boundaries. Both grain
boundaries in the middle and at the top/bottom in the z direction are well
resolved and have a thickness of about 1 u cell.
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z [unit cells]
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FIG. 5. Similarity integral for the P phase at twist angles of 22.6° (left) and
73.8° (right). The bulk is significantly modified by the presence of the grain
boundaries.

boundary regions are taken to be 1 u cell thick layers of the
box centered around the maxima of the similarity integral
(5). The geometry of the grain boundaries for the lamellar,
gyroid, diamond, and Schwarz P phases for twist angles of
53° and 90° is shown in Fig. 7.

The mean-curvature and Gaussian-curvature distribu-
tions for the bulk and grain-boundary regions are calculated
using the routines in the GTS Libraury.42 Curvature histo-
grams are given in terms of area fractions corresponding to
small curvature intervals. The normalization of all histo-
grams is such that the sum of all bin values is unity.

The squared-mean-curvature distributions for the L,, G,
D, and P phases for several twist angles « are shown in Fig.
8. Discretization errors lead to a nonvanishing area fraction
of nonzero mean curvature in all cases except the trivial case
of planar geometries in the lamellar phase. The discretization
effects can be estimated by comparing squared-mean-
curvature distributions of the discretized minimal-surface
unit cells shown in Fig. 1 and spherical caps of different radii
generated on a lattice of the same size. The resulting
squared-mean-curvature distributions, shifted by the sponta-
neous curvature c,, are shown in Fig. 9. The spontaneous
curvature ¢, vanishes for the lamellar and gyroid geometries,
and cy=1/R for the spherical caps. A zero-width distribution
is achieved only for the trivial case of planar geometry. For
spherical caps the distribution becomes wider as the curva-
ture increases. The gyroid unit cell with a characteristic ra-
dius Rg= l/m ~a/5 has the broadest distribution since it
has the most complex geometry. All distributions have their
maxima at (H—c,)*=0.

X

J. Chem. Phys. 130, 134712 (2009)

It is therefore only meaningful to compare the curvature
distributions in the grain-boundary regions to the corre-
sponding curvature distributions in the bulk. Figure 8 shows
the comparison of the squared-mean-curvature distributions
of the bulk and grain-boundary regions for several twist
angles for all the phases studied. Only in the bulk of the L,
phase are discretization errors negligible due to the trivial
geometry. The squared-mean-curvature distributions in the
grain-boundary regions in the L, phase are consistent with
H?=0. An analysis of the grain-boundary geometry (Fig. 7,
top) shows that the configurations of the monolayer are very
similar to the Scherk’s minimal surface. This result is in
agreement with previous investigations of twist grain bound-
aries in the lamellar phase in diblock copolymer systems.zg’29

In the G and D phases the squared-mean-curvature dis-
tributions in the grain-boundary regions compared to the cor-
responding bulk distributions are also consistent with H>=0.
The distributions in the grain-boundary regions are slightly
broader than in the bulk. In our approach more complex
geometries lead to larger variance in the curvature distribu-
tions. The monolayer in the grain-boundary regions has a
more complex structure than in the bulk, which is composed
of repetitions of the same unit cell.

The similarity integrals for the P phase show that the
bulk is greatly affected by the presence of grain boundaries.
As we will show, the P phase is unstable with respect to the
nucleation of grain boundaries at the chosen point in the
phase diagram. We nonetheless study the curvature distribu-
tions in the bulk and grain-boundary regions (Fig. 8, bot-
tom). The squared-mean-curvature distributions (Fig. 8) in
both the bulk and the grain-boundary regions are consistent
with H>=0.

The Gaussian-curvature distributions for the G and D
phases for several twist angles are shown in Fig. 10. In the
bulk regions all important features of the exact curvature
distributions obtained from the Weierstrass representation13
are reproduced. However, discretization errors lead to a
wider peak in the curvature distributions. Nevertheless, the
configurations of the monolayer in the bulk regions are
good discrete representations of the corresponding minimal
surfaces.

In the lamellar, G, and D phases, the geometry of the
monolayer in the grain-boundary regions is clearly different
from the bulk. In the G and D phases the maxima of the K

FIG. 6. (Color) Original phase (left) and section of the computation box between grain boundaries (right) for the P phase at a twist angle of @=53.0°.
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L, 53.0° L, 90.0°

G, 53.0° G, 90.0°

D, 53.0° D, 90.0°

FIG. 7. (Color) Twist grain boundary geometries for the
lamellar, gyroid, diamond, and Schwarz P phases for
twist angles of 53° (left) and 90° (right). See Ref. 43 for
movies showing the structure of the monolayer in the
grain boundaries in the gyroid phase from different
angles.

P, 53.0°

P, 90.0°

distributions in the bulk are not present in the grain bound-
aries. The distributions in the grain-boundary regions show
an enhancement at low |K| values in comparison to the cor-
responding distributions in the bulk, signaling the presence
of regions more planar than in the bulk. Finally, the
Gaussian-curvature distributions in the grain boundaries ex-
tend to larger |K| values than the corresponding distributions
in the bulk. This can be attributed to the more complex ge-
ometry of the surfactant monolayer in the grain boundaries,
as in the case of the squared-mean-curvature distributions,
but may also signal the appearance of a number of necks,
which are slightly narrower than in the bulk.

In the P phase, the behavior is significantly different.
The Gaussian-curvature distributions in the original bulk, the
final bulk region, and the grain-boundary region for a twist

angle of 53° are shown in Fig. 11. The smaller resolution per
unit cell leads to a larger deviation of the distribution in the
original bulk from the result obtained from the Weierstrass
representation. The distributions in the final bulk and the
grain-boundary regions are strikingly similar. Although the
peak in the K distribution is not very well resolved in the
original bulk, it completely disappears in the final bulk re-
gion. The whole distribution shifts to lower |K]| values, and in
both the final bulk and the grain boundary exhibits a broader
tail at higher |K| values. Thus, the geometries of the mono-
layer in the final bulk and the grain-boundary regions are
very similar. The grain boundary grows all the way into the
original bulk, and the Schwarz P phase is destroyed.

In the Ginzburg-Landau theory, there are curvature con-
tributions as well as direct interactions between the mono-
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FIG. 8. (Color online) Squared-mean-curvature distributions for the L,, G,
D, and P phases for different twist angles «. The histograms are normalized
such that the sum of all histogram bins is equal to 1.

layers. When the curvature energy dominates, ¢=0 level sur-
faces are very close but not identical to minimal surfaces, see
Ref. 13. From the squared-mean-curvature distributions we
conclude that within the discretization errors of the real-
space representation the surfactant monolayer in the grain
boundaries is a good approximation of a minimal surface. In
the lamellar phase, the twist grain boundaries are well de-
scribed by the Scherk’s minimal surface. The Gaussian-
curvature distributions show that in the G and D phases the
configuration of the monolayer in the grain boundaries has a
significantly different geometry than in the bulk regions. The
Schwarz P phase is unstable with the grain boundaries ex-
tending all the way into the original bulk regions.

B. Interfacial tension
1. Interfacial tension from Ginzburg-Landau theory

Equation (6) provides a direct method for the determina-
tion of interfacial tension from the Ginzburg-Landau theory.
In this case, knowledge about the locations of the grain
boundaries is not required, since Eq. (6) involves only the
free energy of the full system and the free energy of the bulk
phase, which fills the same volume.

The interfacial tension as a function of the twist angle
determined within the Ginzburg—Landau theory for the
lamellar, gyroid, diamond, and Schwarz P phases is shown
in Fig. 12.

For all phases the interfacial tension has the same order
of magnitude and exhibits a nonmonotonic dependence on
the twist angle «. In the lamellar phase the interfacial tension

J. Chem. Phys. 130, 134712 (2009)
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FIG. 9. (Color) Comparison of squared-mean-curvature distributions in the
gyroid unit cell (Fig. 1) and spherical caps of radii 1/2, 1/4, and 1/8 in units
of the gyroid unit cell. More complex geometries lead to broader curvature
distributions.

reaches a maximal value at @~ 20° and remains essentially
constant above a=~40°. This result is in qualitative agree-
ment with the calculation of Ref. 28 based on the explicit
expressions for Scherk’s minimal surfaces in combination
with bending and compression energies,44 where some pa-
rameters such as the compression modulus are determined
from self-consistent field theory for a block copolymer
system.28

Interfacial tensions in the G and D phases have similar
behavior. There are two maxima at twist angles of about 30°
and 70°, where the interfacial tension is comparable in mag-
nitude to the interfacial tension in the lamellar phase. In the
local minima at twist angles of about 50° the interfacial ten-
sion essentially vanishes.

Negative interfacial tension in the Schwarz P phase con-
firms that in the chosen point of the phase diagram the P
phase is not stable with respect to the nucleation of grain
boundaries.

The interfacial tension in all cases is very small. The
difference in the free energy of the grain boundaries, the
thickness of which is determined by the similarity integral
(5), and bulk-phase regions of the same volume is of the
order of just a few percent at angles corresponding to the
maxima of the interfacial tension.

2. Interfacial tension from geometrical considerations

The model membrane Hamiltonians introduced in Sec.
IV B 2 can be applied for the G and D phases where the
locations of the grain boundaries are well defined and the
elastic moduli can be calculated such that the bulk structure
is a local minimum of the Hamiltonian due to nonvanishing
values of the Gaussian curvature. The isosurface ¢=0 deter-
mined from the Ginzburg—Landau theory is taken as the ge-
ometry of the membrane in these approaches.

We first consider the Hamiltonian (8). The value of k
sets the normalization. Without loss of generality, we set
k=1 and minimize the Hamiltonian (8) with respect to the
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FIG. 10. (Color) Gaussian-curvature distributions for the G and D phases for several twist angles . The histograms are normalized such that the sum of all
histogram bins is equal to 1. The blue solid lines correspond to the exact results obtained from the Weierstrass representation (Ref. 13). The black vertically
shaded and red slant shaded histograms correspond to the curvature distributions in the bulk and grain-boundary regions, respectively.

length scales of the G and D unit cells taken from Ginzburg—
Landau theory. This gives x=3.113 for the gyroid and
k=2.869 98 for the diamond phases, respectively. While
these two values of k are not identical, they are very close.
The results for the interfacial tension as a function of the
twist angle shown in Fig. 13 are in good qualitative agree-
ment with the results of the Ginzburg-Landau theory shown
in Fig. 12. Interfacial tension is of the same order of magni-
tude for both phases. The two local maxima at twist angles of
about 30° and 70° are separated by a minimum at about 50°,
although the minimum is less pronounced than in the results
obtained from the Ginzburg-Landau theory.

Finally, the Hamiltonian (9) is used to determine the in-
terfacial tension in the G and D phases. We first minimize the
Hamiltonian for the G and D unit cells for k=0. This gives
k=-2.413 for the G and k=-1.952 for the D phases, respec-
tively. These values are again not identical but are close.
Using the approach described in Sec. IV B 2, we obtain the
final set of parameters: k=—1.689, k=3.756 for the G phase
and k=-1.366, k=2.801 for the D phase. Results for the
interfacial tension shown in Fig. 14 are in good qualitative
agreement with the results obtained from the Ginzburg—
Landau theory and the geometrical approach based on the
model Hamiltonian (8). In this case, the minimum of the
interfacial tension at twist angles a=50° is well represented.
Very small negative values of the interfacial tension in G and
D phases (Fig. 12) and in the D phase (Fig. 14) at angles
around 50° do not allow to draw a conclusion about the
stability of these phases within our numerical accuracy.

VI. SUMMARY AND CONCLUSIONS

Twist grain boundaries in the lamellar L, gyroid G, dia-
mond D, and Schwarz P phases have been studied using a
Ginzburg-Landau theory of ternary amphiphilic systems.
Calculations have been performed for several twist angles for
each phase. The surfactant monolayer corresponding to the
isosurface ¢ =0 has been studied.

In all cases, the squared-mean-curvature and Gaussian-
curvature distributions reveal the structure of the surfactant
monolayer in the twist grain boundaries to be a good discrete
representation of a minimal surface. In the lamellar phase,
the monolayer in twist grain boundaries has a geometry very

0.2
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g -~ Original bulk
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FIG. 11. (Color) Gaussian-curvature distributions for the Schwarz P phase
at a twist angle of 53°.
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FIG. 12. (Color online) Interfacial tension as a function of the twist angle
for the lamellar, gyroid G, diamond D, and Schwarz P surfactant phases as
extracted from Ginzburg-Landau theory.

similar to the Scherk’s minimal surface. The geometry of the
monolayer in grain boundaries in G and D phases is more
complex. The Gaussian-curvature distributions show signifi-
cant differences between grain-boundary and bulk regions.
The surfactant monolayer in grain boundaries is on average
more planar.

The Schwarz P phase is found to be unstable with re-
spect to the nucleation of grain boundaries at the investigated
point in the Ginzburg—Landau phase diagram. The similarity
integral shows that the grain boundaries grow all the way
into the bulk regions. Gaussian-curvature distributions indi-
cate that the surfactant monolayer in the final bulk regions
has a geometry very similar to the geometry in the grain-
boundary regions. This result is not surprising since the
Schwarz P phase has a significantly higher free-energy den-
sity than the gyroid and diamond phases at the investigated
point in the Ginzburg-Landau phase diagram.13

Interfacial tension has been determined using two
complementary approaches. The first approach is a direct
calculation based on the Ginzburg—Landau free-energy func-
tional, where the interfacial tension arises from direct
monolayer-monolayer interactions, which set the preferred
lamellar spacing, and curvature contributions. The second
approach determines interfacial tension from geometrical
considerations based on the Canham—-Helfrich Hamiltonian
for the isosurface ¢=0 determined from the Ginzburg—
Landau theory. The results obtained through both methods
are in good qualitative agreement.

Interfacial tension is found to have the same order of
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FIG. 13. (Color online) Interfacial tension as a function of the twist angle

for the gyroid G and diamond D surfactant phases as determined using the
model membrane Hamiltonian (8).
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FIG. 14. (Color online) Interfacial tension as a function of the twist angle «
for the gyroid G and diamond D surfactant phases as determined using the
model membrane Hamiltonian (9).

magnitude and a nonmonotonic dependence on the twist
angle for all phases. Interfacial tension in the lamellar phase
has a maximum at twist angles of about 20° and is essentially
constant at twist angles greater than 40°. Interfacial tension
in the gyroid and diamond phases has two maxima at twist
angles of about 30° and 70° and a local minimum at twist
angles of about 50° where the interfacial tension essentially
vanishes. Because the interfacial tension is very small, the
density of grain boundaries should be high in these surfactant
phases.
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