000042302 001__ 42302
000042302 005__ 20200423203939.0
000042302 017__ $$aThis version is available at the following Publisher URL: http://jcp.aip.org
000042302 0247_ $$2pmid$$apmid:15268297
000042302 0247_ $$2DOI$$a10.1063/1.1642599
000042302 0247_ $$2WOS$$aWOS:000188389100001
000042302 0247_ $$2Handle$$a2128/2224
000042302 037__ $$aPreJuSER-42302
000042302 041__ $$aeng
000042302 082__ $$a540
000042302 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000042302 1001_ $$0P:(DE-HGF)0$$aKneller, G. R.$$b0
000042302 245__ $$aScaling of the Memory Function and Brownian Motion
000042302 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2004
000042302 300__ $$a1667 - 1669
000042302 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000042302 3367_ $$2DataCite$$aOutput Types/Journal article
000042302 3367_ $$00$$2EndNote$$aJournal Article
000042302 3367_ $$2BibTeX$$aARTICLE
000042302 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000042302 3367_ $$2DRIVER$$aarticle
000042302 440_0 $$03145$$aJournal of Chemical Physics$$v120$$x0021-9606
000042302 500__ $$aRecord converted from VDB: 12.11.2012
000042302 520__ $$aIt has been recently shown that the velocity autocorrelation function of a tracer particle immersed in a simple liquid scales approximately with the inverse of its mass. With increasing mass the amplitude is systematically reduced and the velocity autocorrelation function tends to a slowly decaying exponential, which is characteristic for Brownian motion. We give here an analytical proof for this behavior and comment on the usual explanation for Brownian dynamics which is based on the assumption that the memory function is proportional to a Dirac distribution. We also derive conditions for Brownian dynamics of a tracer particle which are entirely based on properties of its memory function.
000042302 536__ $$0G:(DE-Juel1)FUEK254$$2G:(DE-HGF)$$aBetrieb und Weiterentwicklung des Höchstleistungsrechners$$cI03$$x0
000042302 588__ $$aDataset connected to Web of Science, Pubmed
000042302 650_7 $$2WoSType$$aJ
000042302 7001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b1$$uFZJ
000042302 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.1642599$$gVol. 120, p. 1667 - 1669$$p1667 - 1669$$q120<1667 - 1669$$tThe @journal of chemical physics$$v120$$x0021-9606$$y2004
000042302 8567_ $$uhttp://hdl.handle.net/2128/2224$$uhttp://dx.doi.org/10.1063/1.1642599
000042302 8564_ $$uhttps://juser.fz-juelich.de/record/42302/files/58977.pdf$$yOpenAccess
000042302 8564_ $$uhttps://juser.fz-juelich.de/record/42302/files/58977.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000042302 8564_ $$uhttps://juser.fz-juelich.de/record/42302/files/58977.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000042302 8564_ $$uhttps://juser.fz-juelich.de/record/42302/files/58977.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000042302 909CO $$ooai:juser.fz-juelich.de:42302$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000042302 9131_ $$0G:(DE-Juel1)FUEK254$$bInformation$$kI03$$lWissenschaftliches Rechnen$$vBetrieb und Weiterentwicklung des Höchstleistungsrechners$$x0
000042302 9141_ $$y2004
000042302 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000042302 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000042302 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000042302 970__ $$aVDB:(DE-Juel1)58977
000042302 980__ $$aVDB
000042302 980__ $$aJUWEL
000042302 980__ $$aConvertedRecord
000042302 980__ $$ajournal
000042302 980__ $$aI:(DE-Juel1)JSC-20090406
000042302 980__ $$aUNRESTRICTED
000042302 980__ $$aFullTexts
000042302 9801_ $$aFullTexts
000042302 981__ $$aI:(DE-Juel1)JSC-20090406