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Abstract

HONO formation has been proposed as an important OH radical source in simulation

chambers for more than two decades. Besides the heterogeneous HONO formation by

the dark reaction of NO2 and adsorbed water, a photolytic source has been proposed

to explain the elevated reactivity in simulation chamber experiments. However, the5

mechanism of the photolytic process is not well understood so far.

As expected, production of HONO and NOx was also observed inside the new atmo-

sphere simulation chamber SAPHIR under solar irradiation. This photolytic HONO and

NOx formation was studied with a sensitive HONO instrument under reproducible con-

trolled conditions at atmospheric concentrations of other trace gases. It is shown that10

the photolytic HONO source in the SAPHIR chamber is not caused by NO2 reactions

and that it is the only direct NOy source under illuminated conditions. In addition, the

photolysis of nitrate which was recently postulated for the observed photolytic HONO

formation on snow, ground, and glass surfaces, can be excluded in the chamber. A

photolytic HONO source at the surface of the chamber is proposed which is strongly15

dependent on humidity, on light intensity, and on temperature. An empirical function of

the form S(HONO)=a1,2×J(NO2)×(1+(RH/RH0)
2
)×exp (−T0/T) describes these de-

pendencies and reproduces the observed HONO formation rates to within 10%. It

is shown that the photolysis of HONO represents the dominant radical source in the

SAPHIR chamber for typical tropospheric O3/H2O concentrations. For these condi-20

tions, the HONO concentrations inside SAPHIR are similar to recent observations in

ambient air.
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1. Introduction

Nitrous acid (HONO) is of particular importance in atmospheric chemistry, since the

photolysis of HONO:

HONO
hν
−→ NO + OH , (R1)

represents an important OH radical source (Harris et al., 1982; Harrison et al., 1996).5

Recent studies (Alicke et al., 2002, 2003; Aumont et al., 2003; Ren et al., 2003; Vogel

et al., 2003; Zhou et al., 2002a) calculated a significant contribution of the HONO

photolysis to the integrated OH yield of up to 60%. Furthermore, HONO is an important

indoor pollutant, which can react with amines leading to nitrosamines, which are known

to be carcinogenic (Pitts et al., 1978).10

Besides in the atmosphere, nitrous acid is also an important precursor for OH radi-

cals in simulation chambers (e.g. Carter et al., 1981), which have been used for many

years to study atmospheric chemistry processes. In previous chamber studies a sig-

nificant OH production was found which could not be attributed to known precursors.

To explain this OH production the photolysis of heterogeneously formed HONO was15

assumed to be responsible, at least in part, for this so called background reactivity in

the chambers (Akimoto et al., 1987; Carter et al., 1982; Glasson and Dunker, 1989;

Killus and Whitten, 1990; Sakamaki and Akimoto, 1988). It was postulated that HONO

is formed by two processes,

a) the heterogeneous dark reaction R2 of NO2 and water (e.g. Carter et al., 1981;20

Carter et al., 1982; Finlayson-Pitts et al., 2003; Jenkin et al., 1988; Kleffmann

et al., 1998; Pitts et al., 1984; Sakamaki et al., 1983; Svensson et al., 1987)

responsible for the initiation of photosmog reactions and

2NO2 + H2O −→ HONO + HNO3 , (R2)

b) a photoenhanced HONO formation R3 (Akimoto et al., 1987; Glasson and Dunker,25
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1989; Killus and Whitten, 1990; Sakamaki and Akimoto, 1988; Wang et al., 2000),

to explain elevated reactivity under irradiation.

Y(HONO) + hν −→ HONO . (R3)

The slower process, Reaction 2, was studied and discussed in detail in a recent review

article of Finlayson-Pitts et al. (2003) and will not be discussed in the present paper.5

However, the reaction mechanism of the photoenhanced HONO formation is not well

understood, caused by low HONO concentrations under photolysis conditions. In all

studies, this process was quantified only indirectly by model calculations. Since in

some studies the radical source strength increased with increasing humidity, radiation

and with NO2 concentration a photoenhanced reaction of NO2 and water was postu-10

lated (Akimoto et al., 1987; Sakamaki and Akimoto, 1988). However, in the study by

Glasson and Dunker (1989) no NO2 dependence was observed for the photoenhanced

process. Killus and Whitten (1990) compared results from different simulation cham-

bers and postulated that different surface properties might explain the differences. For

Teflon surfaces a photoenhanced direct HONO source was postulated by the photolysis15

of nitrate adsorbed on the surface.

Besides simulation chambers, a photoenhanced HONO formation was recently pro-

posed in the atmosphere over snow (Beine et al., 2001, 2002; Dibb et al., 2002; Hon-

rath et al., 2002; Zhou et al., 2001), ground and vegetation surfaces (Kleffmann et al.,

2002, 2003; Ren et al., 2003; Vogel et al., 2003; Zhou et al., 2002a), to explain high20

day-time concentrations of HONO. The photolytic HONO source was also identified on

glass surfaces (Zhou et al., 2002b, 2003) and was explained by the direct photolysis of

nitrate/nitric acid and secondary reactions of NO2.

In summary, the photolytic HONO formation, both in the atmosphere and in simula-

tion chambers is not well understood up to now, although it is of significant importance.25

Accordingly, this process was studied in the atmospheric simulation chamber SAPHIR

at atmospheric conditions with a very sensitive HONO instrument. The experimental

results were interpreted by box model calculations.
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2. Experimental

2.1. Description of the simulation chamber SAPHIR

The atmospheric simulation chamber SAPHIR (Simulation of Atmospheric

PHotochemistry in a large Reaction chamber) is located on the campus of the

Forschungszentrum Jülich. It consists of twin wall FEP Teflon foils of 125µm and5

250µm thickness. The space between the twin walls is flushed at all times with high

purity air to prevent contamination from outside. The chamber is aligned in north-south

direction and has a cylindrical shape with 5 m diameter, 20 m length, and 270 m
3

volume. The surface to volume ratio is approximately 1 m
−1

. Synthetic air is prepared

by evaporation of high purity (better than 99.9999%) liquid N2 and O2. Exchange10

of air inside the chamber is done via two flow controller systems. The large one up

to 500 m
3
/h is used to flush the chamber to reach clean starting conditions between

experiments. The smaller one up to 15 m
3
/h is used to replenish the chamber during

experiments from losses due to the sampling of instruments and due to leaks. The

chamber is operated at approximately 80 Pa overpressure. Under these conditions, the15

replenishment flow is between 3 and 8 m
3
/h. Characterisation experiments with NO,

NO2, O3, H2O, and other species showed that the replenishment flow causes dilution

of trace species inside the chamber which can be described by an exponential decay

over more than two orders of magnitude until the detection limits of the instruments

are reached. Humidity is introduced into the chamber by heating up high purity water20

(Milli-Q Gradient A10, Millipore Corp.) and mixing the water vapour to a large flow

of synthetic air (300 m
3
/h) until the desired level of humidity is reached inside the

chamber. Therefore the process of humidification up to relative humidities of 80%

takes between 30 to 60 min of time. Minimum humidity at a dew point of −50
◦
C

or 0.08 mbar of water can be reached when the chamber is flushed more then ten25

times its volume. The chamber can be exposed to sun light within 60 s by opening a

shutter system which also protects the chamber from dangerous weather conditions.

Photolysis frequencies inside the chamber are approximately 80% of their outside
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values due to shadowing from structural elements holding the shutter system and the

Teflon foil. Additionally, a second shutter system equipped with a filter foil can be used

to change the spectrum of sun light during exposure. The filter foil almost absorbes

all light below 370 nm and has an increasing transmission from <1% to ∼85% in

the spectral range 370–420 nm. Further details of the chamber will be explained5

elsewhere (Brauers et al., in preparation, 2004
1
).

2.2. Instrumentation

For the measurement of nitrous acid (HONO) a new, very sensitive instrument (LOPAP:

Long Path Absorption Photometer) was used, which is described in detail elsewhere

(Heland et al., 2001; Kleffmann et al., 2002). Briefly, HONO is sampled in a stripping10

coil by a fast chemical reaction and converted into an azo dye which is photometrically

detected in long path absorption inside a special Teflon tubing. The instrument has an

integrated time resolution of ∼5 min and a detection limit of 1–2 pptV. Caused by the

two-channel concept of the instrument all tested interferences including the combined

one against NO2 and unknown semi-volatile diesel exhaust components (Gutzwiller et15

al., 2002) can be neglected (Kleffmann et al., 2002). In addition, sampling artefacts,

such as heterogeneous HONO formation in sampling lines (as an example see, Zhou et

al., 2002b), are minimised by the use of an external sampling unit in which the two strip-

ping coils are mounted and which can be placed directly in the atmosphere of interest.

In a recent intercomparison campaign with a DOAS instrument in which the same air20

masses were analysed for the first time (Trick et al., in preparation, 2004
2
) an excellent

agreement was obtained also for low concentrations of HONO during daytime. This is

1
Brauers, T., Johnen, F. J, Häseler, R., Rohrer, F., Bohn, B., Tillmann, R., Rodriguez Bares,

S., Wahner, A.: The Atmosphere Simulation Chamber SAPHIR: A Tool for the Investigation of
Photochemistry, in preparation, 2004.

2
Trick, S., Kleffmann, J., Lörzer, J. C., Platt, U., Volkamer, R., and Wiesen, P.: HONO

Intercomarison Measurements During the FORMAT campaign in Milan, 2002, in preparation,
2004.
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in contrast to intercomparison studies of other chemical detectors with the DOAS tech-

nique (Appel et al., 1990; Coe et al., 1997; Febo et al., 1996; Müller et al., 1999), which

show large discrepancies during the day probably caused by unknown interferences.

The measured and corrected interferences of the LOPAP instrument can account for

up to 40% at low HONO concentrations (Trick et al., 2004).5

In first measurements the external sampling unit of the LOPAP instrument was di-

rectly installed in the SAPHIR chamber. For most of the experiments however, the inlet

of the external sampling unit was connected to the northern corner of the chamber by

a short PFA tubing (10 cm, 4 mm i.d.). In contrast to complex atmospheric mixtures

(Kleffmann et al., 2002), sampling artefacts were found to be small for the low trace10

gas and relative high HONO concentrations during the experiments in the SAPHIR

chamber.

NO and NO2 measurements were performed with a chemiluminescence anal-

yser (ECO PHYSICS TR480) equipped with a photolytic converter (ECO PHYSICS

PLC760). The NOx data were analysed as described by Rohrer et al. (1998). Since15

HONO mixing ratios were often higher than NO2 mixing ratios in the chamber, the

HONO interference of the photolytic conversion system for NO2 is an important fac-

tor (for example see Fig. 1). This interference of 15% has been determined experi-

mentally by using a pure HONO source similar to that described by Taira and Kanda

(1990) quantified by the LOPAP instrument. Ozone was measured by an UV absorp-20

tion spectrometer (ANSYCO model O341M). Photolysis frequencies were determined

with a spectroradiometer (as described by Hofzumahaus et al., 1999) on the roof of the

building beside the SAPHIR chamber. To account for shadowing effects of structural

elements of the chamber, the photolysis frequency data were corrected with the help

of numerical calculations (Bohn and Zilken, 2004; Bohn et al., 2004
3
). Humidity was25

determined with a frost point hygrometer (General Eastern model Hygro M4) and air

3
Bohn, B., Rohrer, F., Brauers, T., and Wahner, A.: Photolysis Frequencies in a Sun Lit

Simulation Chamber, Part 2: Actinometry and Radiometry, Atmos. Chem. Phys. Discuss.,
submitted, 2004.
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temperature by an ultra sonic anemometer (Metek USA-1, accuracy 0.3 K).

Several cross checks of the instrumentation were performed to examine the con-

sistency of the data sets. The pure HONO source was analysed by the LOPAP in-

strument and by the NOx instrumentation by using a catalytic conversion system for

NOy as described by Fahey et al. (1985). Both instruments showed agreement within5

5%. A second test was performed by introducing 50 ppbV of NO2 into the chamber

with closed shutters. After exposure to sunlight and photolysis of NO2 yielding equal

amounts of NO and ozone, the NO and ozone instruments showed consistency within

2%. Moreover, the photostationary state of NO, ozone, and NO2 reached after ex-

posure with light was consistent within 10% with the measured photolysis frequency10

J(NO2) and the recommended literature value for the rate constant of the reaction of

NO with ozone (Sander et al., 2003).

3. Measurement Concept

The illuminated atmosphere simulation chamber SAPHIR generates HONO, NOx, and

O3. For most experimental conditions the HONO concentration originating from this15

process is large enough so that OH production via HONO photolysis is significant for

the interpretation of simulation experiments. Therefore, a series of dedicated experi-

ments has been designed to determine reproducibility and dependencies on boundary

conditions for the characterization of HONO and NOx production in SAPHIR. These ex-

periments consist of three parts: a) preparation of initial conditions, b) illumination with20

solar irradiation, and c) interpretation of results. The preparation of initial conditions

is started by flushing the chamber with high purity air for a long enough time so that

all measured species are close to their detection limit. For some of the experiments

relative humidity, CO, or NOx concentrations are adjusted to preselected values to de-

termine the production rates of HONO and NOx for these conditions. Temperature in25

SAPHIR can not be adjusted. Variation of temperature is therefore limited to natural

variability. When initial conditions are adjusted, the roof of the chamber is opened so
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that the air sample in the chamber is illuminated. The time series of NOx, O3, humidity,

temperature, and of photolysis frequencies are monitored for all of these experiments.

The variation of HONO is measured also for some of the experiments depending on

availability of the detection system. After a few hours of solar illumination, the roof is

closed finishing the experiment. The interpretation of the experiments is done with the5

help of a photochemical model. The parameters of the model describing the genera-

tion of HONO are adjusted so that the measured time responses of NOx and O3 are

reproduced. If available the measured HONO concentrations are also used to check for

consistency with model assumptions. With several of these experiments at hand, com-

mon features like the dependence on humidity or on solar irradiation are parameterized10

so that as many of these experiments as possible can be described with a parameteri-

zation as simple as possible. The key feature of this concept is reproducibility. For this

reason these dedicated experiments have to be repeated at regular intervals.

4. Results

4.1. Dedicated experiments in the SAPHIR chamber15

For most of the experiments presented here, the SAPHIR chamber was flushed by syn-

thetic air over night until the trace gas concentrations were below the detection limits

of the instruments. Afterwards, initial conditions for humidity were adjusted. When the

SAPHIR chamber was exposed to sun light the instantaneous formation of HONO and

other trace gases like NO, NO2, and O3 was observed (see Figs. 1 and 2). For “clean”20

conditions, no formation of these trace species was observed without illumination. But

in several experiments (for example Fig. 1), small amounts of HONO and NO2 were

detected in the dark chamber associated only with the process of humidification. This

artefact was observed when the humidifier was not in operation for a longer time. It

is probably due to impurities of nitrite compounds adsorbed on the walls of the water25

injection system, which are hydrolysed and flushed into the chamber. In some of the
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experiments, 550 ppmV of CO were injected into the chamber to suppress OH concen-

trations below 10
4

cm
−3

. Under these conditions, the interpretation of the budgets of

NOx and HONO was very much simplified because only production of HONO, photoly-

sis of HONO and dilution of HONO and NOx had to be taken into account. In a single

dedicated experiment, 30% relative humidity and an initial NO2 mixing ratio of 35 ppbV5

were used to search especially for a NO2 enhanced HONO formation. Overall, 5 differ-

ent experimental conditions summarised in Table 2 were used to characterise HONO

emissions in SAPHIR in the time period between July 2001 and December 2003.

In these experiments, typical HONO concentrations were under irradiation in the

region of several 100 pptV for high humidities of >10% RH and several 10 pptV for low10

humidities at dew points of −40
◦
C. The dominat influence of irradiation and humidity

on HONO production rates was therefore obvious. To further study the photoenhanced

HONO formation in the SAPHIR chamber, the spectral range of the radiation inside

the chamber was varied. For this purpose HONO formation was studied under humid

condition when light at short wavelengths (<370 nm) was absorbed outside the Teflon15

chamber by the use of the filter foil. In the spectral range 370–420 nm, the transmission

of the filter foil increases from <1% to ∼85%. Accordingly, the photolysis frequency

of NO2, J(NO2), decreased by a factor of ∼3 by the filter foil, J(HONO) by a factor

of 10, and the photolysis frequency of ozone, J(O
1
D), decreased by a factor of 100.

Nevertheless, when the filter foil was used, still a significant HONO formation was20

observed under irradiation (see Fig. 2).

4.2. Model calculations

In order to quantify the HONO production rate S(HONO)SAPHIR under various condi-

tions model calculations were performed using the photochemical reaction scheme

outlined in Table 3 describing a simple NOx/HONO/CO/HCHO chemistry with reaction25

constants taken from Sander et al. (2003). In addition to Reaction (3) (see Introduc-

tion), Reactions (4–6) were introduced into the model to account for several phenom-
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ena observed in SAPHIR:

OH + X −→ HO2 k=k(CO + OH) (R4)

all tracers −→ k=flow/volume (R5)

Y(HCHO) + hv −→ HCHO rate:0−0.2 ppbV/h (R6)

Reaction (3) describes the observation of photolytically induced HONO and succeeding5

NO, and NO2 formation. In addition, to simulate the small increases of NO2 and HONO

during some humidification processes in the dark chamber, appropriate amounts of

NO2 and HONO were introduced into the model calculations also (see Fig. 1). These

small amounts of HONO do not play a significant role, because they are photolysed

in 10 to 20 min when the chamber is illuminated. Reaction 4 accounts for the phe-10

nomenon that even with very clean starting conditions when all measured NMHC’s are

below their detection limit immediate ozone formation is observed when the chamber is

illuminated. All measured species like CO and NMHC’s are below their detection limits

at the beginning of the experiments. For this reason an unknown species X was indro-

duced in the chemical mechanism which can react with OH giving HO2. Subsequent15

reaction of HO2 with NO gives the desired ozone formation. To facilitate comparisons,

the reaction constant of CO with OH from Sander et al. (2003) was used as a param-

eter for Reaction (4). Reactions similar to Reaction (5) were introduced for all trace

species in the reaction mechanism to describe dilution by the replenishment flow as

first order loss reactions. The reaction constant was calculated from the volume of the20

chamber and the measured replenishment flow. Reaction (6) is necessary to follow the

observed HCHO production when the chamber is illuminated. The HCHO formation

was linear with time and depending on humidity, light intensity and temperature. The

rate of HCHO formation used in the model was adjusted to the measured rate. How-

ever, this reaction has only marginal influence on the HOx budget in the chamber and25

is given here only for completeness. The characterisation of the HCHO source in the

SAPHIR chamber will be described in a forthcoming paper.

7891



ACPD

4, 7881–7915, 2004

Characterisation of

the photolytic

HONO-source

F. Rohrer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Subsequent model calculations showed that the following empirically derived param-

eterisation for the production rate of HONO describes the observed time series of NO

and NO2:

S (HONO)SAPHIR,i = ai × J(NO2) × (1 +
(

RH/RH0

)2
) × e−T0/T i=1,2 . (1)

T represents the temperature, RH the relative humidity , J(NO2) the photolysis fre-5

quency of NO2 and ai, RH0 and T0 are fitting parameters specified in Table 4. Equa-

tion (1) is an empirical function with only three parameters which is able to describe the

HONO formation in SAPHIR with good precision for a broad band of boundary condi-

tions. This is a significant step forward in the process of using the simulation chamber

SAPHIR as a tool for atmospheric chemistry. Equation (1) is not based on a physical10

model of processes controlling HONO formation in SAPHIR.

To find the optimum set of parameters for Eq. (1), humidity, temperature, and J(NO2)

were used as observed. The concentrations of the unknown species X for Reaction (4)

were chosen independently for each experiment to explain the measured ozone con-

centrations. The value of X varied between 100 and 300 ppbV of CO equivalents. Its15

variation could not be attributed to a certain process.

The parameters ai, RH0 and T0 were then optimised by fitting the observed NO and

NO2 mixing ratios of the experiments mentioned in Table 2 to model calculations with

the help of the Levenberg-Marquard algorithm. The results of these calculations are

shown in Figs. 1 and 2 as red lines. The green lines describe the calculated NO2 time20

series including 15% of the calculated HONO mixing ratios to account for the HONO

interference of the detection system for NO2 (see Sect. 2.2). Two sets of parameters

were determined. The experiments before August 2002 could be explained by one set

of parameters, the experiments after that date by another set of parameters. The pa-

rameters a1 and a2 describe the difference between both sets of experiments which is25

a factor of 1.8. The time frame for this change is defined by the experiments of 9 July

and 13 August 2002. Between these limiting HONO experiments, several other exper-

iments were performed in the chamber namely ozonolysis of alkens and actinometric
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experiments with 30 ppbV of NO2. But these types of experiments were also conducted

before and after that time frame. Therefore the reason for the sudden change in the

photoenhanced emission rate of HONO remains unknown. Table 4 summarises these

results.

Figure 3 shows the result of the optimisation process for the experiments with rela-5

tive humidities of less than 1%. Both sets of experiments are clearly distinguishable.

The estimated uncertainty of the determination of a single HONO production rate of

0.15 is shown here as the vertical line at each data point. Horizontal lines mark the

temperature range covered by each experiment.

Figure 4 shows the result of the optimisation process for the experiments started10

with relative humidities of more than 10%. As in Fig. 3, both groups of experiments are

clearly visible. Interestingly, experiments with 550 ppmV CO or with the filter foil cannot

be identified in the plot. The values calculated with Eq. (1) with both sets of parameters

in Table 4 are included in Fig. 4 as solid black lines. Dotted lines mark regions which are

defined by the envelope embedding all of the individual experiments. This maximum15

spread of experiments in both groups is ±15%. The accuracy of Eq. (1) is therefore

estimated to be on the order of 10%.

5. Discussion

In other studies, a photoenhanced background reactivity was proposed to explain ele-

vated reactivity in simulation chambers under irradiation (Akimoto et al., 1987; Glasson20

and Dunker, 1989; Killus and Whitten, 1990; Sakamaki and Akimoto, 1988; Wang et

al., 2000). However, in contrast to all known studies of the background reactivity of sim-

ulation chambers, HONO was unequivocally identified under illuminated conditions in

the present study for the first time. The photolytic HONO source in SAPHIR was found

to be proportional to the photolysis frequency of NO2, which is in good agreement with25

parameterisations of the background reactivity made in the study of Wang et al. (2000).

In addition, the photolytic HONO source increased with the square of relative humidity
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and exponentially with temperature. A water dependence of the background reactiv-

ity was also observed in most other studies (Akimoto et al., 1987; Killus and Whitten,

1990; Sakamaki and Akimoto, 1988). The excellent agreement between experimental

results and model calculation clearly shows that the photolytic HONO source is the

dominant NOx source in the chamber, in good agreement with suggestions of Killus5

and Whitten (1990). In contrast, a direct photolytic NOx source which has recently be

proposed for snow (Davis et al. 2001; Honrath et al., 1999, 2000; Jones et. al., 2000,

2001) and glass surfaces (Zhou et al., 2002b, 2003) by the photolysis of nitrate can be

excluded, since the modelled HONO concentration would be significantly higher than

the measured one in this case.10

In two older studies (Akimoto et al., 1987; Sakamaki and Akimoto, 1988), the ele-

vated reactivity in simulation chambers under irradiation was explained by a photoen-

hancement of Reaction (2), 2NO2+H2O, since the radical source strength increased

with increasing humidity, radiation and NO2 concentration. However, a photoenhance-

ment of Reaction (2) can be clearly excluded based on the results of the present study,15

since the majority of experiments started with very low NO2 concentrations on the or-

der of 20 pptV NO2 or less. During the course of these experiments, NO2 increased to

several 100 pptV without influence on the photolytic HONO formation. In a dedicated

experiment (experiment type E, Table 2), 35 ppbV of NO2 at 30% relative humidity were

used as starting conditions again showing no enhancement on the photolytic HONO20

production. Taking everything together, these experiments showed that a photoen-

hancement of the reaction of NO2 with water vapor, Reaction (2), was not observed in

SAPHIR.

In the study of Killus and Whitten (1990) the photoenhancement of the background

reactivity in Teflon chambers was explained by the photolysis of nitrate, since elevated25

reactivity was observed after experiments in which high nitric acid concentrations were

used. The photolysis of nitrate as a source of HONO was recently also proposed in

the atmosphere over snow (Beine et al., 2001, 2002; Dibb et al., 2002; Honrath et

al., 2002; Zhou et al., 2001), ground and vegetation surfaces (Zhou et al., 2002a), to
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explain high day-time concentrations of HONO. In addition, a photolytic HONO source

by photolysis of nitrate was proposed for glass surfaces (Zhou et al., 2002b, 2003).

However, based on the results from the present study, the photolysis of nitrate can be

excluded. A significant HONO formation was also observed in SAPHIR when light with

wavelengths <370 nm was blocked by the filter foil. Since the weak absorption band of5

nitrate at ∼300 nm (ε=∼7 l mol
−1

cm
1
, Meyerstein and Treinin, 1961) was found to be

responsible for nitrite and NO2 formation in solution (Wagner et al., 1980), and since

nitrate absorption does not extend to wavelengths >370 nm, no significant photolytic

HONO formation would have been expected in the experiments with the filter foil. In the

present study a good correlation of the photolytic HONO formation with the photolysis10

frequency of NO2 was found. Accordingly, it is expected that the precursor of HONO

absorbs in a similar wavelength range compared to NO2. In contrast, absorption at

wavelengths exclusively <370 nm and exclusively >420 nm can be excluded, since

HONO formation should have been reduced by two orders of magnitude in the first

case and only by 15% in the second case, caused by the transmission of the filter foil.15

In a recent study of Saliba et al. (2001) it was shown by infrared spectroscopy that

adsorbed nitric acid should be almost undissociated on surfaces up to a water cover-

age of the surface of three formal monolayers. However, photolysis of adsorbed HNO3

can only explain the experimental observations, if the relative shape of the UV ab-

sorption spectra of undissociated adsorbed HNO3 is significantly different to the spec-20

tra of undissociated gaseous HNO3 (Sander et al., 2003). The UV absorption cross

section of HNO3/H2O films on Al2O3 surfaces was recently measured by Berland et

al. (1996). Unfortunately, only the π→π* band at ∼200 nm was investigated. For the

oscillator strength of the band no significant difference between thin films of nitric acid

and gaseous nitric acid was observed. In addition, the band was shifted by only ∼10 nm25

to longer wavelength for the thin film. Accordingly, it can be concluded that adsorbed

undissociated HNO3 has a similar UV absorption spectra compared to gaseous nitric

acid. As an upper limit of the long wavelength photolysis of adsorbed HNO3 in the

spectral range of the SAPHIR chamber, it was assumed that the absorption cross sec-
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tion of adsorbed HNO3 is similar to that of gaseous HNO3 given by Sander et al. (2003)

and remains constant in the wavelength range 350–420 nm with the lowest value given

for gaseous HNO3 for 350 nm. Under this assumption, HONO formation by photoly-

sis of adsorbed HNO3 should be reduced by a factor of >50 by the use of the filter

foil. However, only a reduction of a factor of 3 was observed in the experiments. In5

addition, by using the obviously overestimated absorption cross sections mentioned

above, a HNO3 adsorption of 10 monolayers, which is an unrealistic high value for the

SAPHIR chamber and a quantum yield of 1 for HONO formation by HNO3 photolysis,

which is two orders of magnitude higher than the effective quantum yield for nitrite for-

mation by nitrate photolysis in solution at pH 4–7 (Mark et al., 1996), the rate of HONO10

formation in the chamber would be still more than one order of magnitude lower than

the measured one in the experiments with the filter foil. Another argument against the

photolysis of adsorbed undissociated HNO3 is the observation, that photolytic HONO

formation still increased for relative humidities of >50%. For the highest relative hu-

midities of ∼80% it can be expected, that HNO3 will dissociate to nitrate (Saliba et al.,15

2001; Svensson and Ljungström, 1987), which was excluded as a precursor of HONO

in the chamber (see above). Accordingly, it is proposed that adsorbed nitric acid does

not represent the precursor of HONO formed during the irradiation of the chamber,

although this cannot be completely excluded, since the UV absorption spectra of ad-

sorbed nitric acid on Teflon surfaces is unknown.20

In the study of Killus and Whitten (1990) elevated background reactivity was doc-

umented for Teflon chambers after experiments with high nitric acid concentrations.

Based on these results it might be possible that the precursor of HONO is formed by

a reaction of HNO3 with unknown compounds in the fibre structure of the Teflon foil.

Candidates for these compounds might be higher molecular organics from the produc-25

tion of the Teflon material, which are oxidised by HNO3. From the experiments with the

filter foil it can be concluded that the precursor of HONO should photolyse in a similar

wavelength range than NO2. In contrast it cannot photolyse in the spectral range in

which nitrate or gaseous HNO3 absorb.
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The water dependence of the photolytic HONO source was described by a quadratic

function (see Eq. 1), which resembles the dependence of water uptake on FEP Teflon

shown in Fig. 7 of Svensson et al. (1987). Based on the observed humidity dependence

of the photolytic HONO source it can be speculated that either only the dissociated form

of the precursor photolyses or that HONO is formed by a reaction of photolysis prod-5

ucts with adsorbed water. One candidate might be a hypothetical fast reaction of an

excited NO2 molecule, formed in the photolysis of the unknown precursor, with water.

In contrast, the reaction of ground state NO2 molecules with adsorbed water cannot

explain the experimental findings, since no enhancement of the photolytic HONO for-

mation was observed with increasing NO2 concentration. Since it is well known that10

molecules diffuse through Teflon material, it can be expected that HNO3 will react with

the postulated organic compounds also on the internal surface of the Teflon foil. Since

HNO3 is formed as the end product of NOx in the most of the experiments and since

efficient deposition of HNO3 on the wall can be expected, the concentration of the

precursor and accordingly the photolytic HONO source will probably not decrease sig-15

nificantly, as observed over a period of more than two years in the chamber. However,

this argument holds only, if the concentration of the speculated organic compound,

which forms the precursor of HONO by reaction with HNO3, is high enough. However,

to quantitatively explain photolytic HONO formation in the SAPHIR chamber in 100 ex-

periments only a fraction of ∼10
−5

of a hypothetical compound in the Teflon foil with an20

assumed molecular mass of 500 amu is needed, which is reasonable.

In conclusion, although several pathways of the photolytic HONO formation dis-

cussed in the literature could be excluded, e.g. a photoenhancement of the reaction

of NO2 and H2O or a photolysis of nitrate, the precursor of HONO formed photolytically

in the SAPHIR chamber was not identified. Accordingly further work is needed to clar-25

ify this process which is of paramount importance for the radical balance of simulation

chambers.

It was shown that HONO production in the simulation chamber SAPHIR can be pre-

dicted with good precision. This prediction capability can now be used to characterise
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the radical production in SAPHIR and compare it to radical production in ambient air to

show that SAPHIR is a suitable tool for atmospheric simulation experiments at ambient

conditions. If the photolytic production of HONO (Reaction 3) is the dominant source

and the photolysis of HONO (Reaction 1) the dominant sink of HONO in the SAPHIR

chamber, then a simple photostationary state calculation of HONO can be performed:5

[HONO]=
P(HONO)

J(HONO)
=

S(HONO)SAPHIR

J(HONO)
(2)

Taking into account the strong correlation between J(NO2) and J(HONO) (Kraus and

Hofzumahaus, 1998), the steady state concentration of HONO can be calculated:

J(HONO)=J(NO2)/5.8 (3)

[HONO]i=ai × 5.8 × (1 +
(

RH/RH0

)2
) × e−T0/T (4)10

P(OH)HONO = [HONO]i × J(HONO) = S(HONO)i . (5)

Equation (4) was used to calculate steady state HONO concentrations for different hu-

midities at 295 K in the SAPHIR chamber. The results are shown in Fig. 5. These

calculations emphasise the difference between the two parameters a1 and a2 in Ta-

ble 4 which distinguish between the time before August 2002, and afterwards. The15

calculated mixing ratios are in good agreement with LOPAP HONO measurements.

Using typical values for J(NO2) and J(O
1
D) of 5×10

−3
s
−1

and 1.5×10
−5

s
−1

respec-

tively, Eqs. (1) and (5) can be used to compare the production of OH from HONO

photolysis to the production rate from ozone photolysis P(OH)O3
, Eq. (6), determined

by Reactions (7–10):20

P(OH)O3
=

2 × [O3] × J(O
1
D) × k8 × [H2O]

k8 × [H2O] + k9 × [N2] + k10 × [O2]
(6)

O3 + hv −→ O1D + O2 (R7)
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O1D + H2O −→ 2OH (R8)

O1D + N2 −→ O3P + N2 (R9)

O1D + O2 −→ O3P + O2 . (R10)

With steady-state concentrations of HONO taken from Fig. 5, the OH production from

HONO photolysis is compared to OH production rates calculated with typical tropo-5

spheric ozone concentrations of 50 and 100 ppbV in Fig. 6. The total OH production

in SAPHIR for these illumination conditions is in the region of 1 to 30×10
6

cm
−3

s
−1

or 150–4500 pptV/h. In the range 5% to 30% relative humidity, both processes have

approximately the same contribution. Above 60% or below 5% relative humidity, OH

production by HONO photolysis is 2 to 6 times larger than by ozone photolysis.10

The calculated HONO concentrations and OH production rates can be compared to

ambient measurements. Recent studies show HONO mixing ratios in the range 50–

500 pptV (Kleffmann et al., 2002, 2003; Ren et al., 2003; Zhou et al., 2002a) during

daylight. In addition OH production rates of 200–1800 pptV/h were estimated for the

atmosphere (Ren et al., 2003; Zhou et al., 2002a). This comparison shows, that HONO15

photolysis is comparable to or dominating the OH production from ozone photolysis

inside the SAPHIR chamber but also outside in ambient air (e.g. Ren et al., 2003;

Vogel et al., 2003).

6. Summary

It was shown that the photoenhanced HONO production in the simulation chamber20

SAPHIR depends exclusively on solar irradiation, relative humidity, and temperature.

The rate of HONO productions can be predicted with good precision by an empiri-

cal parameterisation including the photolysis frequency of NO2, J(NO2), as a scaling

factor for solar irradiation, a square dependence on relative humidity, and exponential

growth with temperature. Photolysis of HONO seems to be the only source of NO and25
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OH in the flushed-out simulation chamber. The good reproducibility of the HONO pro-

duction rate and its independence on other boundary conditions, especially on NO2

concentration, allows the inclusion of this process in further studies which depend on

the quantitative understanding of the HOx radical budget or the nitrogen oxide budget.
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J., Volz-Thomas, A., and Platt, U.: OH Formation by HONO Photolysis During the BERLIOZ
Experiment, J. Geophys. Res., 108 (D4), 8247, doi:10.1029/2001 JD000579, 2003.

Appel, B. R., Winer, A. M., Tokiwa, Y., and Biermann, H. W.: Comparison of Atmospheric
Nitrous Acid Measurements by Annular Denuder and Optical Absorption Systems, Atmos.20

Envir., 24 A, 611–616, 1990.
Aumont, B., Chervier, F., and Laval, S.: Contribution of HONO Sources to the NOx/HOx/O3

Chemistry in the Polluted Boundary Layer, Atmos. Envir., 37, 487–498, 2003.
Beine, H. J., Allegrini, I., Sparapani, R., Ianniello, A., and Valentini, F.: Three Years of Spring-

time Trace Gas and Particle Measurements at Ny-Ålesund, Svalbard, Atmos. Envir., 35,25
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Table 1. Detection limit and accuracy of SAPHIR instrumentation used in this analysis.

Instrument HONO NO NO2 O3 Photolysis frequencies

Detection Limit (2σ) 2 pptV 5 pptV 10 pptV 0.5 ppbV

Accuracy 10% 5% 10% 5% 10%

Time Resolution 5 min 90 s 90 s 90 s 2 min
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Table 2. Experimental conditions for HONO characterisation experiments; not all experiments
are accompanied by LOPAP HONO measurements due to limited availability.

Experiment Relative CO Initial NO2 Filter foil Number of analysed
Type Humidity experiments

A <1% 0 0 – 11

B >10% 0 0 – 9

C >10% 550 ppmV 0 – 2

D >10% 550 ppmV 0 + 2

E 30% 0 35 ppbV – 1
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Table 3. Reaction scheme used for the model calculation.

O
1
D + O2 � O3 NO + O3 � NO2

O
1
D + N2 � O3 NO + OH � HNO2

O
1
D + H2O � 2·OH NO2 + NO3 � N2O5

2·HO2 � H2O2 NO2 + O3 � NO3

2·HO2 + H2O � H2O2 NO2 + OH � HNO3

CO + OH � CO2 + HO2 NO3 + OH � HO2 + NO2

H2 + OH � HO2 O3 + OH � HO2

H2O2 + OH � H2O + HO2 HNO2 +��� � NO + OH

HCHO + OH � CO + HO2 H2O2 +���� � 2·OH

HNO2 + OH � H2O + NO2 HCHO +���� � CO + 2·HO2

HNO3 + OH � H2O + NO3 HCHO +���� � CO + H2

HO2 + NO � NO2 + OH NO2 +���� � NO + O3

HO2 + NO3 � NO2 + OH NO3 +���� � NO

HO2 + O3 � OH NO3 +���� � NO2 + O3

HO2 + OH � H2O O3 +���� � O
1
D

N2O5 � NO2 + NO3
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Table 4. Result of fitting the observed time series of NO and NO2 for the experiments men-
tioned in Table 2 to model calculations using the parameterisation Eq. (1).

Time period ai RH0 T0

July 2001–July 2002 4.7×10
13

cm
−3

11.6% 3950 K

August 2002–December 2003 8.5×10
13

cm
−3

11.6% 3950 K
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Fig. 1. HONO, NOx, and ozone formation in SAPHIR illuminated with sunlight on 8 August
2001 (experiment type B, see Table 2). In the time interval between 07:00 and 08:30 UT, small
amounts of HONO and NO2 were flushed into the chamber during the humidification process.
Blue symbols mark observations, red and green lines show the result of model calculations
(see text).
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Fig. 2. HONO, NOx, and ozone formation in SAPHIR illuminated with sunlight using an ad-
ditional filter foil in the presence of 550 ppmV of CO on 2 July 2002 (experiment type D, see
Table 2). Blue symbols mark observations, red and green lines show the result of model calcu-
lations (see text).
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Fig. 3. Dependence of S(HONO)SAPHIR on 1/T determined from the fit of Eq. (1) to observed
time series of NO and NO2 for the experiments type A in Table 2 with relative humidities below
1%. Indicated is the date of experiments in the form DDMMYY. S(HONO)SAPHIR has been
scaled with J(NO2). The blue dots mark experiments before August 2002, the red dots those
after that date. The blue and red lines represent Eq. (1) with parameters given in Table 4.
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Fig. 4. Dependence of S(HONO)SAPHIR on relative humidity determined from the fit of Eq. (1)
to observed time series of NO and NO2 for experiments B, C, D, and E mentioned in Table 2
with relative humidities above 10%. Indicated is the date of experiments in the form DDMMYY
and the type of experiment. S(HONO)SAPHIR has been scaled with J(NO2) and the temperature
function in Eq. (1) to separate the dependence on relative humidity. Blue lines mark experi-
ments before 13 August 2002, red lines those after that date. The solid black lines represent
Eq. (1) with parameters given in Table 4. Dotted black lines indicate a region of ±0.15× ordi-
nate value above and below the solid black line. This region is defined by the spread of the
individual experiments belonging to each of the two groups.

7913



ACPD

4, 7881–7915, 2004

Characterisation of

the photolytic

HONO-source

F. Rohrer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

0 20 40 60 80 100

relative humidity [%]

0.0

0.5

1.0

1.5

2.0

H
O

N
O

 [
p

p
b

V
]

       HONO1   
       HONO2   

Fig. 5. Predicted stationary HONO mixing ratios inside SAPHIR calculated with Eq. (1) and
parameters from Table 4 for T=295 K.
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