000042502 001__ 42502
000042502 005__ 20240712100906.0
000042502 0247_ $$2DOI$$a10.1029/2004JD005169
000042502 0247_ $$2WOS$$aWOS:000229988800002
000042502 0247_ $$2ISSN$$a0141-8637
000042502 0247_ $$2Handle$$a2128/20545
000042502 0247_ $$2altmetric$$aaltmetric:2410995
000042502 037__ $$aPreJuSER-42502
000042502 041__ $$aeng
000042502 082__ $$a550
000042502 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000042502 1001_ $$0P:(DE-HGF)0$$aMöhler, O.$$b0
000042502 245__ $$aEffect of sulphuric acid coating on heterogeneous ice nucleation by soot aerosol particles
000042502 260__ $$aWashington, DC$$bUnion$$c2005
000042502 300__ $$aD11210
000042502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000042502 3367_ $$2DataCite$$aOutput Types/Journal article
000042502 3367_ $$00$$2EndNote$$aJournal Article
000042502 3367_ $$2BibTeX$$aARTICLE
000042502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000042502 3367_ $$2DRIVER$$aarticle
000042502 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v110$$x0148-0227
000042502 500__ $$aRecord converted from VDB: 12.11.2012
000042502 520__ $$aThe low-temperature aerosol and cloud chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) of Forschungszentrum Karlsruhe was used to investigate the effect of sulfuric acid coating on the ice nucleation efficiency of soot aerosol particles from a spark discharge generator. The uncoated (sulfuric acid-coated) soot aerosol showed a nearly lognormal size distribution with number concentrations of 300-5000 cm(-3) (2500-56,000 cm-3), count median diameters of 70-140 nm (90-200 nm), and geometric standard deviation of 1.3-1.4 (1.5-1.6). The volume fraction of the sulfuric acid coating to the total aerosol volume concentration ranged from 21 to 81%. Ice activation was investigated in dynamic expansion experiments simulating cloud cooling rates between about -0.6 and -3.5 K min(-1). At temperatures between 186 and similar to 235 K, uncoated soot particles acted as deposition nuclei at very low ice saturation ratios between 1.1 and 1.3. Above 235 K, ice nucleation only occurred after approaching liquid saturation. Coating with sulfuric acid significantly increased the ice nucleation thresholds of soot aerosol to saturation ratios increasing from similar to 1.3 at 230 K to similar to 1.5 at 185 K. This immersion mode of freezing nucleates ice well below the thresholds for homogeneous freezing of pure sulfuric acid solution droplets measured in previous AIDA experiments. A case study indicated that in contrast to the homogeneous freezing the nucleation rate of the immersion freezing mechanism depends only weakly on relative humidity and thereby the solute concentration. These results show that it is important to know the mixing state of soot and sulfuric acid aerosol particles in order to properly assess their role in cirrus formation.
000042502 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000042502 588__ $$aDataset connected to Web of Science
000042502 650_7 $$2WoSType$$aJ
000042502 7001_ $$0P:(DE-HGF)0$$aBüttner, S.$$b1
000042502 7001_ $$0P:(DE-HGF)0$$aLinke, C.$$b2
000042502 7001_ $$0P:(DE-HGF)0$$aSchnaiter, M.$$b3
000042502 7001_ $$0P:(DE-HGF)0$$aSaathoff, M.$$b4
000042502 7001_ $$0P:(DE-HGF)0$$aStetzer, H.$$b5
000042502 7001_ $$0P:(DE-HGF)0$$aWagner, R.$$b6
000042502 7001_ $$0P:(DE-Juel1)129131$$aKrämer, M.$$b7$$uFZJ
000042502 7001_ $$0P:(DE-Juel1)VDB13551$$aMangold, A.$$b8$$uFZJ
000042502 7001_ $$0P:(DE-HGF)0$$aEbert, V.$$b9
000042502 7001_ $$0P:(DE-HGF)0$$aSchurath, U.$$b10
000042502 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2004JD005169$$gVol. 110, p. D11210$$pD11210$$q110<D11210$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v110$$x0148-0227$$y2005
000042502 8567_ $$uhttp://dx.doi.org/10.1029/2004JD005169
000042502 8564_ $$uhttps://juser.fz-juelich.de/record/42502/files/2004JD005169.pdf$$yOpenAccess
000042502 8564_ $$uhttps://juser.fz-juelich.de/record/42502/files/2004JD005169.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000042502 909CO $$ooai:juser.fz-juelich.de:42502$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000042502 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000042502 9141_ $$y2005
000042502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000042502 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000042502 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000042502 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000042502 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000042502 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000042502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000042502 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000042502 970__ $$aVDB:(DE-Juel1)59247
000042502 9801_ $$aFullTexts
000042502 980__ $$aVDB
000042502 980__ $$aConvertedRecord
000042502 980__ $$ajournal
000042502 980__ $$aI:(DE-Juel1)IEK-7-20101013
000042502 980__ $$aUNRESTRICTED
000042502 981__ $$aI:(DE-Juel1)ICE-4-20101013
000042502 981__ $$aI:(DE-Juel1)IEK-7-20101013