000042744 001__ 42744
000042744 005__ 20180210140104.0
000042744 0247_ $$2pmid$$apmid:16441758
000042744 0247_ $$2DOI$$a10.1111/j.1469-8137.2005.01605.x
000042744 0247_ $$2WOS$$aWOS:000234975800015
000042744 037__ $$aPreJuSER-42744
000042744 041__ $$aeng
000042744 082__ $$a580
000042744 084__ $$2WoS$$aPlant Sciences
000042744 1001_ $$0P:(DE-Juel1)129379$$aPieruschka, R.$$b0$$uFZJ
000042744 245__ $$aLateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves
000042744 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2006
000042744 300__ $$a779 - 788
000042744 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000042744 3367_ $$2DataCite$$aOutput Types/Journal article
000042744 3367_ $$00$$2EndNote$$aJournal Article
000042744 3367_ $$2BibTeX$$aARTICLE
000042744 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000042744 3367_ $$2DRIVER$$aarticle
000042744 440_0 $$04600$$aNew Phytologist$$v169$$x0028-646X
000042744 500__ $$aRecord converted from VDB: 12.11.2012
000042744 520__ $$aGas exchange is generally regarded to occur between the leaf interior and ambient air, i.e. in vertical (anticlinal) directions of leaf blades. However, inside homobaric leaves, gas movement occurs also in lateral directions. The aim of the present study was to ascertain whether lateral CO2 diffusion affects leaf photosynthesis when illuminated leaves are partially shaded. Measurements using gas exchange and chlorophyll fluorescence imaging techniques were performed on homobaric leaves of Vicia faba and Nicotiana tabacum or on heterobaric leaves of Glycine max and Phaseolus vulgaris. For homobaric leaves, gas exchange inside a clamp-on leaf chamber was affected by shading the leaf outside the chamber. The quantum yield of photosystem II (Phi(PSII)) was highest directly adjacent to a light/shade border (LSB). Phi(PSII) decreased in the illuminated leaf parts with distance from the LSB, while the opposite was observed for nonphotochemical quenching. These effects became most pronounced at low stomatal conductance. They were not observed in heterobaric leaves. The results suggest that plants with homobaric leaves can benefit from lateral CO2 flux, in particular when stomata are closed (e.g. under drought stress). This may enhance photosynthetic, instead of nonphotochemical, processes near LSBs in such leaves and reduce the photoinhibitory effects of excess light.
000042744 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000042744 588__ $$aDataset connected to Web of Science, Pubmed
000042744 650_2 $$2MeSH$$aCarbon Dioxide: metabolism
000042744 650_2 $$2MeSH$$aChlorophyll: analysis
000042744 650_2 $$2MeSH$$aDiffusion
000042744 650_2 $$2MeSH$$aFabaceae: anatomy & histology
000042744 650_2 $$2MeSH$$aFabaceae: metabolism
000042744 650_2 $$2MeSH$$aLight
000042744 650_2 $$2MeSH$$aMicroscopy, Fluorescence: methods
000042744 650_2 $$2MeSH$$aPhaseolus: anatomy & histology
000042744 650_2 $$2MeSH$$aPhaseolus: metabolism
000042744 650_2 $$2MeSH$$aPhotosynthesis: physiology
000042744 650_2 $$2MeSH$$aPlant Leaves: anatomy & histology
000042744 650_2 $$2MeSH$$aPlant Leaves: metabolism
000042744 650_2 $$2MeSH$$aSoybeans: anatomy & histology
000042744 650_2 $$2MeSH$$aSoybeans: metabolism
000042744 650_2 $$2MeSH$$aTobacco: anatomy & histology
000042744 650_2 $$2MeSH$$aTobacco: metabolism
000042744 650_2 $$2MeSH$$aVicia faba: anatomy & histology
000042744 650_2 $$2MeSH$$aVicia faba: metabolism
000042744 650_2 $$2MeSH$$aWater: metabolism
000042744 650_7 $$0124-38-9$$2NLM Chemicals$$aCarbon Dioxide
000042744 650_7 $$01406-65-1$$2NLM Chemicals$$aChlorophyll
000042744 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000042744 650_7 $$2WoSType$$aJ
000042744 65320 $$2Author$$achlorophyll fluorescence imaging
000042744 65320 $$2Author$$ahomobaric leaves
000042744 65320 $$2Author$$alateral CO2 flux
000042744 65320 $$2Author$$alight
000042744 65320 $$2Author$$ashade border (LSB)
000042744 65320 $$2Author$$aphotosynthesis
000042744 65320 $$2Author$$aquantum yield
000042744 65320 $$2Author$$astomatal conductance
000042744 65320 $$2Author$$awater use efficiency
000042744 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b1$$uFZJ
000042744 7001_ $$0P:(DE-HGF)0$$aJensen, M.$$b2
000042744 7001_ $$0P:(DE-Juel1)129423$$aWolff, W. F.$$b3$$uFZJ
000042744 7001_ $$0P:(DE-Juel1)129336$$aJahnke, S.$$b4$$uFZJ
000042744 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/j.1469-8137.2005.01605.x$$gVol. 169, p. 779 - 788$$p779 - 788$$q169<779 - 788$$tThe @new phytologist$$v169$$x0028-646X$$y2006
000042744 8567_ $$uhttp://dx.doi.org/10.1111/j.1469-8137.2005.01605.x
000042744 909CO $$ooai:juser.fz-juelich.de:42744$$pVDB
000042744 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000042744 9141_ $$y2006
000042744 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000042744 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000042744 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x1
000042744 970__ $$aVDB:(DE-Juel1)59738
000042744 980__ $$aVDB
000042744 980__ $$aConvertedRecord
000042744 980__ $$ajournal
000042744 980__ $$aI:(DE-Juel1)IBG-2-20101118
000042744 980__ $$aI:(DE-82)080011_20140620
000042744 980__ $$aUNRESTRICTED
000042744 981__ $$aI:(DE-Juel1)IBG-2-20101118
000042744 981__ $$aI:(DE-Juel1)VDB1047