001     42744
005     20180210140104.0
024 7 _ |2 pmid
|a pmid:16441758
024 7 _ |2 DOI
|a 10.1111/j.1469-8137.2005.01605.x
024 7 _ |2 WOS
|a WOS:000234975800015
037 _ _ |a PreJuSER-42744
041 _ _ |a eng
082 _ _ |a 580
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Pieruschka, R.
|b 0
|u FZJ
|0 P:(DE-Juel1)129379
245 _ _ |a Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2006
300 _ _ |a 779 - 788
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a New Phytologist
|x 0028-646X
|0 4600
|v 169
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Gas exchange is generally regarded to occur between the leaf interior and ambient air, i.e. in vertical (anticlinal) directions of leaf blades. However, inside homobaric leaves, gas movement occurs also in lateral directions. The aim of the present study was to ascertain whether lateral CO2 diffusion affects leaf photosynthesis when illuminated leaves are partially shaded. Measurements using gas exchange and chlorophyll fluorescence imaging techniques were performed on homobaric leaves of Vicia faba and Nicotiana tabacum or on heterobaric leaves of Glycine max and Phaseolus vulgaris. For homobaric leaves, gas exchange inside a clamp-on leaf chamber was affected by shading the leaf outside the chamber. The quantum yield of photosystem II (Phi(PSII)) was highest directly adjacent to a light/shade border (LSB). Phi(PSII) decreased in the illuminated leaf parts with distance from the LSB, while the opposite was observed for nonphotochemical quenching. These effects became most pronounced at low stomatal conductance. They were not observed in heterobaric leaves. The results suggest that plants with homobaric leaves can benefit from lateral CO2 flux, in particular when stomata are closed (e.g. under drought stress). This may enhance photosynthetic, instead of nonphotochemical, processes near LSBs in such leaves and reduce the photoinhibitory effects of excess light.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Carbon Dioxide: metabolism
650 _ 2 |2 MeSH
|a Chlorophyll: analysis
650 _ 2 |2 MeSH
|a Diffusion
650 _ 2 |2 MeSH
|a Fabaceae: anatomy & histology
650 _ 2 |2 MeSH
|a Fabaceae: metabolism
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Microscopy, Fluorescence: methods
650 _ 2 |2 MeSH
|a Phaseolus: anatomy & histology
650 _ 2 |2 MeSH
|a Phaseolus: metabolism
650 _ 2 |2 MeSH
|a Photosynthesis: physiology
650 _ 2 |2 MeSH
|a Plant Leaves: anatomy & histology
650 _ 2 |2 MeSH
|a Plant Leaves: metabolism
650 _ 2 |2 MeSH
|a Soybeans: anatomy & histology
650 _ 2 |2 MeSH
|a Soybeans: metabolism
650 _ 2 |2 MeSH
|a Tobacco: anatomy & histology
650 _ 2 |2 MeSH
|a Tobacco: metabolism
650 _ 2 |2 MeSH
|a Vicia faba: anatomy & histology
650 _ 2 |2 MeSH
|a Vicia faba: metabolism
650 _ 2 |2 MeSH
|a Water: metabolism
650 _ 7 |0 124-38-9
|2 NLM Chemicals
|a Carbon Dioxide
650 _ 7 |0 1406-65-1
|2 NLM Chemicals
|a Chlorophyll
650 _ 7 |0 7732-18-5
|2 NLM Chemicals
|a Water
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a chlorophyll fluorescence imaging
653 2 0 |2 Author
|a homobaric leaves
653 2 0 |2 Author
|a lateral CO2 flux
653 2 0 |2 Author
|a light
653 2 0 |2 Author
|a shade border (LSB)
653 2 0 |2 Author
|a photosynthesis
653 2 0 |2 Author
|a quantum yield
653 2 0 |2 Author
|a stomatal conductance
653 2 0 |2 Author
|a water use efficiency
700 1 _ |a Schurr, U.
|b 1
|u FZJ
|0 P:(DE-Juel1)129402
700 1 _ |a Jensen, M.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Wolff, W. F.
|b 3
|u FZJ
|0 P:(DE-Juel1)129423
700 1 _ |a Jahnke, S.
|b 4
|u FZJ
|0 P:(DE-Juel1)129336
773 _ _ |a 10.1111/j.1469-8137.2005.01605.x
|g Vol. 169, p. 779 - 788
|p 779 - 788
|q 169<779 - 788
|0 PERI:(DE-600)1472194-6
|t The @new phytologist
|v 169
|y 2006
|x 0028-646X
856 7 _ |u http://dx.doi.org/10.1111/j.1469-8137.2005.01605.x
909 C O |o oai:juser.fz-juelich.de:42744
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2006
|g ICG
|k ICG-III
|l Phytosphäre
|0 I:(DE-Juel1)VDB49
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)59738
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21