000042749 001__ 42749
000042749 005__ 20240712101045.0
000042749 0247_ $$2WOS$$aWOS:000222473800003
000042749 0247_ $$2Handle$$a2128/765
000042749 037__ $$aPreJuSER-42749
000042749 041__ $$aeng
000042749 082__ $$a550
000042749 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000042749 1001_ $$0P:(DE-Juel1)VDB45939$$aAnttila, T.$$b0$$uFZJ
000042749 245__ $$aModelling the formation of organic particles in the atmosphere
000042749 260__ $$aKatlenburg-Lindau$$bEGU$$c2004
000042749 300__ $$a1071 - 1083
000042749 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000042749 3367_ $$2DataCite$$aOutput Types/Journal article
000042749 3367_ $$00$$2EndNote$$aJournal Article
000042749 3367_ $$2BibTeX$$aARTICLE
000042749 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000042749 3367_ $$2DRIVER$$aarticle
000042749 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v4$$x1680-7316
000042749 500__ $$aRecord converted from VDB: 12.11.2012
000042749 520__ $$aParticle formation resulting from activation of inorganic stable clusters by a supersaturated organic vapour was investigated using a numerical model. The applied aerosol dynamic model included a detailed description of the activation process along with a treatment of the appropriate aerosol and gas-phase processes. The obtained results suggest that both gaseous sulphuric acid and organic vapours contribute to organic particle formation in continental background areas. The initial growth of freshly-nucleated clusters is driven mainly by condensation of gaseous sulphuric acid and by a lesser extent self-coagulation. After the clusters have reached sizes of around 2 nm in diameter, low-volatile organic vapours start to condense spontaneously into the clusters, thereby accelerating their growth to detectable sizes. A shortage of gaseous sulphuric acid or organic vapours limit, or suppress altogether, the particle formation, since freshly-nucleated clusters are rapidly coagulated away by pre-existing particles. The obtained modelling results were applied to explaining the observed seasonal cycle in the number of aerosol formation events in a continental forest site.
000042749 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000042749 588__ $$aDataset connected to Web of Science
000042749 650_7 $$2WoSType$$aJ
000042749 7001_ $$0P:(DE-HGF)0$$aKerminen, V.-M.$$b1
000042749 7001_ $$0P:(DE-HGF)0$$aKulmala, M.$$b2
000042749 7001_ $$0P:(DE-HGF)0$$aLaaksonen, A.$$b3
000042749 7001_ $$0P:(DE-HGF)0$$aO'Dowd, C.$$b4
000042749 773__ $$0PERI:(DE-600)2069847-1$$gVol. 4, p. 1071 - 1083$$p1071 - 1083$$q4<1071 - 1083$$tAtmospheric chemistry and physics$$v4$$x1680-7316$$y2004
000042749 8564_ $$uhttps://juser.fz-juelich.de/record/42749/files/59743.pdf$$yOpenAccess
000042749 8564_ $$uhttps://juser.fz-juelich.de/record/42749/files/59743.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000042749 8564_ $$uhttps://juser.fz-juelich.de/record/42749/files/59743.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000042749 8564_ $$uhttps://juser.fz-juelich.de/record/42749/files/59743.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000042749 909CO $$ooai:juser.fz-juelich.de:42749$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000042749 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000042749 9141_ $$y2004
000042749 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000042749 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000042749 9201_ $$0I:(DE-Juel1)VDB48$$d31.12.2006$$gICG$$kICG-II$$lTroposphäre$$x0
000042749 970__ $$aVDB:(DE-Juel1)59743
000042749 9801_ $$aFullTexts
000042749 980__ $$aVDB
000042749 980__ $$aJUWEL
000042749 980__ $$aConvertedRecord
000042749 980__ $$ajournal
000042749 980__ $$aI:(DE-Juel1)IEK-8-20101013
000042749 980__ $$aUNRESTRICTED
000042749 980__ $$aFullTexts
000042749 981__ $$aI:(DE-Juel1)ICE-3-20101013
000042749 981__ $$aI:(DE-Juel1)IEK-8-20101013