000042765 001__ 42765
000042765 005__ 20190625110558.0
000042765 0247_ $$2DOI$$a10.1071/FP03008
000042765 0247_ $$2WOS$$aWOS:000184873500001
000042765 0247_ $$2altmetric$$aaltmetric:21812872
000042765 037__ $$aPreJuSER-42765
000042765 041__ $$aeng
000042765 082__ $$a580
000042765 084__ $$2WoS$$aPlant Sciences
000042765 1001_ $$0P:(DE-Juel1)VDB23736$$aMinchin, P. E. H.$$b0$$uFZJ
000042765 245__ $$aUsing the short-lived isotope 11C in mechanistic studies of photosynthate transport
000042765 260__ $$aCollingwood, Victoria$$bCSIRO Publ.$$c2003
000042765 300__ $$a831 - 841
000042765 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000042765 3367_ $$2DataCite$$aOutput Types/Journal article
000042765 3367_ $$00$$2EndNote$$aJournal Article
000042765 3367_ $$2BibTeX$$aARTICLE
000042765 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000042765 3367_ $$2DRIVER$$aarticle
000042765 440_0 $$09141$$aFunctional Plant Biology$$v30$$x1445-4408$$y8
000042765 500__ $$aRecord converted from VDB: 12.11.2012
000042765 520__ $$aTracer techniques have been central in studies of transport in plants. In the case of carbon, the only readily available radioactive tracer has been C-14, although C-11 was used for a short time before C-14 could be made. Tracers have usually had to be measured by destructive harvesting of the plant, giving a practical limit to the data resolution in both time and space. A major advantage of the short-lived, positron-emitting tracers, of which C-11 is one example, is that in vivo measurement is possible, giving detailed time series of tracer data in many locations and opening up powerful new techniques of data analysis. Medical applications of these isotopes have utilised both dynamic imaging and time courses of uptake or washout. Unfortunately, few plant biology laboratories have realised the potential of these techniques, possibly because of the large physics infrastructure needed. In this paper we review the concepts behind the use of these short-lived tracers in plant physiology, and illustrate with several cases where C-11 was an essential tool.
000042765 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000042765 588__ $$aDataset connected to Web of Science
000042765 650_7 $$2WoSType$$aJ
000042765 65320 $$2Author$$acarbon-11
000042765 65320 $$2Author$$amodelling
000042765 65320 $$2Author$$aphloem translocation
000042765 65320 $$2Author$$asource-sink interactions
000042765 7001_ $$0P:(DE-HGF)0$$aThorpe, M. R.$$b1
000042765 773__ $$0PERI:(DE-600)1496158-1$$a10.1071/FP03008$$gVol. 30, p. 831 - 841$$p831 - 841$$q30<831 - 841$$tFunctional plant biology$$v30$$x1445-4408$$y2003
000042765 8567_ $$uhttp://dx.doi.org/10.1071/FP03008
000042765 909CO $$ooai:juser.fz-juelich.de:42765$$pVDB
000042765 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000042765 9141_ $$aNachtrag$$y2003
000042765 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000042765 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000042765 970__ $$aVDB:(DE-Juel1)59758
000042765 980__ $$aVDB
000042765 980__ $$aConvertedRecord
000042765 980__ $$ajournal
000042765 980__ $$aI:(DE-Juel1)IBG-2-20101118
000042765 980__ $$aUNRESTRICTED
000042765 981__ $$aI:(DE-Juel1)IBG-2-20101118
000042765 981__ $$aI:(DE-Juel1)ICG-3-20090406