001     42877
005     20190625112100.0
024 7 _ |2 pmid
|a pmid:16029948
024 7 _ |2 DOI
|a 10.1016/j.bios.2005.03.010
024 7 _ |2 WOS
|a WOS:000234644400007
024 7 _ |a altmetric:21812895
|2 altmetric
037 _ _ |a PreJuSER-42877
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biophysics
084 _ _ |2 WoS
|a Biotechnology & Applied Microbiology
084 _ _ |2 WoS
|a Chemistry, Analytical
084 _ _ |2 WoS
|a Electrochemistry
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
100 1 _ |a Meyburg, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB19868
245 _ _ |a N-Channel Field Effect Transistors with Floating Gates for Extracellular Recordings
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2006
300 _ _ |a 1037 - 1044
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |y 7
|v 21
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A field-effect transistor (FET) for recording extracellular signals from electrogenic cells is presented. The so-called floating gate architecture combines a complementary metal oxide semiconductor (CMOS)-type n-channel transistor with an independent sensing area. This concept allows the transistor and sensing area to be optimised separately. The devices are robust and can be reused several times. The noise level of the devices was smaller than of comparable non-metallised gate FETs. In addition to the usual drift of FET devices, we observed a long-term drift that has to be controlled for future long-term measurements. The device performance for extracellular signal recording was tested using embryonic rat cardiac myocytes cultured on fibronectin-coated chips. The extracellular cell signals were recorded before and after the addition of the cardioactive isoproterenol. The signal shapes of the measured action potentials were comparable to the non-metallised gate FETs previously used in similar experiments. The fabrication of the devices involved the process steps of standard CMOS that were necessary to create n-channel transistors. The implementation of a complete CMOS process would facilitate the integration of the logical circuits necessary for signal pre-processing on a chip, which is a prerequisite for a greater number of sensor spots in future layouts.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Action Potentials: physiology
650 _ 2 |2 MeSH
|a Amplifiers, Electronic
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Biosensing Techniques: instrumentation
650 _ 2 |2 MeSH
|a Cells, Cultured
650 _ 2 |2 MeSH
|a Equipment Design
650 _ 2 |2 MeSH
|a Equipment Failure Analysis
650 _ 2 |2 MeSH
|a Membrane Potentials: physiology
650 _ 2 |2 MeSH
|a Microelectrodes
650 _ 2 |2 MeSH
|a Myocytes, Cardiac: physiology
650 _ 2 |2 MeSH
|a Rats
650 _ 2 |2 MeSH
|a Rats, Wistar
650 _ 2 |2 MeSH
|a Reproducibility of Results
650 _ 2 |2 MeSH
|a Sensitivity and Specificity
650 _ 2 |2 MeSH
|a Transistors, Electronic
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a field-effect transistor (FET)
653 2 0 |2 Author
|a complementary metal oxide semiconductor (CMOS)
653 2 0 |2 Author
|a floating gate
653 2 0 |2 Author
|a titanium silicide (TiSi2)
653 2 0 |2 Author
|a extracellular signal recording
653 2 0 |2 Author
|a rat cardiac myocyte
700 1 _ |a Goryll, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5515
700 1 _ |a Moers, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB5547
700 1 _ |a Ingebrandt, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB5728
700 1 _ |a Böcker-Meffert, S.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB11317
700 1 _ |a Lüth, H.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB975
700 1 _ |a Offenhäusser, A.
|b 6
|u FZJ
|0 P:(DE-Juel1)128713
773 _ _ |a 10.1016/j.bios.2005.03.010
|g Vol. 21, p. 1037 - 1044
|p 1037 - 1044
|q 21<1037 - 1044
|0 PERI:(DE-600)1496379-6
|t Biosensors and bioelectronics
|v 21
|y 2006
|x 0956-5663
856 7 _ |u http://dx.doi.org/10.1016/j.bios.2005.03.010
909 C O |o oai:juser.fz-juelich.de:42877
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2006
|g ISG
|k ISG-2
|l Institut für Bio- und Chemosensoren
|0 I:(DE-Juel1)VDB42
|x 0
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 1
|z 381
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)59953
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBN-2-20090406
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBN-2-20090406
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21