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Density depletion profile and solvation free energy of a colloidal particle
in a polymer solution

R. Maassen, E. Eisenriegler, and A. Bringer
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 5 April 2001; accepted 22 June 2001!

The solvation free energy and polymer density depletion profile of a single mesoscopic colloidal
particle in a solution of free nonadsorbing polymer chains are investigated theoretically. Keeping
both the particle to polymer size ratio and the degree of inter-chain overlaparbitrary, we see how
the qualitatively different behavior evolves in the limits of small and large size ratios and of dilute
and semidilute solutions. While most of our results are obtained within a mean-field approach, we
also use a ‘‘renormalized tree approximation’’ to estimate the surface tension and the coefficient of
spontaneous curvature in a Helfrich expansion for large particle to polymer size ratio. There is a
weak maximum in the polymer density profile for arbitrary size ratio. For small size ratio the
maximum can be explained in terms of a minimum in the bulk polymer density correlation function.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1394206#
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I. INTRODUCTION

There is an effective interaction between colloidal p
ticles in a solvent which contains nonadsorbing free polym
chains. Since the chains avoid the space between two c
particles, the unbalanced polymer pressure from outs
pushes the two particles toward each other. This deple
interaction is believed to be important for a variety of inte
esting colloids such as casein micelles,1 red blood cells,2 and
globular proteins.3 It is an example of what is termed ‘‘mac
romolecular crowding’’ in the biophysical chemistr
literature.4,5

The depletion of long flexible polymers near the surfa
of a colloidal particle is an entropic effect and depends i
crucial way on the ratio of the particle and chain sizes and
the degree of overlap between the chains, i.e., on whethe
polymer solution is dilute or semidilute. The simplest syst
for studying both effects is asingle spherical particle or a
singlecylindrical rod with radiusR embedded in a monodis
perse solution of free nonadsorbing polymer chains.

One may characterize the degree of overlap betw
chains byn/n* , wheren is the number density of chains i
the bulk andn* is the density at the onset of overlap,6 and
the size ratio by

r5R/Rx . ~1.1!

HeredR x
2 is the mean square end-to-end distance of a sin

polymer chain in dilute solution without particles, andd de-
notes the spatial dimension. Figure 1 shows various limits
a single spherical or cylindrical particle in a polymer so
tion.

One important limit is aplanar wall, which can be con-
sidered as a particle with infinite radiusR, for which 1/r
vanishes~upper and lower left corners in Fig. 1!. The corre-
sponding bulk-normalized polymer density profileM
5Mpw depends in a crucial way on the inter-chain overla
In the semidilute limitn@n* it reaches its bulk value 1 fo
distancesz from the wall which are of the order of th
5290021-9606/2001/115(11)/5292/18/$18.00
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screening length6–8 ~or mesh-size! j. In the dilute limit n
!n* the corresponding ‘‘healing length’’ forMpw is6,9 of
the order of the end-to-end distance}Rx , introduced below
Eq. ~1.1!.

The behavior is quite different in the opposite limit of
sphere or an infinitely long rod withsmall radiusR, i.e., for
1/r→` ~upper and lower right corners in Fig. 1!, corre-
sponding toR!j,Rx . In this case the healing length o
M5Ms is of the order10 of R. For distancesr from the
center of the sphere~or r' from the axis of the cylinder!
which are much smaller thanj or Rx , the normalized profile
Ms is independentof the overlap and ofj,Rx and only
depends10–14 on r /R ~or r' /R!.

The free energyF it costs to immerse the spherical o
cylindrical particle in the polymer solution also shows qua
tative differences15–18 in the various limits in Fig. 1.

In this paper we study the crossover between these lim
and evaluate the density profileM(r ) and the free energy
costF of the single particle forarbitrary values of the size
ratio and the inter-chain overlap.

An important relation between the two basic physic
quantitiesM andF which applies for arbitrary size ratio an
overlap is the so-called density-pressure identity; see R
14, 19, 20 and Appendix A. For example, for a cylinder
infinite lengthl→` it relates the polymer pressure,

p5
1

S'

d

dR

F

l
, ~1.2!

on the surface of the cylinder with surface areaS'l to the
behaviorM as(r') of the normalized polymer density profil
M(r') near the surface21 via

nR x
1/nM (as)~r'!

~r'2R!1/n 5B
p

kBT
. ~1.3!

Here S'52pR ~or S'54pR2! is the circumference of the
circle ~or the surface area of the sphere! of radiusR of the
cross-section perpendicular to the axis of the cylinder
2 © 2001 American Institute of Physics
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5293J. Chem. Phys., Vol. 115, No. 11, 15 September 2001 Density depletion profile
three~or four22! dimensions,r' is the distance ofr from the
axis, n is the Flory exponent6–8 and B is a universal
amplitude.20,23 The denominator (r'2R)1/n on the left-hand
side cancels ther'-dependence21 of M (as), and both sides in
Eq. ~1.3! only depend onR,Rx , andn. The identity is free
of microscopic parameters and no proportionality fact
have been omitted.

The universal properties6–9 of long flexible polymers in
a good solvent that interact with an embedded nonadsor
mesoscopic colloidal particle can be calculated from
simple model in which each polymer molecule is represen
by a ‘‘spring and bead’’ chain. Each bead is pointlike and
excluded from the space occupied by the particle, and be
of the same chain or of different chains repel each othe
microscopic distances. Despite the simplicity of the mo
the conformational statistics of the polymers forarbitrary
size ratio and overlap is quite complex, and one has to re
to approximations, as in integral-equation bas
approaches.24 In earlier work of this type alinear25 increase
of M (as) with distancer'-R or r -R from the particle surface
was reported. However, Fuchs and Schweizer26 recently
made an ansatz for the effective bead-particle repulsion w
a mesoscopicrange to describe the change of polymer co
formations near the particle surface which implies aqua-
dratic increase. This is consistent with a valuen51/2.

In this paper we calculateM and F for arbitrary size
ratio and inter-chain overlap for the dimensiond542e of
the polymer-embedding space22 close to the upper critica
dimensiond54. We consider the leading order results f
e↘0 which are determined by the tree~or mean-field! ap-
proximation. Thissystematicapproach leads in a transpare

FIG. 1. Various limits of a single spherical particle or a single cylindric
rod in a solution of nonadsorbing polymers. The sphere or rod becom
planar wall for vanishingRx /R ~i.e., for points on the vertical axis!, and
becomes a ‘‘small’’ sphere or a ‘‘thin’’ rod with a radius much smaller th
the characteristic polymer lengths~such as the root mean square end-to-e
distance}Rx in the dilute solution or the mesh-sizej in the semidilute
solution! as Rx /R becomes large with the inter-chain overlapn/n* kept
fixed. The following limits are shown: planar wall in a dilute solution~lower
left corner!, planar wall in a semidilute solution~upper left corner!, small
sphere or a thin rod in a dilute solution~lower right corner!, and small
sphere or a thin rod in a semidilute solution~upper right corner!.
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s

ng
a
d

s
ds
at
l

rt
d

th
-

way to instructive results. In particular, the density-press
identity follows without any further assumptions. The mea
field results are useful, since most of the qualitative featu
in d near 4 presumably persist down tod53. Moreover we
will use mean-field scaling functions to construct for some
the observables a ‘‘renormalized tree approximation’’ whi
works directly in three dimensions.

For illustration we recall known analytical mean-fie
results valid for some of the limiting cases in Fig. 1 for a
infinitely long cylinder ~rod! in four dimensions.~i! For
smallradiusR (r→0) the normalized density profile and th
free energy cost per unit axis lengthl are given by12,13

M5S 12
R

r'
D 2

; R,r'!Rx ,j ~1.4!

and

F

kBTl
52pnRR x

2 . ~1.5!

These expressions apply forarbitrary overlapn/n* . ~ii ! In
the mean-field approximation adilute polymer solution
(n/n* →0) corresponds to a solution of ideal chains witho
excluded volume interaction between monomers. The f
energy cost per unit axis lengthl for arbitrary size ratior
is13,15

F

kBTl
52pnRR x

2S 112A2

p
r1

2

3
r2D . ~1.6!

The profileM, which is also known for this case,27 and the
free energy cost Eq.~1.6! satisfy28 the density-pressure iden
tity and reduce, forr→0, to the thin cylinder expressions i
~i!.

Analytical mean-field results for large radius~planar
wall! are also available in thesemidilutelimit 6,19 and will be
mentioned in Sec. II E. No analytical mean-field results se
to be known for the dilute–semidilute crossover in the pla
wall limit ~vertical axis in Fig. 1! and for the crossover in
size ratio in the semidilute limit~horizontal line for large
n/n* !.

After the mean-field treatment in Sec. II, we discuss
Sec. III the overlap-dependence of the surface tension
planar wall and of the coefficient of spontaneous curvature
a Helfrich expansion29 using a ‘‘renormalized tree approxi
mation.’’ Our results are summarized in Sec. IV. Technic
details that can be skipped in a first reading are relegate
Appendices A–E.

II. MEAN-FIELD APPROACH CLOSE TO FOUR
DIMENSIONS

A. Epsilon expansion and mean-field equations

The self-consistent mean-field approximation for po
mer solutions also goes under the names of the rand
phase or tree approximation.6,8 In this approximation the
mean square end-to-end distancedR x

2 of a singlechain with
N segments takes the ideal-chain form, where

R x
252Nl2[2L, ~2.1!

l
a
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andl is an effective segment size. The osmotic pressureP of
a solution ofoverlappingchains takes the Flory–Huggin
form

P/~kBT!5n~11S/2!, ~2.2!

with

S5bN2n. ~2.3!

Herebd(r J, j2rK,k) models the excluded volume interactio
per kBT between monomerj of chainJ and monomerk of
chainK.

In the following we consider a polymer-embeddin
space of dimensiond542e. To leading order in the
e-expansion the polymer solution displays mean-field beh
ior, with the interaction constantb replaced by its fixed poin
value7,8,22,30

b5bFP[2p2e l 4, ~2.4!

and the quantityS in Eqs.~2.2! and ~2.3! is given by8,30

S5e
p2

2
s4

(x)5
n

n*
. ~2.5!

Here

sd
(x)5~Rx!

dn ~2.6!

characterizes thegeometricaloverlap between chains, and

n* [~A2!215S e
p2

2
R x

4D 21

, ~2.7!

where A25bFPN
2, the second virial coefficient of the os

motic pressure, is a convenient quantity marking the cro
over between dilute (n!n* ) and semidilute (n@n* )
behavior.31 In 42e dimensional space with smalle, two
polymer chains rarely cross,8 and the chain density in th
crossover region (n'n* ) corresponds to a very large ge
metrical overlapsd

(x) of order 1/e.
We now turn to the case of a polymer solution with

imbedded mesoscopic particle or wall, in which the mon
mer densityNnM(r ) becomesr -dependent. On replacin
the excluded volume interaction by a configuratio
independent external potential perkBT given bybNnM(r )
and acting on each chain-monomer, the mean-field appr
mation reduces the many-chain problem to the problem
one ideal chain in a potential to be determined se
consistently.

To calculateM(r ) in Eq. ~2.12!, we need the partition
function Z(L8,r ) of a chain with a polymerization inde
N85L8/ l 2 smaller thanN and with one end fixed atr . This
is determined by a diffusion-type equation6,32

S ]

]L8
2D r1V~r ! DZ~L8,r !50, ~2.8!

where

V~r !5 l 22bNnM~r !5~S/L !M~r !, ~2.9!

with the ‘‘initial condition’’

Z~L850,r !51 ~2.10!

and the boundary condition
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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Z~L8,r→S!→0 ~2.11!

on the particle surfaceS. The bulk-normalized polymer den
sity profile of the ideal chains is given by6

M~r !5
1

L
eSE

0

L

dL9Z~L9,r !Z~L2L9,r !. ~2.12!

Note that for r far from the particle or wall,Z(L8,r ) ap-
proaches ther -independent valuee2bNN8n, so thatM(r )
approaches 1.

In the mean-field approximation the free energy cosF
of immersing the particle is also determined byM and is
given by

F

kBT
5V

P

kBT
1nE dr H 12M~r !1

S
2

@12M 2~r !#J ,

~2.13!

as we show in Appendix B. HereV is the volume occupied
by the particle, and the integral extends over the volu
outside the particle. Note that theM-dependent terms in the
integrand have the form of the bulk-pressure in Eqs.~2.2!,
~2.3!, with the polymer density in the bulkn replaced by the
local densitynM(r ).

B. Spherical and cylindrical particles

The closed system of Eqs.~2.8!–~2.12! determining
M(r ) and Eq. ~2.13! for F apply to arbitrary particle
shapes. For a sphere or an infinitely long cylinder,M(r ) and
Z(L8,r ) only depend on the distancer from the center of the
sphere or on the distancer' from the axis of the cylinder.

A useful concept is a ‘‘generalized cylinder’’13,16 with
an ‘‘axis’’ of di dimensions and with the remainingd2di

5d' dimensions perpendicular to the axis. The outer sp
of the generalized cylinder is determined by distancesr'

from the axis larger than its ‘‘radius’’R. For di50 the gen-
eralized cylinder becomes a sphere. Fordi51 andd53 it is
a cylinder of radiusR, and fordi52, d53 it is a plate of
thickness 2R in three dimensions. Below we shall consider
generalized cylinder ind542e dimensions with

di512e, d'53, ~2.14!

which tends fore↘0 to a cylinder ind54 dimensions and
for e↗1 to a sphere ind53 dimensions. Another route
leading to a sphere in three dimensions is given bydi50,
d'542e. Although either of the two routes can be used
estimate excluded volume effects inM or F for a sphere in
d53, we prefer the route in Eq.~2.14! because of the bette
starting value for the small radius33 exponentd'2 (1/n). In
this section we determine theleading order results neard
54, for which the tree- or mean-field approximation applie
Although the leading order results lead to estimates for s
ing functions ind53 with only moderate quantitative suc
cess, they demonstrate in a transparent way fundame
properties, such as the density-pressure identity Eq.~1.3! or
the small radius expansion,13,16which should apply along the
whole route. For more accurate quantitative estimates fod
53 see Sec. III below.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



n-
It

of

un

x

i

io

r

sur-
por-

g
l

tity
e
in

-

is

the

rre-

5295J. Chem. Phys., Vol. 115, No. 11, 15 September 2001 Density depletion profile
According to Eqs.~2.8!–~2.12! in mean-field approxima-
tion the functionsZ(L8,r ), V(r ), andM(r ), for34 given R,
L, andS, only depend onr' andd' and are independent35 of
r i and di . On using route Eq.~2.14!, one finds that the
scaling functionm of the density profile36

M~r !5mdS r'2R

Rx
,

R

Rx
,

n

n* D ~2.15!

to leading order ind↗4 equals the corresponding mea
field scaling function for a sphere in three dimensions.
explicit form is obtained in Subsections E, F, G below.

In order to obtain a finite free energy of immersionF we
have to consider a generalized cylinder with an ‘‘axis’’
large but finite extent or ‘‘volume’’

Vi5v~l/2,di! ~2.16!

which is characterized by a large radiusl/2. Here

v~l/2,d![VdE
0

l/2

drr d215~l/2!dpd/2@G~11d/2!#21

~2.17!

is the volume of a sphere with radiusl/2, and Vd is the
surface area of a sphere with radius 1, ind dimensions. Note
that

Vi5l,1 for di51,0. ~2.18!

In the mean-field approximation the free energy cost per
‘‘axis-volume’’ Vi and perkBT, F/(kBTVi), follows from the
right hand side of Eq.~2.13! on replacingV by the cross-
sectional volumeV'5v(R,d') and the integration*dr by
an integration*dr' over that part of the ‘‘plane’’r i50 per-
pendicular to the axis which is outside the particle:

F→F/Vi : V→V' ; E dr→E dr' , r'.R.

~2.19!

Since end effects can be neglected forR,Rx!l, and since
the mean-field profileM(r ) is independent ofr i ,di , the free
energy cost per unit axis volume in the mean-field appro
mation Eqs.~2.13!, ~2.19! only depends ond' and is inde-
pendent ofdi .13,16For the case of route Eq.~2.14!, in which
for dimensional reasons36

F

kBTVi
5nR x

3f dS R

Rx
,

n

n* D , ~2.20!

the scaling functionf d in leading orderd↗4 equals the
corresponding mean-field scaling function for a sphere
three dimensions.

Figure 2 shows numerical results for the scaling funct
f 4 versus the size ratior5R/Rx , for various values of the
overlap variableS5n/n* . The numerical procedure fo
solving Eqs.~2.8!–~2.12! is described in Appendix C. Note
the S-independent behaviorf 4→2pr for small size ratior
which is in agreement with Eq.~1.5!. For large size ratio,
f 45(4p/3) r3(11S/2), in agreement with Eq.~2.28! below.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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C. Density-pressure identity

The pressure exerted by the polymers onto a given
face element of an embedded mesoscopic particle is pro
tional to the local polymer densitynM (as)(r ) near the sur-
face element.19,20 With the density taken from the scalin
regime,21 the factor of proportionality involves a universa
constantB, which can be calculated and leads to the iden
Eq. ~1.3!. In Appendix A we prove the identity for the cas
d↗4, i.e., within the mean-field or tree approximation,
which

1/n52, B52. ~2.21!

For the generalized cylinder the pressurep acts on a surface
S with magnitudeS'Vi and with the surface-normal perpen
dicular to the axis. Thus the identity Eq.~1.3! reads

M~r'↘R!5M as~r'!52S r'2R

Rx
D 2 p

nkBT
, ~2.22!

with

p5
1

S'

d

dR

F

Vi
. ~2.23!

HereS'5Rd'21Vd'
andVd52pd/2/G(d/2). In particular,

S'54pR2, d'53 ~2.24!

for the case of a cylinder of type of Eq.~2.14! in which d'

53, andS'52 for the case of a plate in whichd'51.
Figure 3 shows numerical results forp/(nkBT) as a

function of the size ratioR/Rx for various values of the
overlapS.

D. Number of missing chains

A simple way to quantify the polymer depletion effect
by considering the decrease^dN & of the number̂ N & of
chains in the monodisperse polymer solution on inserting

FIG. 2. Scaled solvation free energyF/(ViR x
3nkBT) vs size ratio r

5R/Rx for various values of the inter-chain overlapS5n/n* . Shown is the
scaling functionf 4 @Eq. ~2.20!# for a cylinder of infinite lengthVi5l→` in
d54 dimensions. This also furnishes a qualitative estimate of the co
sponding scaling functionf 3 for a sphere (Vi51) in d53 dimensions. Note
the crossover from the overlap-independent result 2pr for small r @Eq.
~1.5!# to the result (4p/3) r3(11S/2) for larger @Eq. ~2.28!#.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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nonadsorbing particle. In a grand canonical ensemble w
chain fugacityz, the number decrease per unit axis ‘‘vo
ume’’ is given by

^2dN &/Vi5z
d

dz (N51

`
zN

N!
~@Z c

(N)#no particle2Z c
(N)!/Vi

5z
d

dz

F/Vi

kBT

5nS V'1E
r'.R

dr'@12M~r'!# D . ~2.25!

HereZ c
(N) is the connected part of the partition function

FIG. 4. Scaled number of missing chains^2dN&/(VinR x
3) vs size ratio

r5R/Rx for various values of the interchain overlapS @compare Eq.
~2.25!#. The result shown is for a cylinder ind54 dimensions with axis
lengthVi5l. It also gives a qualitative estimate for the case of a spher
particle in d53 in which Vi51. Note the crossover from the resu
2pr/(11S) for small r @Eq. ~2.44!# to the overlap-independent behavio
(4p/3) r3 for larger @Eq. ~2.38!#.

FIG. 3. Scaled polymer-pressurep/(nkBT) on the surface of a cylindrica
rod in d54 dimensions as a function of the size ratior5R/Rx for various
values of the overlapS. This result also furnishes a qualitative estimate
the pressure on the surface of a spherical particle ind53 dimensions. Note
the crossover from theS-independent behavior 1/(2r2) for small r @Eqs.
~1.5!, ~2.23!, ~2.24!# to the r-independent behavior 11S/2 for large r
@Eq. ~2.29!#.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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N chains. The relationship betweenz andn in the mean-field
approximation is given in Eqs.~B4! and~B6! of Appendix B.

Figure 4 shows the number^2dN & of missing chains as
a function of the size ratior5R/Rx for various values of the
overlap variableS. Analytic expressions for̂2dN & in the
special casesR@Rx andR!Rx will be given in subsections
E and F below.

E. Planar wall and large particle

Consider a large particle with a smooth surface and w
all local principal radiiRi of surface-curvature much large
than the polymer lengths. Then one expects16,29 a small-
curvature expansion of the Helfrich type

F5V P1E dS@s1kKm1 . . . # ~2.26!

for the free energy of immersionF. Here

Km5
1

2 (
i 51

d21
1

Ri
~2.27!

is proportional to the local mean surface-curvature, and
coefficientss and k, which denote the surface tension an
the coefficient of spontaneous curvature, respectively, are
dependent of the shape of the weakly curved surface.

For the generalized cylinder Eq.~2.26! reduces to

F

Vi
5V'P1S'Fs1

d'21

2

k

R
1 . . . G , ~2.28!

and Eq.~2.23! leads to a pressure

p5P1~d'21!
s

R
1

~d'21!~d'22!

2

k

R2 1 . . . ~2.29!

on the surface with surface normal perpendicular to the a
Here we have used relations such asdV' /dR5S' . The
form

s5nkBTE
0

`

dzS 12Mpw~z!1
S
2

@12Mpw
2 ~z!# D ~2.30!

of the surface tensions follows from a comparison of Eqs
~2.13! and ~2.26! for the case of a half space with a plan
wall surface in which all the 1/Ri vanish.37 Here z denotes
the distance of pointr from the planar wall. Sinces is posi-
tive, we conclude from Eq.~2.29! that a weakly curved con
vex surface~such as the surface of a spherical or cylindric
particle with large but finite radiusR! experiences alarger
pressurep from the polymer chains than a planar wall~with
R5`!. This is in accordance with the smaller entropy loss
polymer chains near a convex surface. See also Fig. 3
Eq. ~2.37! below.

The scaling form of the surface tension,

s

kBT
5nRxg~S!, ~2.31!

follows from Eqs.~2.30! and ~2.15!. In the dilute17 and se-
midilute limit one finds38 the analytic expression

l
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g~S!→SA2

p
@11S l11O~S 2!#,

2

3
S 1/2D ,

~2.32!S→~0, `!

with

l15
5A5

3
2

12&

5
50.333. ~2.33!

Figure 5 shows the scaling functiong(S) for arbitrary S,
which we have obtained numerically from Eqs.~2.8!–~2.12!
and ~2.30!.

For the coefficient of spontaneous curvature one find38

k

kBT
5nR x

2h~S!, ~2.34!

with

h~S!→~ 1
2 1S l2 , 1

3 @4 ln 221# !, S→~0, `!,
~2.35!

where

l25
1

8 F192
1

p S 171
75

2
arctan 2D G50.047. ~2.36!

FIG. 6. Scaling functionh(S) of the coefficientk5kBTnR x
2h of the spon-

taneous curvature in the mean-field approximation@Eqs.~2.28! and~2.34!#.
The dotted and dashed lines show the asymptotic behavior for small
largeS, respectively, see Eq.~2.35!.

FIG. 5. Scaling functiong(S) of the surface tensions5kBTnRxg in the
mean-field approximation@Eq. ~2.31!#. The dotted and dashed lines sho
the asymptotic behavior for small and largeS, respectively, see Eq.~2.32!.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
Figure 6 shows the scaling functionh(S) for arbitrary S,
which we have obtained numerically.

Now let us turn to the normalized monomer density p
file M near a planar wall or near a generalized cylinder
large radiusR. For r close to the surface the density pressu
identity Eq.~2.22! predicts

M~r'↘R!5M (as)~r'!

52S r'2R

Rx
D 2F11

S
2

1~d'21!
Rx

R
g~S!

1
~d'21!~d'22!

2 S Rx

R D 2

h~S!1 . . . G .
~2.37!

Here we have inserted the pressurep given by Eq.~2.29! and
by Eqs.~2.2!, ~2.31!, and~2.34! into the identity Eq.~2.22!.
Figures 7 and 8 show that the numerically determined pro

nd

FIG. 7. Density-pressure identity for a planar wall@see Eq.~2.37! with r'

2R5z finite andR5`#. The amplitudeM asR x
2/(2z2) of the density pro-

file M5Mpw ~circles! reproduces the scaled osmotic pressureP/(nkBT)
511S/2 ~full line! very well.

FIG. 8. Contribution of the surface tension to the density-pressure iden
for a weakly curved surface of a cylinder@see Eq.~2.37! with d'53#. The
limit lim R/Rx→` (R/(2Rx)) @@M (as)R x

2/(2(r'2R)2)# 2(11 (S/2))# taken
from the density profile near the surfaceM (as) is well approximated by the
value forR/Rx5100 ~circles! and reproduces the scaling functiong(S) of
the surface tension~full line!.
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M for a cylinder of type Eq.~2.14! with d'53, d↗4 and a
large radiusR does indeed fulfill the density-pressure ide
tity Eq. ~2.22!.

Besides this numerical check, we have also checked
~2.22! analytically. In Appendix E we show that in the sem
dilute limit S→` the expressionsS/2 and 2

3 S 1/2 of, respec-
tively, P/(nkBT) andg do indeed appear in the asymptot
profile M (as), in accordance with Eq.~2.37!.

In the dilute limit S→0 and the semidilute limitS→`
the normalized density profilesMpw near aplanar wall are
known in analytic form.9,19,39 In particular, forS→`, Mpw

5Tanh2(S 1/2z/Rx), and the number of missing chains nea
large particle per unit surface area is given by

F ^2dN &/Vi2n
4p

3
R3G /~4pR2!

5nRx@~2/p!1/2,S 21/2#, S→@0,̀ #. ~2.38!

Note that the distancej I
(pw) from the planar wall of the poin

of inflection ofMpw is also proportional toRx andRx /S 1/2

for S→0 andS→`, respectively.

F. Thin cylinder and small sphere

Here we consider the caseR!Rx ,j, in which the radius
R of the cylinder Eq.~2.14! in d↗4 is much smaller than the
characteristic mesoscopic polymer lengths. The result
~1.5! for the solvation free energy of a thin cylinder ind
54 is based on a reduction factor

Wcyl@r P, j #→12Aid~d'!Rd'22R x
2E dr iQ~r'50,r i!

~2.39!

of the Boltzmann weight for chain configurations. Here

Q~r' ,r i!5 (
P51

N
1

N (
j 51

N

d~r';P, j2r'!d~r i ;P, j2r i! ~2.40!

is the configuration dependent density of chains at the p
r5(r' ,r i), the vectorr P, j is the position of monomerj in
chainP, andAid(d'53) equals13,16,232p. Equations~2.39!,
~2.40! can also be used to evaluate the normalized den
profile M(r') for the caseR!r' ,Rx ,j. This is given by

M~r'!5^Q~r' ,r i!&cyl /n→122pRR x
2

3E dr 8i^Q~r' ,r i!Q~0,r 8i!&c,bulk /n

5122pRR x
2E d3p

~2p!3 eipr'
D~p2L !

11SD~p2L !
, ~2.41!

whereD is the Debye function

D~x!52~e2x211x!/x2. ~2.42!

In the last step in Eq.~2.41! we inserted the tree expressio
of the bulk density correlation function8 and usedd'53. In
the limit R!r'!Rx ,j, the above expression reduces to

M~r'!→122pRR x
2E d3p

~2p!3 eipr'
2

p2L

5122R/r' . ~2.43!
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Equation~2.43! is consistent with the right hand side of E
~1.4!, which describes the behavior ofM(r') close to the
surface of the cylinder Eq.~2.14!, i.e., forR,r'!Rx ,j. The
profile in thesemidilutelimit for R!r' ,j!Rx is given in
Eqs. ~E16! and ~E17! of Appendix E. Figure 9 shows ou
numerical result for the density profile of a thin cylinder
semidilute solution which smoothly interpolates between
limits of Eqs.~1.4! and ~E16!.

The expressions for the cylinder Eq.~2.14! in Eqs.~1.4!
and~1.5! obey the density-pressure relations Eqs.~2.22! and
~2.23!. InsertingF/(kBTl)52pnRR x

2 into Eq. ~2.23! with
Vi5l and withS' from Eq. ~2.24! leads in Eq.~2.22! to an
expressionM (as)(r')5(r'2R)2/R2, which is consistent
with the expression Eq.~1.4!. Apart from the trivial linear
n-dependence ofF these expressions are independent of
inter-chain overlap. This contrasts with the number of mi
ing chains due to the presence of a thin cylinder or a sm
sphere,

^2dN &/Vi52pnRR x
2/~11S!, ~2.44!

which follows from Eqs.~2.25! and ~2.41! and has a non-
trivial dependence on the overlapS.

G. Form of the density profiles

Figure 10 shows our numerical results for the dens
profiles Mpw of a planar wall versus the scaled distan
(r'2R)/Rx5z/Rx for various values of the overlapS. Fig-
ure 11 shows the distancej I

(pw)5zI of the point of inflection
from the wall as a function ofS. This should be compared
with31 the density correlation lengthjD of the bulk solution
which is also indicated in Fig. 11.

FIG. 9. The mean-field density profile around a thin cylinder in a semidil
solution near four dimensions provides a qualitative estimate for the den
profile around a small sphere in a semidilute solution in three dimensi
The full curve shows numerical data for the length ratiosR:j:Rx

51:10:100 which interpolate smoothly between the limiting behaviors E
~1.4! and ~E16! which are also shown.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Using a lattice-walk model32 for polymers at theu point,
van der Guchtet al.40 found that the density profilesMpw

approach their bulk value 1 in anonmonotonicoscillatory
way. Similar behavior was found in a recent Monte Ca
simulation of self avoiding lattice walks by Bolhuiset al.41

Our continuum mean-field theory for polymers in a go
solvent near the upper critical dimension predicts a sim
nonmonotonic behavior as shown in Fig. 12. The most p
nounced maximum, which arises for an overlapS'5, is
nearly twice as large as the largest maximum shown in R
40 and less than a third of the largest maximum in Ref.
The scaled distancezmax/Rx of the first maximum from the
wall decreases with increasing overlap, as shown in Fig.
However, the decrease is much slower than that of ei
j I

pw/Rx or jD /Rx . This is also in qualitative agreement wit
the behavior reported in Refs. 40, 41.

Now we turn to the density profiles near a cylinder
finite radius. Figure 14 shows the distancej I5(r') I2R of
the point of inflection from the surface of the cylinder vers

FIG. 10. Bulk-normalized density profilesMpw for a planar wall vs the
scaled distancez/Rx from the wall for various values of the inter-chai
overlapS.

FIG. 11. Scaled distancej I
(pw)/Rx from the planar wall of the point of

inflection of the density profile vs the inter-chain overlapS ~circles!. The
overlap-dependence of the bulk density correlation length~Ref. 31! jD with
an adjusted prefactor is shown for comparison~full line!.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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the size ratior5R/Rx for various values of the overlapS.
For R!Rx all the curves merge to approach the overla
independent valuej I→R/2, corresponding to the point o
inflection in Eq.~1.4!.

The maximum ofM found in the planar wall case per
sists for finiter5R/Rx , although its height decreases wi
decreasingr, as seen in Fig. 15. Note that the highest ma
mum for givenr is always atS'5, independent of the value
of r. Note also that the distance of the maximum from t
surface divided byRx only depends onS and is nearly in-
dependent of the size ratior, i.e., the plot of Fig. 13 applies
not only for r5` but also for arbitraryr. The maximum
persists all the way down to small size ratior!1, see the
circles in Fig. 16, and it is correctly reproduced by42 the
small radius expansion Eq.~2.41!, which is shown as the full
line in Fig. 16.

FIG. 12. Nonmonotonic behavior of the density profiles near a planar w
Note the enlarged scale of the vertical axis. The most pronounced maxim
occurs for an overlap ofS'5 and is about twice as large as the large
maximum shown in Ref. 40 and less than a third of the largest maximum
Ref. 41.

FIG. 13. Scaled distancezmax/Rx of the maximum of the density profile
from the planar wall vs the inter-chain overlapS. Note that this distance
decreases much more slowly with increasing overlap thanj I

(pw)/Rx and
jD /Rx in Fig. 11.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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III. RENORMALIZED TREE APPROXIMATION IN THREE
DIMENSIONS

The mean-field discussion in Sec. II is a first step tow
obtaining thequalitative dependencies of various scalin
functions on the size ratio and the inter-chain overlap.
now show that semi-quantitative results may be obtaine
with the renormalization group. On mapping the ‘‘critica
polymer system of interest with its long chains and lar
mesh size onto a ‘‘noncritical’’ system where mean-fie
theory applies approximately, we obtain scaling functio
with the correct power-law exponents in three dimensio
These differ from the mean-field expressions.

Following the well known path of field theoreti
renormalization,7–9 one reparameterizes43 the three basic
variables b,N,n in terms of ‘‘renormalized’’ variables
ur ,Lr ,nr , where

b/ l 45~4p!d/2meZuur /3, ~3.1!

FIG. 14. Scaled distancej I /Rx of the point of inflection of the density
profile from the surface of a cylinder vs the size ratior5R/Rx , for various
values of the inter-chain overlapS. For small r the scaled distance ap
proaches the overlap-independent behaviorr/2 corresponding to the point o
inflection in Eq.~1.4!.

FIG. 15. Height of the maximum in the density profile near a cylindrical r
vs the inter-chain overlapS, for various values of the size ratior5R/Rx .
The highest maximum for givenr is always atS'5, independent of the
value ofr.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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Nl25m22Lr /Zt , ~3.2!

n5mdnr , ~3.3!

and Zu ,Zt are renormalization factors. Since the inver
length scale parameterm is arbitrary, one obtains a one
parameter family of renormalized theories. On changing
inverse length scalem→e2lm, a critical polymer system
with Lr large andnrLr small is mapped onto a noncritica
one,8,9 with

Lr→L̄ r~l!5DL~ur !Lre
2l/n, ~3.4!

nr→n̄r~l!5nre
dl, ~3.5!

where the dimensionless renormalized density correla
length44 is of order 1, and withur→ur ,FP approaching the
infrared-stable fixed point valueur ,FP. HereDL is a nonuni-
versal amplitude which depends on the strengthur of the
excluded volume interaction. For the end-to-end distanceRx

of a chain in dilute solution and for the osmotic pressure,
surface tension, and the coefficient of spontaneous curva
for arbitrary inter-chain overlap, the mapping yields8,9

R x
25m22X~Lr ,ur !5m22e2lX~ L̄ r ,ur ,FP!, ~3.6!

P

nkBT
5P~nr ,Lr ,ur !5P~ n̄r ,L̄ r ,ur ,FP!, ~3.7!

s

nkBT
5m21Q~nr ,Lr ,ur !5m21elQ~ n̄r ,L̄ r ,ur ,FP!,

~3.8!

k

nkBT
5m22T ~nr ,Lr ,ur !5m22e2lT ~ n̄r ,L̄ r ,ur ,FP!.

~3.9!
The noncritical manifold is chosen so that8,45

r0

L̄ r

1z0n̄r L̄ r51, ~3.10!

wherer0 andz0 are constants46 of order 1. The condition Eq
~3.10! interpolates44 betweenL̄ r5O(1) in the dilute limit
andL̄ r /(n̄r L̄ r

2)}L̄ r /S̄5O(1) in the semidilute limit, i.e., the
length scale is set by the end-to-end distance and the co
lation or screening length,31 respectively.

FIG. 16. Density profile with a maximum for a cylinder withR!Rx

~circles!. The maximum is well reproduced~full line! by the minimum in the
bulk density correlation function on using the small radius expansion@see
Eqs.~2.41! and ~2.42!#.
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For the noncritical state the functionsX, P, Q, T can be
approximated by their tree expressions

X~ L̄ r ,ur ,FP!'Xtree~ L̄ r ,ur ,FP!52L̄ r , ~3.11!

P~ n̄r ,L̄ r ,ur ,FP!'Ptree~ n̄r ,L̄ r ,ur ,FP!511 1
2 aL̄r

2n̄r ,
~3.12!

Q~ n̄r ,L̄ r ,ur ,FP!'Qtree~ n̄r ,L̄ r ,ur ,FP!

5~2L̄ r !
1/2g~aL̄r

2n̄r !, ~3.13!

T ~ n̄r ,L̄ r ,ur ,FP!'Ttree~ n̄r ,L̄ r ,ur ,FP!52L̄ rh~aL̄r
2n̄r !,

~3.14!

where

a5 1
2 ~4p!3/2u* 58.11 ~3.15!

in d53. HereaLr
2nr follows from S5bN2n in Eq. ~2.3! on

using the reparameterization Eqs.~3.1!–~3.3!, dropping the
ensuingZ-factorsZu /Zt

2 which is consistent within the tre
approximation, and using the fixed-point valueur ,FP5

3
2 u*

with u* 50.364 ind53 dimensions, given in Eq.~13.4! of
Ref. 8. The functionsg and h are our mean-field scaling
functions from Eqs.~2.31!, ~2.32!, and Fig. 5 and from Eqs
~2.34!, ~2.35!, and Fig. 6.

For the end-to-end distanceRx of a chain in a dilute
solution,nr vanishes, and the flow condition Eq.~3.10! be-
comesL̄ r5r0 . Thus Eq.~3.4! leads toe2l5(DLLr /r0)2n,
and Eqs.~3.6! and ~3.11! to the relation

1
2 ~mRx!

25r0
122n~DLLr !

2n. ~3.16!

We now evaluate the scaling functions for the osmotic pr
sure, the surface tension, and the coefficient of spontan
curvature. Here it is advantageous to use the first term in
~3.10!,

r0

L̄ r

5v, ~3.17!

as an intermediate variable8 v. Note thatl drops out of the
combination,

~12v !/vdn215z0r0
2dn11nr~DLLr !

dn

5z0r0
2 ~d/2! 11n~Rx /& !d. ~3.18!

In the last step Eqs.~3.16! and~3.3! have been used. In thre
dimensions the mean square radius of gyrationR g

2[3Rg,x
2 is

equal toR x
2/2, to a very good approximation,7 and the usual

geometrical overlaps3[s equals

s[nR g
3'n~Rx /& !3[s3

(x)/~2& !. ~3.19!

Thus, in three dimensions the intermediate variable
~3.17! is related to the geometrical overlap via

~12v !/v3n215z0r0
21/2s. ~3.20!

Since

aL̄r
2n̄r5

ar0

z0
S 1

v
21D , ~3.21!

one finds from Eqs.~3.7!, ~3.12! the osmotic pressure,
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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P

nkBT
511

1

2

ar0

z0
S 1

v
21D . ~3.22!

For the surface tension in Eqs.~3.8!, ~3.13! and the coeffi-
cient of spontaneous curvature in Eqs.~3.9!, ~3.14!, we also
need

~2L̄ r !
1/25~2r0!1/2v21/2, ~3.23!

which follows from Eq.~3.17!, and

m21el5m21S v
DLLr

r0
D n

5vn~2r0!21/2Rx , ~3.24!

where Eqs.~3.17!, ~3.4! and Eq.~3.16! have been used in th
last two steps. This leads to

s

nkBT
5R xv

n21/2gS ar0

z0
S 1

v
21D D ~3.25!

and

k

nkBT
5R x

2v2n21hS ar0

z0
S 1

v
21D D . ~3.26!

In the special cases of small and large overlap Eq.~3.20!
implies

P

nkBT
→S 11

1

2
ar0

1/2s,
1

2

ar0

z0
S z0s

r0
1/2D 1/(3n21)D ,

s→~0,̀ ! ~3.27!

for the osmotic pressure in Eq.~3.22!,

s

nkBTRx
→SA2

pS 11Far0
1/2l12z0r0

21/2S n2
1

2D GsD ,

2

3 S ar0

z0
D 1/2S z0s

r0
1/2D ~12n!/~3n21!D , s→~0,̀ !

~3.28!

for the surface tension in Eq.~3.25!, and

k

nkBTR x
2 →S 1

2
~11@2ar0

1/2l22z0r0
21/2~2n21!#s!,

1

3
~4 ln 221!S z0s

r0
1/2D 2~2n21!/~3n21!D , s→~0,̀ !

~3.29!

for the coefficient of spontaneous curvature. The expone
1/(3n21) , (12n)/(3n21), and 2 (2n21)/(3n21) indi-
cate thatP/kBT, s/kBT, and k/kBT in the limit of strong
overlap only depend on the monomer density, i.e., only
the combinationnR x

1/n , and are proportional toj23,j22,
andj21, respectively. The values of the two constants,

r051.81, z0510.9 ~3.30!

follow from comparing Eq.~3.27! with known amplitude
ratios of the osmotic pressure.8,47

Figure 17 shows the surface tension which follows fro
Eqs. ~3.25! and ~3.20!. The limiting behavior for small and
large overlap is given by
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



t

m
in
i-
ed
n

tu

su
a

oxi-

ly-
oi-
ing
rip-
e

ior
f a

an-

r
to
sis-
the

s

be
par-

ten-
ta-
f a

of
on
nd
for

t

oly-

of
e
s

s

p-
al
the
for

cle
the

enti-
tic

sed

tre

vio

th

tric

5302 J. Chem. Phys., Vol. 115, No. 11, 15 September 2001 Maassen, Eisenriegler, and Bringer
s

nkBTRx
→~0.798@111.032nR x

3#,

~1.781nR x
3!0.539!, s→~0,̀ !. ~3.31!

In Eq. ~3.31! the leading contribution in the dilute limi
equals the result for ideal chains. Actually in ane-expansion
one finds a small correction 0.798→0.798(120.051e) due
to monomer–monomer repulsion.16 The value 1.781 of the
universal amplitude in the semidilute limit is not too far fro
the extrapolation 2.19 to three dimensions of the lead
contribution 2p2e/9 in thee-expansion. The leading contr
bution near four dimensions follows from inserting the fix
point value Eqs.~2.4!, ~2.3! into the mean-field expressio
Eqs.~2.32! and ~2.31!.

Figure 18 shows the coefficient of spontaneous curva
which follows from Eqs.~3.26! and~3.20!. In the case of the
coefficient of spontaneous curvature the mean-field re
~Fig. 6! and the result from the renormalized tree approxim
tion ~Fig. 18! are qualitatively different. Note that the

FIG. 17. Scaling function of the surface tension in the renormalized
approximation@Eqs.~3.25!, ~3.20!#. The quantitys is the geometrical over-
lap in Eq.~3.19!. The dotted and dashed lines show the asymptotic beha
for small and larges, respectively@compare Eq.~3.31!#.

FIG. 18. Scaling function of the coefficient of spontaneous curvature in
renormalized tree approximation@Eqs. ~3.26!, ~3.20!#. The dotted and
dashed lines show the asymptotic behavior for small and large geome
overlaps, respectively@compare Eq.~3.29!#.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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overlap-dependences2(2n21)/(dn21) for s→` leads to a con-
stant in the mean-field approximation~with n51/2!, while it
leads to a power-law decay in the renormalized tree appr
mation ~with n50.588!.

IV. SUMMARY AND CONCLUDING REMARKS

We have studied the solvation free energy and the po
mer density depletion profile of a single mesoscopic coll
dal particle immersed in a solution of free nonadsorb
polymer chains. Our main goal was to give a global desc
tion valid for arbitrary values of the particle to polymer siz
ratio r5R/Rx and of the inter-chain overlapS5n/n* . It is
interesting to see how the qualitatively different behav
evolves in the limits of small and large size ratio and o
dilute and a semidilute polymer solution.

Most of our results have been obtained within a me
field description of the polymer solution; see Eqs.~2.8!–
~2.13!. While this is quantitatively correct only near fou
dimensions,22 most of the qualitative features persist down
three dimensions. The mean-field approximation is a con
tent theory, which obeys exact relationships such as
density-pressure relation@see Eqs.~1.2!, ~1.3! and ~2.22!,
~2.23!# and identities which follow from the small radiu
expansion~see Secs. II F and II G!. Our mean-field results
obtained for a cylindrical particle in four dimensions can
used to describe the qualitative features of a spherical
ticle in three dimensions~see Sec. II B!. More quantitative
results in three dimensions were obtained for the surface
sion of a planar boundary and for the coefficient of spon
neous curvature in a Helfrich expansion by means o
‘‘renormalized tree approximation’’~see Sec. III!.

Here is a summary of our main results.
~1! Scaling functions for the free energy of immersion

a particle and for the pressure which the polymers exert
the particle. Our numerical mean-field results in Figs. 2 a
3 interpolate smoothly between the analytical results
small@Eqs.~1.5! and~1.2!# and large@Eqs.~2.28! and~2.29!#
size ratior. Note that the results for smallr are independen
of the inter-chain overlapS. For increasingr the pressure
decreases, due to an entropically driven decrease in the p
mer density near a particle of increasing size.

~2! Scaling function for the decrease of the number
chainŝ 2dN & on immersing a particle: In the limits of larg
and small size ratiosr we obtained the analytic expression
in Eqs.~2.38! and~2.44!, respectively. Our numerical result
in Fig. 4 interpolate smoothly between these limits.

~3! The density-pressure identity in Eqs.~2.22!, ~2.23!
within the mean-field approximation has been derived in A
pendix A. In order to check the accuracy of our numeric
procedure, we compare, in Figs. 7 and 8, the amplitude of
polymer density profile near the surface with the pressure
the case of a planar wall and of a weakly curved parti
surface, respectively. The overlap-dependence of both
bulk osmotic pressure and the surface tension can be id
fied with high accuracy in the density amplitude. An analy
check for the semidilute limit is presented in Eq.~E12! of
Appendix E. The case of a small particle radius is discus
in the paragraph preceding Eq.~2.44!.
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~4! Shapes of the density profilesM: Here we find that
one has to distinguish between gross and fine-structure
fects. The gross form ofM(r') is a function which in-
creases monotonically with increasingr' and has a point of
inflection atr'2R5j I ~see Figs. 10, 11, and 14!. While for
R@Rx the scaled distance of the point of inflectionj I /Rx

from the particle surface decreases with increasing ove
~roughly in the same way as the density correlation len
jD!, for R!Rx ,jD it is of the order ofR/Rx , i.e., indepen-
dent of the overlap. On a finer scale we find amaximumof
M ~see Fig. 12!. In the case of a planar wall similar maxim
have been reported in Refs. 40, 41. We find that the m
mum persists down to small size ratioR!Rx and is always
largest forS'5. Finally we have established that for the ca
R!Rx ,jD in which the cylindrical~spherical! particle acts
as a line~point! perturbation on the polymer solution, th
maximum can be understood in terms of a minimum42 of the
density–density correlation function of the pure polymer
lution; see Eq.~2.41! and Fig. 16. These single-particle r
sults imply conclusions for the interaction between two p
ticles: The r -dependence of the free energy cost
immersing asmall spherical particle at pointr in the neigh-
borhood of our particle or wall is proportional to th
r -dependence of the single-particle density profileM.

~5! Density profile for small particle radius in the sem
dilute limit: The full curve in Fig. 9 shows the density profi
for the length ratiosR:j:Rx51:10:100 which correspond
to a large overlap ofS525. Here the density crosses ov
from the j-independent power law behavior forR,r'!j
given in Eq.~1.4! to an exponential decay toward the bu
value forR!r' ,j which is ruled by the screening lengthj;
see Eqs.~E16! and ~E17!.

~6! Surface tension and coefficient of spontaneous c
vature: In the Helfrich expansion Eq.~2.28! for a weakly
curved particle surface we have evaluated the scaling fu
tions for the overlap dependence of the surface tensions and
of the coefficientk of spontaneous curvature both in th
mean field and renormalized tree approaches. In the cas
s the mean-field result in Eqs.~2.30!, ~2.31!, ~2.32!, and Fig.
5 agrees qualitatively with the renormalized tree result
Eqs. ~3.25!, ~3.20!, ~3.28!, ~3.31!, and Fig. 17. However
there are qualitative differences in the case ofk, as can be
seen by comparing the mean-field result in Fig. 6 with
renormalized tree prediction in Fig. 18. In particular the sc
ing law k/(nR x

2)}s2(2n21)/(dn21) in the semidilute limit
@which guarantees thatk only depends on the combinatio
nR x

1/n of the segment density and is proportional toj2d12#
leads to ans-independent behavior in the mean-field a
proximation~with n51/2! and to a power law decay in th
overlap s in the renormalized tree approximation~with n
50.588!.
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APPENDIX A: DENSITY-PRESSURE IDENTITY

1. Pressure on a sphere from a single ideal chain

The partition functionZ[0] (L;rA ,rB ;R) of an ideal chain
with ends fixed atrA andrB outside a spherical particle with
radiusR satisfies the diffusionlike equation~2.8! with L8,r ,V
replaced byL,rA ,0 and the ‘‘initial condition’’ Eq. ~2.10!
replaced byZ[0] (L50;rA ,rB ;R)5d(rA2rB). It is useful to
introduce the Laplace transform

GS~ t;rA ,rB!5E
0

`

dLe2LtZ[0]~L;rA ,rB ;R!

[LZ[0]~L;rA ,rB ;R!, ~A1!

which is a correlation function48 $f(rA)f(rB)%S of a Gauss-
ian Ginzburg–Landau model6–9 and satisfies an Ornstein
Zernike type equation

~2D r A
1t !GS~ t;rA ,rB!5d~rA2rB!. ~A2!

Both Z[0] and GS vanish on the surfaceS of the spherical
particle, which is centered at the origin.

Now consider a particle with a surfaceS8 which deviates
slightly from the spherical surfaceS. S8 is obtained by shift-
ing each surface pointrS of S by a small amounth(VS)
toward the center ofS. Here VS is the solid angle of the
surface pointrS . For the particular casesh(VS)5const or
h(VS)}cosqS, the surfaceS8 is also spherical, but, com
pared toS, its radius is decreased (R85R2h) or its center
is shifted along the polar axis. To first order in the sm
deviationh, the correlation functionGS8 for the deformed
surfaceS8 is related to correlation functions for the nond
formed spherical surfaceS via

GS8~ t;rA ,rB!5GS~ t;rA ,rB!1E dSh~VS!

3$ 1
2 ~]nf~rS!!2

•f~rA!f~rB!%S . ~A3!

Here]n is a derivative perpendicular toS, and

$ 1
2 ~]nf~rS!!2

•f~rA!f~rB!%S

5$]nf~rS!f~rA!%S$]nf~rS!f~rB!%S , ~A4!

due to Wick’s theorem. ObviouslyGS8 in Eq. ~A3! satisfies
Eq. ~A2! for arbitrary pointsrA , rB off the surface. As we
show below,

GS8~ t;rA ,rB!→@r A2~R2h~VA!!#$]nf~rA!f~rB!%S
~A5!

as rA approaches the surface andrB is off the surface. Thus
GS8 vanishes at the deformed surfaceS8.

To derive Eq.~A5! we use the explicit form ofGS ,
which for a sphere ind dimensions is given by13,16

GS~ t;rA ,rB![$f~rA!f~rB!%S

5(
l 50

`

Wl
(a)~q!Ĝl~ t;rA ,rB ;R!. ~A6!

Herea5(d22)/2, q is the angle betweenrA and rB , and

Wl
(a)5~2pd/2!21G~a!~ l 1a!Cl

(a)~cosq!, ~A7!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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whereCl
(a) are Gegenbauer polynomials, and

Ĝl5~r ,r .!2aKa1 l~Atr .!S I a1 l~Atr ,!

2
I a1 l~AtR!

Ka1 l~AtR!
Ka1 l~Atr ,!D , ~A8!

wherer ,5min(rA ,rB), r.5max(rA ,rB) andI , K are modified
Bessel functions. This implies

$~]nf~rS!!f~rA!%S

5(
l 50

`

Wl
(a)~q rS ,rA

!R212ar A
2aKa1 l~Atr A!/Ka1 l~AtR!.

~A9!

Equation~A5! now follows since Eq.~A9! for r A→R be-
comes ad-function in the solid angle, i.e.,49

lim
r A→R

Rd21E dVSf ~VS!$~]nf~rS!!f~rA!%S5 f ~VA!

~A10!

for arbitrary smooth test functions f . While
$(]nf(rS))f(rA)%S vanishes because of the Dirichlet cond
tion if rA approaches a point on the surfaceS which is dif-
ferent from rS , the Dirichlet condition is broken forrA→rS

by the operator]nf(rS).
With the help of Eq.~A3! one can express the change

free energy of a polymer with two fixed ends on deformi
the particle surface

FS82FS

kBT
52 ln

L 21GS8
L 21GS

52E dSh~VS!
p~S!

kBT
~A11!

in terms of the local polymer pressurep(S) which acts on a
surface elementdS of the nondeformed spherical surfaceS.
Here L 21 is the inverse of the Laplace transform in E
~A1!. Since the two ends are fixed atrA , rB ,

p~S!

kBT
5

p~rS ;rA ,rB!

kBT

5
L 21$ 1

2 ~]nf~rS!!2
•f~rA!f~rB!%S

L 21$f~rA!f~rB!%S
. ~A12!

If only one end is fixed atrA and the other end is free,

p~S!

kBT
5

p~rS ;rA!

kBT

5
L 21$ 1

2 ~]nf~rS!!2
•f~rA!*drBf~rB!%S

L 21$f~rA!*drBf~rB!%S
. ~A13!

A simple explicit result follows for along chain with one end
fixed at rA outside the sphere. In this caseR,r A!Rx , the
Bessel functions in Eq.~A9! can be expanded for small a
gument, and one finds

p~rS ;rA!

kBT
5

~d22!G~d/2!

2pd/2

~r A /R!221

12~R/r A!d22

1

urA2rSud
.

~A14!
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
In d53 the derivative of the polymer free energy with r
spect to the radius of the sphere is given by

E dS
p~rS ;rA!

kBT
5

1

r A2R
~A15!

and the repulsive force between the fixed point and
sphere by

E dScosq rS ,rA

p~rS ;rA!

kBT
5

R/r A

r A2R
. ~A16!

Both results are consistent with the free energy cost,

FS

kBT
52 lnS 12

R

r A
D , ~A17!

of introducing the spherical obstacleS.
The pressure in Eqs.~A12! and ~A13! is related to the

density of polymer material near the surface pointrS . For
example for an ideal chain with two ends fixed atrA andrB ,
the fraction of monomers,

q~r !dr[
1

N (
j 51

N

d~r2r j !dr , ~A18!

in a volume elementdr is related to the partition function
Z[W] of a chain subject to an external potentialW by

R x
2

2
^q~r !&A,B52S d

dW~r !
ln Z[W]~L;rA ,rB ;R! D

W50

.

~A19!

Here Z[W] satisfies the diffusionlike equation~2.8! with
L8,r ,V replaced byL,rA ,W. The derivative ofZ[W] is re-
lated by

2S d

dW~r !
Z[W]~L;rA ,rB ;R! D

W50

5L 21H 1

2
f2~r !•f~rA!f~rB!J

S

~A20!

to the Ginzburg–Landau correlation function withf2 in-
serted. Whenr approaches the surfacerS of the spherical
particle,

1
2 f2~r !→~r 2R!2 1

2 ~]nf~rS!2, ~A21!

and Eq.~A12! leads to the density-pressure relation,

^q~r→rS!&A,B→2
~r 2R!2

R x
2

p~rS ;rA ,rB!

kBT
. ~A22!

For later use we record the relation

2
d

dR
Z[0]~L;rA ,rB ;R!

5E dSS 2
d

dW~r !
Z[W]~L;rA ,rB ;R!Y

~r 2R!2D
r→rS ,W50

, ~A23!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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which follows from Eq.~A3! with an angular-independen
h52dR and from Eqs.~A20! and ~A21!.

The relations Eqs.~A3!, ~A5!, ~A10!-~A13! and ~A23!
can be generalized in an obvious way to other surfaceS
such as cylinders or ellipsoids. In particular, Eq.~A23! ap-
plies to a cylinder of radiusR and infinite length ifr is
replaced by the distancer' of point r from the axis of the
cylinder.

2. Density-pressure identity for mutually repelling
chains in the mean-field approximation

To derive Eq.~1.3! it is convenient to use the gran
canonical ensemble. The derivative of the free energy fo
cylinder in Eq.~1.2! is given by

d

dR

F/l

kBT
5 (N51

`
zN

N! F2
d

dR
Z c

(N)/lG ~A24!

and the density profile of free polymers by

nM~r'!5^Q~r !&[K (
P51

N
qP~r !L

5
1

L (N51

`
zN

N! S 2
d

dW~r !
Z c

(N)[W] D
W50

.

~A25!

HereqP5(1/N) ( j 51
N d(r2r P, j ), andZ c

(N) is the connected
part of the partition function ofN chains with monomer–
monomer interaction in the tree approximation. There is
obvious correspondence between tree diagrams of Eq.~A24!
shown in Fig. 19 and tree diagrams~with r -insertions! of Eq.
~A25!. Using Eq.~A23! for each ideal-polymer line in Eq
~A24! generates all the corresponding diagrams of
~A25!, with prefactors such that Eq.~1.3! holds in the form
of Eq. ~2.22!.50

APPENDIX B: AUXILIARY FIELD AND MEAN-FIELD
APPROXIMATION

The excluded volume interaction between monomer
the volume integral of the square of the monomer den
operator. The square may be linearized by introducing a fl
tuating potential fieldW with a Gaussian weight, and th
mean-field approximation is obtained on replacing functio
integration overW by taking the extremum of the new ‘‘ac

FIG. 19. Diagrammatic representation of the derivative of the free ene
cost with respect to the radius of the cylindrical particle@Eqs.~A23!, ~A24!#.
Each diagram has its counterpart in the fugacity expansion Eq.~A25! of the
polymer density near the surface.
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tion’’ A with respect toW. If the extremum occurs atW
5V, the grand-canonical polymer free energyFG perkBT in
mean-field approximation is given by

FG5A@V#, ~B1!

where

A@W#5E dr 8S 2zZ[W]~L,r 8!2
l 4

2b
W 2~r 8! D , ~B2!

and

05S dA
dW~r ! D W5V

5ze2LVbulkLM~r !2
l 4

b
V~r !. ~B3!

Here we consider a polymer solution with an embedded p
ticle inside a large but finite volumeU. The spatial integra-
tion in Eq. ~B2! is over that part ofU which is outside the
volumeV occupied by the particle. Apart from layers with
width of the order of the correlation length around the p
ticle and the boundaries ofU, the solution shows bulk behav
ior with V(r )5Vbulk , Z[V] (L,r 8)5e2LVbulk, andM51. The
chain fugacityz may be eliminated in favor of the chai
density, yielding

n52z
d

dz

FG

U 5z
d

dz S ze2LVbulk1
l 4

2b
V bulk

2 D
5ze2LVbulk. ~B4!

Note that thez-dependence ofVbulk does not contribute to the
derivative, due to the extremum condition Eq.~B3!. Substi-
tuting Eq.~B4! into Eq. ~B3! shows that

V~r !5
nLb

l 4 M~r !5
S
L

M~r !, ~B5!

i.e., the potential field at the extremum is identical with t
mean-field Eq.~2.9!, and

LVbulk5S. ~B6!

The first term on the right hand side of Eq.~B2! can also be
expressed in terms of the density profileM, since due to the
chain structure

E dr 8Z[V]~L,r 8!5E drZ[V]~L9,r !Z[V]~L2L9,r ! ~B7!

for arbitraryL9,L in the finite volumeU. Thus Eqs.~B1!,
~B2!, ~B5! and ~B7!, ~2.12! yield

FG52nE dr FM~r !1
1

2
SM 2~r !G , ~B8!

and the free energy cost of immersing the particle has
form of Eq. ~2.13!.

APPENDIX C: SOLUTION OF SELF-CONSISTENT
EQUATIONS

In order to solve the system of Eqs.~2.8!–~2.12!, we
introduce the Laplace transform of the partition functi
Z(L,r ) @see Eq.~A1!#

x~ t;r !5LZ~L,r !. ~C1!

y
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If we now set

r̃5r' /AL, t5Lt1S ~C2!

and

x̃t~ r̃ !5x~ t;r !/L, ~C3!

then Eqs.~2.8! and ~2.10! lead to

2x̃t9~ r̃ !2
d'21

r̃
x̃t8~ r̃ !1@t1dṼ~ r̃ !#x̃t~ r̃ !51, ~C4!

with

dṼ~ r̃ !5S @211M~r'!#. ~C5!

According to Eq.~2.12!,

M~r'!5E
g

dt

2p i
etx̃t

2~ r̃ !, ~C6!

where the integration pathg is parallel to the imaginary axis
and to the right of all singularities of the integrand. T
boundary condition Eq.~2.11! now reads

x̃t~ r̃→R/AL !→0, ~C7!

and the bulk limit is given by

lim
r̃→`

x̃t~ r̃ !5
1

t
. ~C8!

To solve Eq.~C4! with the conditions Eqs.~C7!, ~C8!,
we assume that the range of the potentialdṼ is finite, i.e.,
there exists51 a r̃0 with dṼ( r̃)[0 for r̃>r̃0 . Thus, in the
ranger̃>r̃0 the relevant linear differential equation is

2x̃t9~ r̃ !2
d'21

r̃
x̃t8~ r̃ !1tx̃t~ r̃ !51 ~C9!

with the boundary condition Eq.~C8!, whereas in the range
r̃s[R/AL<r̃, r̃0 we numerically solve the initial value
problems

2gt9~ r̃ !2
d'21

r̃
gt8~ r̃ !1@t1dṼ~ r̃ !#gt~ r̃ !51,

~C10!
gt~ r̃s!50, gt8~ r̃s!50

and

2ht9~ r̃ !2
d'21

r̃
ht8~ r̃ !1@t1dṼ~ r̃ !#ht~ r̃ !50,

~C11!
ht~ r̃s!50, ht8~ r̃s!51.

The solution to Eq.~C4! is given by

x̃t~ r̃ !5S gt~ r̃ !1c1ht~ r̃ !,
1

t
1c2r̃2aKa~ r̃At! D

for ~R/AL<r̃, r̃0 , r̃0, r̃ !, ~C12!

wherea5(d'22)/2 andKa is a modified Bessel function
The constantsc1 and c2 are calculated from the continuit
condition of x̃t and x̃t8 at r̃5 r̃0 .

Thus after choosing a starting52 potential dṼ0( r̃), we
calculate with~C10!–~C12! a solutionx̃t

0 , which by means
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
of Eqs.~C6! and ~C5! yields a new potentialdṼ1( r̃). Solv-
ing the problem Eqs.~C10!–~C12! again with dṼ( r̃) re-
placed bydṼ1( r̃) and following the same steps leads to
potentialdṼ2( r̃) and so on. The sequencedṼi( r̃) then con-
verges to the self-consistent potentialdṼ( r̃), which yields
the monomer densityM(r') directly from Eq.~C5!.

APPENDIX D: EXPANSION FOR SMALL OVERLAP

In this section we calculate analytically the scaling fun
tions g(S) and h(S) of the surface tension and the coef
cient of spontaneous curvature in the dilute limitS!1. First
we expand the density profileM(r ) in powers ofS

M~r !5M [0]~r !1S @M [0]~r !2M [1]~r !#, ~D1!

whereM [0] is the monomer density for ideal chains. Th
form of M [1] follows from Eqs.~A25!, ~B4! and Fig. 19 and
satisfies the identity

E
r'.R

dr'$M [1]~r !2@M [0]~r !#2%50 ~D2!

@see Eq.~B7!#. Inserting Eqs.~D1! and~D2! into Eq. ~2.13!,
one finds

F/Vi

kBT
5nH V'1E

r'.R
dr'@12M [0]~r !#J

1
S
2

nH V'1E
r'.R

dr'@12M [0]~r !#2J 1O~S 2!.

~D3!

To obtain the coefficient of spontaneous curvature,
expand to first order in 1/R. The expansion forM [0] is
given by

M [0]~r !5M pw
[0]~r'2R!

1
d'21

2

r'2R

R
dM [0]~r'2R!, ~D4!

with

M pw
[0]~z!5128i2 erfc~y!14i2 erfc~2y!,

~D5!
dM [0]~z!58i2 erfc~y!28i2 erfc~2y!,

where i2 erfc is the second iterated complementary er
function and

y5
z

2AL
5

1

&

z

Rx
. ~D6!

After inserting Eq.~D4! into Eq. ~D3! and settingr'

5R1z, comparison with Eq.~2.28! yields

s

nkBT
5E

0

`

dzH 12M pw
[0]~z!1

S
2

@12M pw
[0]~z!#2J 1O~S 2!

~D7!

and
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k

nkBT
52E

0

`

dz zS 12M pw
[0]~z!2

1

2
dM [0]~z! D

1SH E
0

`

dz z@12M pw
[0]~z!#@12M pw

[0]~z!

2dM [0]~z!#J 1O~S 2!. ~D8!

All the integrals can be calculated analytically and give
results in Eqs.~2.32! and ~2.35!, respectively.

APPENDIX E: THE SEMI-DILUTE LIMIT

The self-consistent mean-field procedure in Eqs.~2.8!–
~2.12! simplifies considerably in the semidilute limitS→`.
Due to ‘‘ground-state dominance’’6 the L8-dependence in

ZL8~r !→e2L8S/Lc~r ! ~E1!

factors, i.e.,c is independent ofL8, and Eq.~2.12! leads to

M~r !5c2~r !. ~E2!

Thus c vanishes at the particle surface and tends to 1
away from the particle. Substituting Eq.~E1! into the
diffusion-type equation~2.8! and using Eqs.~2.9! and ~E2!
yields53

L

S D rc~r !52c~r !1c3~r !. ~E3!

Note that the characteristic lengthAL/S in Eq. ~E3! is of the
order of the correlation or screening length.31,54

Equation ~E3! can be used to calculate the bul
normalized densityM for a planar wall and for a generalize
cylinder of large radiusR. In this case,

D rc~r'!5S d2

dr'
2 1

d'21

r'

d

dr'
Dc~r'!

→S d2

dr'
2 1

d'21

R

d

dr'
Dc~r'!, ~E4!

which implies the small-curvature expansion,

c~r !5cpw~x!1dc~x!, ~E5!

with dc5O((Rx /AS)/R). Here

cpw~x!5Thx, ~E6!

with

x5~r'2R!AS/~2L !5
r'2R

Rx
AS, ~E7!

is the solution of

1

2

d2

dx2 cpw52cpw1cpw
3 ~E8!

and determines the density profileMpw5cpw
2 near a planar

wall. Collecting the terms of order (Rx /AS)/R in Eqs.~E3!–
~E5! leads to the linear inhomogeneous equation,
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
e

r

S d2

dx2 1226cpw
2 D dc~x!52

Rx /AS
R

~d'21!
d

dx
cpw,

~E9!

for dc. The solution of Eq.~E9! which vanishes both forx
→0 andx→` is given by

dc~x!5
Rx /AS

R
~d'21!C~x!, ~E10!

where

C~x!5
1

6 F3

2

x

Cosh2 x
1

2

Cosh2 x
1

3

2
Thx2

3

2
2

1

2
e22xG .
~E11!

The behavior ofM near the surface follows from substitu
ing Eqs. ~E5!, ~E6!, and ~E10!, ~E11! into Eq. ~E2!. This
yields

M→S r'2R

Rx
D 2

S F11
Rx /AS

R

4

3
~d'21!G , ~E12!

which is consistent with the density-pressure prediction
Eq. ~2.37!.

Inserting Eqs.~E2!, ~E5!, ~E6!, ~E10!, ~E11! for M into
Eqs. ~2.13! and ~2.19! leads to the free energy in the sem
dilute limit. Note that the second term in the integrand of E
~2.13! dominates in the semidilute limitS→`. On
comparing55 the 1/R expansion of the integral in Eqs.~2.13!,
~2.19!,

S'

RxAS
2 E

0

`

dxF11
Rx /AS

R
xGd'21

@12cpw
4 24cpw

3 dc#

→S'Fs1
d'21

2

k

RG /~nkBT!, ~E13!

with the small curvature expansion Eq.~2.28!, one finds the
surface tension,

s

nkBT
5

RxAS
2 E

0

`

dx@12cpw
4 ~x!#, ~E14!

and the coefficient of spontaneous curvature,

k

nkBT
5R x

2E
0

`

dx$x@12cpw
4 ~x!#24cpw

3 ~x!C~x!%.

~E15!

Insertingcpw andC from Eqs.~E6! and ~E11! and evaluat-
ing the integrals leads to the semidilute results in Eqs.~2.32!
and ~2.35!.

After the discussion of a cylinder with large radiusj
!R let us now turn to the density profile around a thin cy
inder with R!j. While for R,r'!j Eq. ~1.4! applies we
find for R!r' ,j from Eq. ~2.41!,

M→122
R

r'

e2r' /j ~E16!

with54

j5AL/~2S!5Rx /~2AS!. ~E17!
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Here we have taken into account thatRx is much larger than
r' andj and have expanded the Debye function in Eq.~2.41!
for large argument.

Finally we consider the scaling behavior in the semi
lute limit for R/j arbitrary. From Eq.~E3! one finds for the
density profile,

M~r'!5m̃S r'

R
,
R

j D . ~E18!

For the free energy cost Eqs.~2.13!, ~2.19! in the semidilute
limit,

F/Vi

nkBT
→ S

2 HV'1E d3r'@12M 2~r'!#J , ~E19!

one finds the scaling forms,

F/Vi

nkBT
5SR3Ỹ~R/j!5RR x

2Y~R/j! ~E20!

and Eqs.~1.5! and ~2.28!, ~2.31!–~2.35! lead to the limiting
behaviors,

Y~y!→F2p,
p

6
y21

4p

3
y1

4p

3
~4 ln 221!G

for y→@0,̀ #. ~E21!
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