JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 11 15 SEPTEMBER 2001

Density depletion profile and solvation free energy of a colloidal particle
in a polymer solution
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The solvation free energy and polymer density depletion profile of a single mesoscopic colloidal
particle in a solution of free nonadsorbing polymer chains are investigated theoretically. Keeping
both the particle to polymer size ratio and the degree of inter-chain overtapary, we see how

the qualitatively different behavior evolves in the limits of small and large size ratios and of dilute
and semidilute solutions. While most of our results are obtained within a mean-field approach, we
also use a “renormalized tree approximation” to estimate the surface tension and the coefficient of
spontaneous curvature in a Helfrich expansion for large particle to polymer size ratio. There is a
weak maximum in the polymer density profile for arbitrary size ratio. For small size ratio the
maximum can be explained in terms of a minimum in the bulk polymer density correlation function.
© 2001 American Institute of Physic§DOI: 10.1063/1.1394206

I. INTRODUCTION screening lengft® (or mesh-size & In the dilute limitn
<n* the corresponding “healing length” foM,,,, is>° of

There is an effective interaction between colloidal par-yna order of the end-to-end distane®. . introduced below
ticles in a solvent which contains nonadsorbing free polymeEq_ (1.2). ©

chains. Since the chains avoid the space between two close 1ha pehavior is quite different in the opposite limit of a
particles, the unbalanced polymer pressure from outsidgynere or an infinitely long rod witsmall radiusR, i.e., for
pushes the two particles toward each other. This depletiorl1/pHOO (upper and lower right corners in Fig),1corre-
interaction is believed to be important for a variety of inter- sponding toR<¢,R,. In this case the healing length of
esting colloids such as casein miceltewd blood cells,and v/~ 1/ "is of the ordel® of R For distances from the
globular proteins. It i_s an e_xample of _vvhat is_ termed “mac- center cs)f the spheréor r, from the axis of the cylindgr
romolecular - crowding” inthe biophysical = chemistry \yhich are much smaller thaor R, the normalized profile

H 4,5
literature: _ _ M, is independentof the overlap and oft,R, and only
The depletion of long flexible polymers near the S“rfacedepend?‘“on r/R (orr, /R).

of a colloidal particle is an entropic effect and depends in a * The free energyF it costs to immerse the spherical or

crucial way on the ratio of the particle and chain sizes and oRyjingrical particle in the polymer solution also shows quali-
the degree of overlap between the chains, i.e., on whether th;i e difference-18in the various limits in Fig. 1.

polymer §0Iution is dilute or se_midilute. T_he simpl_est system  |n this paper we study the crossover between these limits
f(_)r study_lng _both effet_:ts is _amgle spherical _part|cle 0r'a  and evaluate the density profilet(r) and the free energy
singlecylindrical rod with radiusk embedded in a monodis- ostF of the single particle fomrbitrary values of the size
perse solution of free nonadsorbing polymer chains. ratio and the inter-chain overlap.

One may characterize the degree of overlap between  ap jmportant relation between the two basic physical
chains byn/n*, wheren is the number density of chains in ¢, antitiesAt andF which applies for arbitrary size ratio and
the bulk andn* is the density at the onset of overl3pnd overlap is the so-called density-pressure identity; see Refs.

the size ratio by 14, 19, 20 and Appendix A. For example, for a cylinder of
p=RIR,. 1.2 infinite lengthA — <o it relates the polymer pressure,

HeredR 2 is the mean square end-to-end distance of a single _ 1dF 1.2

polymer chain in dilute solution without particles, addle- P S, dR N\’ '

notes the spatial dimension. Figure 1 shows various limits of th ; f th lind ith surf A o th
a single spherical or cylindrical particle in a polymer solu- on the surface of the cylinder with surface afa to the

behaviorM 8(r ) of the normalized polymer density profile

tion. .
One important limit is glanar wall, which can be con- M(r,) nearthe surfacé’ via
sidered as a particle with infinite radid®, for which 1p nR A @)r ) p
vanishequpper and lower left corners in Fig).IThe corre- W”_ =B T 1.3
1 B

sponding bulk-normalized polymer density profila1

= M, depends in a crucial way on the inter-chain overlap.Here S, =2zR (or S, =47R?) is the circumference of the
In the semidilute limitn>n* it reaches its bulk value 1 for circle (or the surface area of the spheoé radiusR of the
distancesz from the wall which are of the order of the cross-section perpendicular to the axis of the cylinder in
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semidilute solution way to instructive results. In particular, the density-pressure
identity follows without any further assumptions. The mean-
field results are useful, since most of the qualitative features
2 2 in d near 4 presumably persist downde- 3. Moreover we
3 g will use mean-field scaling functions to construct for some of
. E E the observables a “renormalized tree approximation” which
£ = é works directly in three dimensions.

& § g For illustration we recall known analytical mean-field
| & = results valid for some of the limiting cases in Fig. 1 for an
=2 g infinitely long cylinder (rod) in four dimensions.(i) For

(\) (\) n" smallradiusR (p—0) the normalized density profile and the
é % free energy cost per unit axis lengthare given by>3
(S /\/ R’f R 2
0 dilute solution M_(l_ E) P RIL<RGE (1.4
—— Ru/R and
FIG. 1. Various limits of a single spherical particle or a single cylindrical = 27rnRR)2(. (1.5

rod in a solution of nonadsorbing polymers. The sphere or rod becomes a BTA

planar wall for vanishingk, /R (i.e., for points on the vertical ayisand . . .
becomes a “small” sphere or a “thin” rod with a radius much smaller than These expressions apply farbitrary overlapn/n*. (ii) In

the characteristic polymer lengtksuch as the root mean square end-to-end the mean-field approximation dilute polymer solution
distancexR, in the dilute solution or the mesh-sizein the semidilute ~ (n/n* —0) corresponds to a solution of ideal chains without
solution as R, /R becomes large with the inter-chain overlafn* kept  excluded volume interaction between monomers. The free
fixed. The following limits are shown: planar wall in a dilute solutidower energy cost per unit axis length for arbitrary size I’atiQO

left corney, planar wall in a semidilute solutiotupper left cornex, small 131E
1 2\/E 22 1.6
+ —p+ = . .
KgTA =P 3P (1.6

sphere or a thin rod in a dilute solutigfower right corney, and small IS

sphere or a thin rod in a semidilute soluti@upper right corner

three(or four?) dimensionsr , is the distance of from the  The profile M, which is also known for this cagd,and the
axis, v is_the Flory exponefit® and B is a universal free energy cost Eq1.6) satisfy’® the density-pressure iden-
amplitude?®?3 The denominatorr( —R)*” on the left-hand tity and reduce, fop— 0, to the thin cylinder expressions in
side cancels the, -dependencg of M @), and both sides in ().

=27nRR2

Eq. (1.3 only depend orR,R,, andn. The identity is free Analytical mean-field results for large radiuglanar
of microscopic parameters and no proportionality factorswall) are also available in theemidilutelimit®® and will be
have been omitted. mentioned in Sec. Il E. No analytical mean-field results seem

The universal properti€s® of long flexible polymers in  to be known for the dilute—semidilute crossover in the planar
a good solvent that interact with an embedded nonadsorbingall limit (vertical axis in Fig. 1 and for the crossover in
mesoscopic colloidal particle can be calculated from &size ratio in the semidilute limithorizontal line for large
simple model in which each polymer molecule is represente/n*).
by a “spring and bead” chain. Each bead is pointlike and is  After the mean-field treatment in Sec. I, we discuss in
excluded from the space occupied by the particle, and beadSec. Ill the overlap-dependence of the surface tension of a
of the same chain or of different chains repel each other atlanar wall and of the coefficient of spontaneous curvature in
microscopic distances. Despite the simplicity of the modela Helfrich expansioff using a “renormalized tree approxi-
the conformational statistics of the polymers farbitrary ~ mation.” Our results are summarized in Sec. IV. Technical
size ratio and overlap is quite complex, and one has to resodetails that can be skipped in a first reading are relegated to
to approximations, as in integral-equation basedAppendices A—E.
approache$? In earlier work of this type dinear’® increase
of M @) with distancer | -R or r-R from the particle surface
was reported. However, Fuchs and Schwéfzeecently Il MEAN-FIELD APPROACH CLOSE TO FOUR
made an ansatz for the effective bead-particle repulsion Wmﬁ)'IMENSI-ONS
a mesoscopicange to describe the change of polymer con-
formations near the particle surface which impliesjea-  A- Epsilon expansion and mean-field equations

dratic increase. This is consistent with a value 1/2. The self-consistent mean-field approximation for poly-
_In this paper we calculatd{ andF for arbitrary sizé  mer solutions also goes under the names of the random-
ratio and inter-chain overlap for the dimensidr4—e of  phase or tree approximatiGf. In this approximation the

the polymer-embedding spdeclose to the upper critical mean square end-to-end distanif 2 of a singlechain with
dimensiond=4. We consider the leading order results for \y segments takes the ideal-chain form, where

€\,0 which are determined by the tréer mean-fieldl ap- 5 )
proximation. Thissystemati@pproach leads in a transparent ~ Rx=2NI*=2L, (0
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andl is an effective segment size. The osmotic pressLicé Z(L',r—S)—0 (2.1
a solution ofoverlappingchains takes the Flory—Huggins ) .
form on the particle surfac8. The bulk-normalized polymer den-
sity profile of the ideal chains is given by
I1/(kgT)=n(1+S5/2), (2.2 1 .
with M(r)=Ee5f dL”"z(L",r)yz(L—L",r). (2.12
0
S=bN?n. (2.3

Note that forr far from the particle or wallZ(L',r) ap-
Hereb(r; j—rk «) models the excluded volume interaction proaches the-independent value NN so that M(r)
perkgT between monomey of chainJ and monomek of  approaches 1.

chainK. In the mean-field approximation the free energy dest

In the following we consider a polymer-embedding of immersing the particle is also determined By and is
space of dimensiord=4-e. To leading order in the given by

e-expansion the polymer solution displays mean-field behav-

i i i ; it fi i F I1 S
ior, with the interaction constait replaced by its fixed point _:VﬁJrnf dr[l—M(r)Jr E[l—Mz(r)] ’
B

valug/ 82230 kgT
b=bgp=272€l*, (2.9 (2.13
and the quantitys in Egs.(2.2) and(2.3) is given by® as we show in Appendix B. Her¢ is the volume occupied

) by the particle, and the integral extends over the volume

S= T N 5 outside the particle. Note that th'e(-dependent terms in the
€5 Sa T n* 29 integrand have the form of the bulk-pressure in E@s2),
Y (2.3), with the polymer density in the bulk replaced by the
ere local densityn M(r).
s{9=(Ry)n (2.6

characterizes thgeometricaloverlap between chains, and
B. Spherical and cylindrical particles

2
a
> , (2.7 The closed system of Eq92.8—(2.12 determining
M(r) and Eq.(2.13 for F apply to arbitrary particle
where A,=bepN?, the second virial coefficient of the os- shapes. For a sphere or an infinitely long cylindef(r) and
motic pressure, is a convenient quantity marking the crossz(L’,r) only depend on the distancgérom the center of the
over between dilute (<n*) and semidilute §>n*)  sphere or on the distance from the axis of the cylinder.
behavior! In 4— e dimensional space with smad, two A useful concept is a “generalized cylindet®*® with
polymer chains rarely crodsand the chain density in the an “axis” of d, dimensions and with the remainirdy-d,
crossover regionr(=n*) corresponds to a very large geo- =d, dimensions perpendicular to the axis. The outer space
metrical overlaps{ of order 1k. of the generalized cylinder is determined by distances
We now turn to the case of a polymer solution with anfrom the axis larger than its “radiusR. Ford,=0 the gen-
imbedded mesoscopic particle or wall, in which the mono-eralized cylinder becomes a sphere. Bpr 1 andd=3 it is
mer densityNnM(r) becomesr-dependent. On replacing a cylinder of radiusR, and ford,=2, d=3 it is a plate of
the excluded volume interaction by a configuration-thickness R in three dimensions. Below we shall consider a
independent external potential pesT given by bNnM(r) generalized cylinder inl=4— e dimensions with
and acting on each chain-monomer, the mean-field approxi-
mation reduces the many-chain problem to the problem of d=1-¢ d, =3, (2.14
one ideal chain in a potential to be determined self-which tends fore\,0 to a cylinder ind=4 dimensions and
consistently. for €1 to a sphere ind=3 dimensions. Another route
To calculateM(r) in Eq. (2.12, we need the partition |eading to a sphere in three dimensions is givendpy 0,
function Z(L’,r) of a chain with a polymerization index d, =4—e. Although either of the two routes can be used to
N’=L'/I? smaller thanN and with one end fixed at This  estimate excluded volume effects.M or F for a sphere in

-1
4
Ry

n*E(Az)l:<€

is determined by a diffusion-type equatfofs d=3, we prefer the route in Eq2.14) because of the better
9 starting value for the small raditfsexponent, — (1/»). In
(—,—Ar+V(r))Z(L’,r)=O, (2.89)  this section we determine theading order results nead
JL =4, for which the tree- or mean-field approximation applies.
where Although the leading order results lead to estimates for scal-

_ ing functions ind=3 with only moderate quantitative suc-
V(r)=1"2bNnM(r)=(S/L) M(r), (2.9 cess, they demonstrate in a transparent way fundamental
with the “initial condition” properties, such as the density-pressure identity(E®) or
Z(L/=0r)=1 (2.10 the small radius expansidf:®which should apply along the
' ' wholeroute. For more accurate quantitative estimatesdfor
and the boundary condition =3 see Sec. lll below.
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According to Egs(2.8—(2.12 in mean-field approxima- 10°
tion the functionsZ(L',r), W(r), and M(r), for** givenR,
L, andS, only depend om, andd, and are independetitof 'l R
r, and d;. On using route Eq(2.14), one finds that the R
scaling functionm of the density profil&® = et
& 10 .-“;"4/ 7
r\—R R n 5 i
M(r)_ md( R, ) va n* (215) = i ‘.“;‘:,/",//
E "'/:// ..... S=15
to leading order ind 4 equals the corresponding mean- ‘_._-,;'/L’/'/ _— §;1
field scaling function for a sphere in three dimensions. Its 0 g - §=0 7
explicit form is obtained in Subsections E, F, G below. e
In order to obtain a finite free energy of immersierwe o ! L 1
have to consider a generalized cylinder with an “axis” of 10" R/Rlo 10
large but finite extent or “volume” ’
FIG. 2. Scaled solvation free energ?/(v‘lankBT) VS size ratiop
Vi=v(h2d)) (2.16  =RIR, for various values of the inter-chain overl&g-n/n*. Shown is the
scaling functionf 4 [Eq. (2.20] for a cylinder of infinite length/;=\— in
which is characterized by a Iarge radiv®. Here d=4 dimensions. This also furnishes a qualitative estimate of the corre-
sponding scaling functiofy for a sphereY,=1) in d=3 dimensions. Note
N2 the crossover from the overlap-independent resuip 2or small p [Eq.
v(NM2A)=Qq | drrdt=(\/2)97T(1+d/2)]t (1.5)] to the result (4r/3) p*(1+S/2) for largep [Eq. (2.28].
0
(2.17
is the volume of a sphere with radind2, and Q4 is the C. Density-pressure identity
surface area of a sphere with radius 1didimensions. Note The pressure exerted by the polymers onto a given sur-
that face element of an embedded mesoscopic particle is propor-
tional to the local polymer densitgM @S(r) near the sur-
V,=\,1 for d,=1,0. (2.189  face element??® With the density taken from the scaling

. o regime?! the factor of proportionality involves a universal
In the mean-field approximation the free energy cost per unigonstant, which can be calculated and leads to the identity
“‘axis-volume” V, and pekgT, F/(kgTV)), follows fromthe  £q_(1.3). In Appendix A we prove the identity for the case

right hand side of Eq(2.13 on replacingV by the cross- g 74, j.e., within the mean-field or tree approximation, in
sectional volumeV, =v(R,d,) and the integratiorfdr by  \which

an integrationfdr, over that part of the “plane’t,=0 per-

pendicular to the axis which is outside the particle: v=2, B=2. (2.21
For the generalized cylinder the presspracts on a surface
FoFIV,: V=V, ; f dr_)f dr,, r,>R. S.With magnitud(.aSlVH and Wi'Fh '[heT surface-normal perpen-
(2.19 dicular to the axis. Thus the identity E(L.3) reads
ro— 2
Since end effects can be neglected RyR,<\, and since M(rL\R):MaS(rL):Z(LT) % (2.22
the mean-field profile\(r) is independent of; ,d,, the free ] g ®
energy cost per unit axis volume in the mean-field approxi—W'th
mation Eqs.(2.13), (2.19 only depends o, and is inde- 1 d E
pendent ofd, .***®For the case of route E2.14), in which P=S grRV." (2.23
for dimensional reasof% * !
HereS, =R%“ 710y andQq=27%4T(d/2). In particular,
SR A 2.2 S =4nR? d, =3 (2.24
keTv, XA R nE ) (2.20 SR '

for the case of a cylinder of type of E€R.14) in whichd,
the scaling functionfy in leading orderd "4 equals the =3, andS, =2 for the case of a plate in whiah =1.
corresponding mean-field scaling function for a sphere in  Figure 3 shows numerical results fgf(nksT) as a
three dimensions. function of the size ratidR/R, for various values of the

Figure 2 shows numerical results for the scaling functionoverlapS.

f, versus the size ratip=R/R,, for various values of the
overlap variableS=n/n*. The numerical procedure for
solving Egs.(2.8)—(2.12) is described in Appendix C. Note
the S-independent behavidr,— 27p for small size ratiop A simple way to quantify the polymer depletion effect is
which is in agreement with Eq1.5). For large size ratio, by considering the decreasé/\’) of the number{ ') of
f,=(47/3) p(1+ S/2), in agreement with Eq2.28 below.  chains in the monodisperse polymer solution on inserting the

D. Number of missing chains
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N chains. The relationship betweémandn in the mean-field
approximation is given in Eq$B4) and(B6) of Appendix B.

Figure 4 shows the numbér SA') of missing chains as
a function of the size ratip=R/R, for various values of the
overlap variableS. Analytic expressions fof—JdN) in the
special caseBR>R, andR<R, will be given in subsections
E and F below.

p/(nksT)

E. Planar wall and large particle

Consider a large particle with a smooth surface and with
0 . ! . | . \ . all local principal radiiR; of surface-curvature much larger
than the polymer lengths. Then one exp&t8 a small-
curvature expansion of the Helfrich type

FIG. 3. Scaled polymer-pressupé(nkgT) on the surface of a cylindrical

rod ind=4 dimensions as a function of the size rgtie R/'R, for various E=VII+ f dS[0'+ kKot ... ] (2.26)

values of the overlag. This result also furnishes a qualitative estimate of m

the pressure on the surface of a spherical partic=8 dimensions. Note

the crossover from thé&-independent behavior 1/63) for small p [Eqs.  for the free energy of immersioR. Here

(1.5, (2.23, (2.24)] to the p-independent behavior 15/2 for large p

[Eq. (2.29]. 1

Kn=% 2.2
m 2 = R| ( 7)

nonadsorbing particle. In a grand canonical ensemble wit#s Proportional to the local mean surface-curvature, and the
chain fugacity, the number decrease per unit axis “vol- coefficientso and «, which denote the surface tension and

ume” is given by the coefficient of spontaneous curvature, respectively, are in-
dependent of the shape of the weakly curved surface.

d o §N For the generalized cylinder E(R.26) reduces to
<_ 5N>/V\\:§d_§ 2 A_ﬂ([ZgM]no particle_ZS;N))/VII J Y (2
e P vnss|os2tE, 2.2
_ng/VH v, 't Ot R (2.28
dZ keT and Eq.(2.23 leads to a pressure
= — o (d,—-1)(d, —2) «
n VﬁfrPRdU[l M(rol). (229 p=T1+(d, ~1) g+ ———5———+ ... (229

M) iti i
Here 2™ is the connected part of the partition function of on the surface with surface normal perpendicular to the axis.

Here we have used relations such &g, /dR=S, . The
form

o S 5
aznkBTfo dzl 1-M,(2)+ E[l—/\/lpw(z)] (2.30

of the surface tensiom follows from a comparison of Egs.
(2.13 and(2.26) for the case of a half space with a planar
wall surface in which all the B, vanish®’ Here z denotes
the distance of point from the planar wall. Since is posi-
tive, we conclude from Eq2.29 that a weakly curved con-
vex surfaceg(such as the surface of a spherical or cylindrical
particle with large but finite radiuR) experiences darger
pressurep from the polymer chains than a planar wallith
R=o0). This is in accordance with the smaller entropy loss of
107 107 o 10" polymer chains near a convex surface. See also Fig. 3 and
R/R, Eq. (2.37) below.
The scaling form of the surface tension,

2

< —6N > /(VH’HR

FIG. 4. Scaled number of missing chaifs SAY/(V,nR 3) vs size ratio
p=RI/R, for various values of the interchain overlap [compare Eq. o

(2.29]. The result sht_)wn is for a c_yllnder_ id=4 dimensions with axis —=nR,9(S), (2.3)
lengthV,=\. It also gives a qualitative estimate for the case of a spherical kBT

particle in d=3 in which V,=1. Note the crossover from the result . 7
2mpl(1+8) for small p [Eq. (2.44] to the overlap-independent behavior follows from Egs.(2.30 and (2.19. In the dilute” and se-
(413) p® for large p [Eq. (2.39)]. midilute limit one find$® the analytic expressions
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/(24%)

2
(3

MG

0 10 20 30 40 50 0 3 10 ' 15 2

FIG. 5. Scaling functiorg(S) of the surface tensioor=kgTnR,g in the  FIG. 7. Density-pressure identity for a planar walee Eq.(2.37) with r,

mean-field approximatiofiEq. (2.3D]. The dotted and dashed lines show _R=7 finite andR=x]. The amplitudeM *R 2/(22%) of the density pro-

the asymptotic behavior for small and lar§erespectively, see E@2.32. file M=M,, (circles reproduces the scaled osmotic pressilignksT)
=1+8/2 (full line) very well.

2 2
9(5)H< \£[1+5)\1+O(52)], §51/2 : Figure 6 shows the scaling functidn(S) for arbitrary S,
which we have obtained numerically.

§—(0, =) (232 Now let us turn to the normalized monomer density pro-
with file M near a planar wall or near a generalized cylinder of
55 122 large radiuR. Forr close to the surface the density pressure
7\1:_3 g5 =0.333. (233 identity Eq.(2.22 predicts
Figure 5 shows the scaling functiag(S) for arbitrary S, M(r \R)=M®(r )
which we have obtained numerically from Eq2.8)—(2.12 r—R\?2 S R
and (2.30. =2( LR l+§+(di—l)ﬁxg(8)
For the coefficient of spontaneous curvature one ffhds %
K, (d, —1)(d, —2) [R,)?
with

(2.37
h(S)—(3+S\,, 3[4In2—1]), S—(0, =), . .
St 20 3l4In2-1]) (0, =) (2.35  Herewe have inserted the pressprgiven by Eq.(2.29 and
where ' by Egs.(2.2), (2.31), and(2.34 into the identity Eq(2.22.
Figures 7 and 8 show that the numerically determined profile

—0.047. (2.36

1 1 75
)\2=§ 19— p 17+ ?arctan

0.6 . : T . .

0 10 20 30 40 50

FIG. 8. Contribution of the surface tension to the density-pressure identity
for a weakly curved surface of a cylindesee Eq(2.37 with d, =3]. The
FIG. 6. Scaling functiorh(S) of the coefficientc=kgTnR 2h of the spon-  limit Mgz ... (RI2R,)) [[M CIRZI(2(r, —R)*)] —(1+ (5/2))] taken

taneous curvature in the mean-field approximatiggs. (2.28 and(2.34]. from the density profile near the surfage ( is well approximated by the
The dotted and dashed lines show the asymptotic behavior for small andalue forR/R,= 100 (circles and reproduces the scaling functigfiS) of
large S, respectively, see E¢2.35. the surface tensioffull line).
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M for a cylinder of type Eq(2.14 withd, =3,d "4 and a |
large radiusk does indeed fulfill the density-pressure iden- L P
tity Eq. (2.22. P

Besides this numerical check, we have also checked Eq.
(2.22 analytically. In Appendix E we show that in the semi-
dilute limit S— the expressions/2 and%S*? of, respec- 06} :
tively, I1/(nkgT) andg do indeed appear in the asymptotic =
profile M @) in accordance with Eq2.37).

In the dilute limit S—0 and the semidilute limiS— oo
the normalized density profiles1,,, near aplanar wall are
known in analytic forn®'**°In particular, forS—, My, 02 y
=Tanl?(SY%z/R,), and the number of missing chains near a
large particle per unit surface area is given by

04— —

L i 1 1 1 L
00 0.5 1 1.5 2

(ri—-R)/E

4

3 FIG. 9. The mean-field density profile around a thin cylinder in a semidilute
_ 12 o—1/ solution near four dimensions provides a qualitative estimate for the density
=NRy[(2/m)™5,S 2]’ S—[0]. (2.39 profile around a small sphere in a semidilute solution in three dimensions.

Note that the distancel(p"") from the planar wall of the point The full curve shows numerical data for the length ratiBsé: R,

f inflecti f M. is al ti | toR dR./SY2 =1:10:100 which interpolate smoothly between the limiting behaviors Egs.
or intlection o pw IS AISO p_ropor lona x an X (1.4) and (E16) which are also shown.
for S—0 andS—x, respectively.

(= SN)YIV,—n—R3|/(47R?)

F. Thin cylinder and small sphere

Here we consider the caBe<R,, ¢, in which the radius  Equation(2.43) is consistent with the right hand side of Eq.
R of the cylinder Eq(2.14) ind 4 is much smaller than the (1 4), which describes the behavior ¢f{(r,) close to the
characteristic mesoscopic polymer lengths. The result Ecgyriace of the cylinder Eq2.14), i.e., forR,r, <R, ,&. The
(1.5 for the solvation free energy of a thin cylinder h  profile in the semidilutelimit for R<r, ,é<R, is given in

=4 is based on a reduction factor Egs. (E16) and (E17) of Appendix E. Figure 9 shows our
numerical result for the density profile of a thin cylinder in
ch|[rp,j]—>1—Aid(dl)Rdsz>2<f dri®(r,=0yr) semidilute solution which smoothly interpolates between the

(2.39 limits of Egs.(1.4) and(E16).
The expressions for the cylinder EQ.14) in Eqgs.(1.4)
and (1.5 obey the density-pressure relations E@s22 and
NN (2.23. InsertingF/(kgTA\)=27nRR 2 into Eq. (2.23 with
O(r, ,r)=>, NE 8(r .pj—r)8(rp;—r) (240  V,=\ and withS, from Eq.(2.24 leads in Eq(2.22 to an
P=1 =1 expressionM @(r )= (r, —R)?/R?, which is consistent
is the configuration dependent density of chains at the poinvith the expression Eq.1.4). Apart from the trivial linear
r=(r.,r;), the vectorrp ; is the position of monomey in  n-dependence df these expressions are independent of the
chainP, andAi(d, =3) equald®®2327. Equations2.39, inter-chain overlap. This contrasts with the number of miss-
(2.40 can also be used to evaluate the normalized densiting chains due to the presence of a thin cylinder or a small
profile M(r ) for the caseR<r, ,R,,¢. This is given by sphere,

M(rL):<®(rl ,ru)>cy|/n—>1—27TR'R)2(

of the Boltzmann weight for chain configurations. Here

(= NIV, =27nRR2(1+S), (2.4

Xf dr' (O (r 1O (0r’)))e, pur/n which follows from Egs.(2.25 and (2.41) and has a non-

trivial dependence on the overldp

=1-2 anf d*p e'PrL D(pL) (2.41)
TR ATNY ] 23 1+ sDpiL)
whereD is the Debye function
D(x)=2(e = 1+x)/x. (242 G. Form of the density profiles

In the last step in Eq2.41) we inserted the tree expression  Figyre 10 shows our numerical results for the density
of the bulk density correlation functirand used!, =3.In  profiles M, of a planar wall versus the scaled distance
the limit R<r, <R,.¢, the above expression reduces to  (y —R)/R,=2z/R, for various values of the overlaf. Fig-

ep 2 ure 11 shows the distang$”) =z, of the point of inflection
M(rl)—>1—2wRR§J' 2m)? e'Ple 2L from the wall as a function of. This should be compared
P with®! the density correlation lengtéy, of the bulk solution
=1-2R/r, . (2.43 which is also indicated in Fig. 11.
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T T T 1.002 T T

1.001—

Mpw

0.999

I

0.998 . -

FIG. 10. Bulk-normalized density profilesf,, for a planar wall vs the FIG. 12. Nonmonotonic behavior of the density profiles near a planar wall.

scaled distance/R, from the wall for various values of the inter-chain Note the enlarged scale of the vertical axis. The most pronounced maximum

overlaps. occurs for an overlap o§~5 and is about twice as large as the largest
maximum shown in Ref. 40 and less than a third of the largest maximum in
Ref. 41.

Using a lattice-walk modéf for polymers at the point,
van der Guchet al*° found that the density profiles 1,
approach their bulk value 1 in aonmonotonicoscillatory
way. Similar behavior was found in a recent Monte Carlothe size ratiopp=R/R, for various values of the overla§.
simulation of self avoiding lattice walks by Bolhuit al**  For R<R, all the curves merge to approach the overlap-
Our continuum mean-field theory for polymers in a goodindependent valué,— R/2, corresponding to the point of
solvent near the upper critical dimension predicts a similainflection in Eq.(1.4).
nonmonotonic behavior as shown in Fig. 12. The most pro- The maximum ofM found in the planar wall case per-
nounced maximum, which arises for an overl8p5, is  sists for finitep=R/R,, although its height decreases with
nearly twice as large as the largest maximum shown in Refdecreasing, as seen in Fig. 15. Note that the highest maxi-
40 and less than a third of the largest maximum in Ref. 41mum for givenp is always atS~5, independent of the value
The scaled distancg,,,/R, of the first maximum from the of p. Note also that the distance of the maximum from the
wall decreases with increasing overlap, as shown in Fig. 13urface divided byR, only depends or§ and is nearly in-
However, the decrease is much slower than that of eithedependent of the size ratjg i.e., the plot of Fig. 13 applies
EYIR, or ép IR, . This is also in qualitative agreement with not only for p=c but also for arbitraryp. The maximum
the behavior reported in Refs. 40, 41. persists all the way down to small size rape<l, see the
Now we turn to the density profiles near a cylinder of circles in Fig. 16, and it is correctly reproduced*byhe
finite radius. Figure 14 shows the distange=(r,),—R of  small radius expansion ER.41), which is shown as the full
the point of inflection from the surface of the cylinder versusline in Fig. 16.

0.8 T T T T T

06 — 045 fD/RZ

coo MR,

Zmax/ R

0.5 -1

0 10 20 30 40 50 0 25 50 75

FIG. 11. Scaled distancéP*)/R, from the planar wall of the point of FIG. 13. Scaled distancg,,/R, of the maximum of the density profile
inflection of the density profile vs the inter-chain overl@gcircles. The from the planar wall vs the inter-chain overlgp Note that this distance
overlap-dependence of the bulk density correlation lefggf. 31 £y with decreases much more slowly with increasing overlap t@M/R, and
an adjusted prefactor is shown for comparighuil line). & IRy In Fig. 11.
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1.00001 T T T

10° T T —T—— T T T

2 b
R/R, = 0.01
S =5
. | . ! . !
0999995 2 25 3 35
(ri— R)/R,
RIR, FIG. 16. Density profile with a maximum for a cylinder witR<R,

FIG. 14. Scaled distancg /R, of the point of inflection of the density ~(circles. The maximum is well reproduceill line) by the minimum in the
profile from the surface of a cylinder vs the size ratio RIR,, for various ~ bulk density correlation function on using the small radius expaniser
values of the inter-chain overla§. For smallp the scaled distance ap- Eds.(2.41) and(2.42].

proaches the overlap-independent behapi@rcorresponding to the point of

inflection in Eq.(1.4).

NIZ=p 2L, /Z,, (3.2
n=unn,, (3.3
and Z,,Z, are renormalization factors. Since the inverse
length scale parametex is arbitrary, one obtains a one-

The mean-field discussion in Sec. Il is a first step towardparameter family of renormalized theories. On changing the
obtaining thequalitative dependencies of various scaling inverse length scalg.—e *u, a critical polymer system
functions on the size ratio and the inter-chain overlap. Wewith L, large andn,L, small is mapped onto a noncritical
now show that semjuantitative results may be obtained one®° with

IIl. RENORMALIZED TREE APPROXIMATION IN THREE
DIMENSIONS

with the renormalization group. On mapping the “critical” L —>f()\)=D (u)L,e N (3.4
polymer system of interest with its long chains and large o thr ' ’ '
mesh size onto a “noncritical” system where mean-field n,—ni(A)=n.e", (3.9

theory applies approximately, we obtain scaling functionswhere the dimensionless renormalized density correlation

with the correct power-law exponents in three dimensionslengtf** is of order 1, and withu, — u, gp approaching the

These differ from the mean-field expressions. infrared-stable fixed point valug, rp. HereD | is a nonuni-
Following the well known path of field theoretic versal amplitude which depends on the strengthof the

renormalizatior,”® one reparameteriz&s the three basic excluded volume interaction. For the end-to-end distaRge

variables b,N,n in terms of “renormalized” variables of a chain in dilute solution and for the osmotic pressure, the

u,,L,,n,, where surface tension, and the coefficient of spontaneous curvature
bil4= (4m) Y247 u, /3, 3. for arbitrary inter-chain overlap, the mapping yiétds

RE=u 2X(L, ,up)=p 2 XL, ,Up rp), (3.6

=P(n,,L,,u)=PM, L U ep), 3.7

1.002 T T T

nkgT

_lQ(nr 1Lr aur):M_le)\Q(ﬁr 1fr 1ur,FP)v
(3.8

1.0015

g
nkgT ~

K
nkgT

1.001

:/'L_zT(nr Ly aur):M_zeZ)\T(ﬁr 1fr U Fp)-
(3.9

M((’l)max - R)

oo0s The noncritical manifold is chosen so thét

Po —
—+lon L =1, (3.10

L
1 L 1 b A | L r
¢ ° 0 s 2 wherep, and{, are constanf§ of order 1. The condition Eq.
_ o . _ o (3.10 interpolate®* betweenL,=0O(1) in the dilute limit
FIG. 15. Height of the maximum in the density profile near a cylindrical rod andL, /(errz)“ L, /S=0(1) in the semidilute limit, i.e., the

vs the inter-chain overlag, for various values of the size ratjp=R/R, . . .
The highest maximum for givep is always atS~5, independent of the 1€NGth scale is set by the end-to-end distance and the corre-

value of p. lation or screening lengtf, respectively.
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For the noncritical state the functiod$ P, Q, 7 can be I 1apy(1 )
) . ) =1+-——|——1]. 3.2
approximated by their tree expressions nkaT 2 %o o (3.22
XL Ur pp)~ Xyed Ly U pp) = 2L, (3.1)  For the surface tension in Eq&.8), (3.13 and the coeffi-
_ — _ — cient of spontaneous curvature in E¢3.9), (3.14), we also
P(n, L, vur,FP)N,Ptree(nr Ly rur,FP): 1+ %atfﬁr ) need
(3.12 o
- = (2L) Y= (2p0) ™", (3.23
Q(n;, Ly ,Ur pp) =~ Qyree( Ny s Ly, Uy pp) ) ' °
_ which follows from Eq.(3.17), and
= (2L,)Y3g(aL?n,), (3.13
=1 =1 T h(al 2 wlet=p 1(0 DLLr)V=vV(2p )YR (3.29
T(nrervur,FP)WIZEree(nrer!ur,FP)ZZLrh(aLrnr)a 0 0 X ’
3.1
(3.19 where Eqs(3.17), (3.4 and Eq.(3.16 have been used in the
where last two steps. This leads to
a= 3(4m)*u* =8.11 (3.15 o apo (1
? —R v Vgl PO ——1)) (3.25
in d=3. HerealL?n, follows from S=bN?n in Eq. (2.3 on nkgT fo \v
using the reparameterization Ed8.1)—(3.3), dropping the  gng
ensuingZ-factorsZ,,/Z2 which is consistent within the tree
approximation, and using the fixed-point valugpp=§u* K —R2,2v-1 apro E—l (3.26
with u*=0.364 ind=3 dimensions, given in Eq13.4 of nkgT xY o \v ' '

Ref. 8. The functiongy and h are our mean-field scaling

functions from Eqs(2.31), (2.32, and Fig. 5 and from Egs. In the special cases of small and large overlap 620

(2.34), (2.39, and Fig. 6. implies

For the end-to-end distanc®, of a chain in a dilute II 1, 1 apg| os| YD
solution, n, vanishes, and the flow condition E(.10 be- W* 1+ 28pPo %, 277 E/ﬁ )
comesL,=p,. Thus Eq.(3.4) leads toe*=(D L, /po)?",
and Eqs.(3.6) and(3.11) to the relation s—(0») (3.27

L (wRY)?=pg 2D L,)%". (3.16  for the osmotic pressure in E¢B.22),
We now evaluate the scaling functions for the osmotic pres- o \F 2 —2 1
sure, the surface tension, and the coefficient of spontaneous ni TR, | V7 1+1apgN1=Lopo | ¥~ 5|8/
curvature. Here it is advantageous to use the first term in Eq.
(3.10, 2 [ape| 2 £os| (L IE D)

3\ 7 ) o2 , 5—=(0)
Po 0 Po
r

. . . for the surface tension in E¢3.25), and
as an intermediate varialle. Note that\ drops out of the

combination, K 1 _
- TRz | 3 (12800 2~ Lopo A2v = 1)]s),
(1=v)w® 1= Zopg " (D L) 51 R
B —(2v-1)/@v—1)
=lopo (d/2)+ln(7?,x/\/§)d, (3.18 %(4 In 2_1)(%2) >' s—(0)

In the last step Eq$3.16 and(3.3) have been used. In three Po
dimensions the mean square radius of gyra‘l?oéE 3R§'X is (3.29
equal toR 7/2, to a very good approximatidnand the usual  for the coefficient of spontaneous curvature. The exponents
geometrical overlagz;=s equals 1/(3v—1), (1—v)/(3v—1), and — (2v—1)/(3v—1) indi-

5= nR3~n(RX/\Q)3Esg")/(2\/§). (3.19 cate thatll/kgT, o/kgT, and x/kgT in the limit of strong

overlap only depend on the monomer density, i.e., only on
Thus, in three dimensions the intermediate variable Eqgthe combinationnRi’”, and are proportional tg~3,&2,

(3.17) is related to the geometrical overlap via and &1, respectively. The values of the two constants,
(1= 0)v® = {opy Vs (3.20 po=181, (,=10.9 (3.30
Since follow from comparing Eq.(3.27) with known amplitude
1 ratios of the osmotic pressufé’
al; n,=§— —— ) (3.22 Figure 17 shows the surface tension which follows from
0\ Egs.(3.25 and(3.20. The limiting behavior for small and
one finds from Eqs(3.7), (3.12 the osmotic pressure, large overlap is given by
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4 ' T v T - ‘ overlap-dependence ?»~1/(@"~1) for s— o leads to a con-
stant in the mean-field approximatigwith »=1/2), while it
leads to a power-law decay in the renormalized tree approxi-
mation (with »=0.588.

IV. SUMMARY AND CONCLUDING REMARKS

o/ (nksTRy)

We have studied the solvation free energy and the poly-
mer density depletion profile of a single mesoscopic colloi-
dal particle immersed in a solution of free nonadsorbing
polymer chains. Our main goal was to give a global descrip-
tion valid for arbitrary values of the particle to polymer size

0 ' 03 ' T ' 5 ' 2 ratio p=R/R, and of the inter-chain overla§=n/n*. It is

s =nRy interesting to see how the qualitatively different behavior
evolves in the limits of small and large size ratio and of a

FIG. 17. Scaling function of the surface tension in the renormalized treed

approximationEgs. (3.25), (3.20]. The quantitys is the geometrical over- ilute and a semidilute polymer SOIUtlon,' .
lap in Eq.(3.19. The dotted and dashed lines show the asymptotic behavior ~ Most of our results have been obtained within a mean-

for small and larges, respectivelyicompare Eq(3.31)]. field description of the polymer solution; see Ed2.8)—
(2.13. While this is quantitatively correct only near four
dimensiong?2 most of the qualitative features persist down to
—.(0.7981+ 1_032173)::,], three dimension_s. The mean-field approximgtion is a consis-
tent theory, which obeys exact relationships such as the
density-pressure relatiofsee Eqgs.(1.2), (1.3 and (2.22),
uJSlnRi)O'SB%’ $—(0). (3.39 (2.23] and identities which follow from the small radius
In Eqg. (3.3) the leading contribution in the dilute limit expansion(see Secs. IIF and I1)G Our mean-field results
equals the result for ideal chains. Actually in eexpansion obtained for a cylindrical particle in four dimensions can be
one finds a small correction 0.798).798(1-0.05%) due used to describe the qualitative features of a spherical par-
to monomer—monomer repulsiohThe value 1.781 of the ticle in three dimensiongsee Sec. Il R More quantitative
universal amplitude in the semidilute limit is not too far from results in three dimensions were obtained for the surface ten-
the extrapolation 2.19 to three dimensions of the leadingion of a planar boundary and for the coefficient of sponta-
contribution 272¢/9 in the e-expansion. The leading contri- neous curvature in a Helfrich expansion by means of a
bution near four dimensions follows from inserting the fixed “renormalized tree approximation(see Sec. Il
point value Eqgs(2.4), (2.3) into the mean-field expression Here is a summary of our main results.
Egs.(2.32 and(2.32). (1) Scaling functions for the free energy of immersion of

Figure 18 shows the coefficient of spontaneous curvature particle and for the pressure which the polymers exert on
which follows from Eqs(3.26) and(3.20. In the case of the the particle. Our numerical mean-field results in Figs. 2 and
coefficient of spontaneous curvature the mean-field resul® interpolate smoothly between the analytical results for
(Fig. 6) and the result from the renormalized tree approxima-small[Egs.(1.5 and(1.2)] and largdEqgs.(2.28 and(2.29]
tion (Fig. 18 are qualitatively different. Note that the size ratiop. Note that the results for smailare independent
of the inter-chain overlais. For increasingp the pressure
decreases, due to an entropically driven decrease in the poly-
mer density near a particle of increasing size.

(2) Scaling function for the decrease of the number of
chains(— 8A\') on immersing a particle: In the limits of large
and small size ratiop we obtained the analytic expressions
1 in Egs.(2.38 and(2.44), respectively. Our numerical results
N in Fig. 4 interpolate smoothly between these limits.

04 AN 7 (3) The density-pressure identity in EqR.22, (2.23
N ] within the mean-field approximation has been derived in Ap-
~o pendix A. In order to check the accuracy of our numerical
0351~ N 7 procedure, we compare, in Figs. 7 and 8, the amplitude of the
SS. | polymer density profile near the surface with the pressure for
== the case of a planar wall and of a weakly curved particle
034 ' 03 ' 0 ' 15 2 surface, respectively. The overlap-dependence of both the
§=nR} bulk osmotic pressure and the surface tension can be identi-

fied with high accuracy in the density amplitude. An analytic

FIG. 18. Scaling function of the coefficient of spontaneous curvature in the . g P .
renormalized tree approximatiofEgs. (3.26), (3.20]. The dotted and check for the semidilute limit is presented in EE12) of

dashed lines show the asymptotic behavior for small and large geometrice_ﬁ‘ppendix E. The case Of a small particle radius is discussed
overlaps, respectivelyfcompare Eq(3.29]. in the paragraph preceding EQ.44).

g
nkgTR,

0.5 ; . . — —

045 -

2)
-,
,

n/(nkBT
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(4) Shapes of the density profilest: Here we find that APPENDIX A: DENSITY-PRESSURE IDENTITY
one has to distinguish between gross anq fine—st'ruct'ure ef- Pressure on a sphere from a single ideal chain
fects. The gross form ofM(r ) is a function which in-
creases monotonically with increasing and has a point of The partition functiorz!!(L;r »,rg ;R) of an ideal chain
inflection atr, — R=¢, (see Figs. 10, 11, and L4Nhile for with ends fixed at 5, andrg outside a spherical particle with
R>R, the scaled distance of the point of inflectign/R, ~ radiusR satisfies the diffusionl_ik_e_equati(ﬁ_.8) with L',r,V
from the particle surface decreases with increasing overlaftPlaced byL,r,,0 and the “initial condition” Eq.(2.10
(roughly in the same way as the density correlation lengtfePlaced byZ!?(L=0;ra . rg;R)=8(ra—rg). Itis useful to
&), for R€R,,&p it is of the order ofRIR,, i.e., indepen-  introduce the Laplace transform
dent of the overlap. On a finer scale we findnaximumof o
M (see Fig. 12 In the case of a planar wall similar maxima GS(t;rAvrB):f dLe HZIO(L;ra,rg;R)
have been reported in Refs. 40, 41. We find that the maxi- 0
mum persists down to small size raB<R, and is always =L£7L;rp,rg:R), (A1)

largest forS~5. Finally we have established that for the case , . . . .
R<R,,&p in which the cylindrical(spherical particle acts Wh'cg.'s g corrilauctj)n funCt('Pe(iﬁ;{‘ﬁ(JA) <ﬁt_(ff3)}s of aoGalisg—
as a line(point) perturbation on the polymer solution, the lan inzburg—Landau mo and satisfies an Lrnstein—

maximum can be understood in terms of a minir@of the ~ 2SKE type equation

density—density correlation function of the pure polymer so- (—ArA+t)GS(t;rA,rB)= S(ra—rg). (A2)
lution; see Eq(2.41) and Fig. 16. These single-particle re- (0] ) )
sults imply conclusions for the interaction between two par-B0th 2™ and Gs vanish on the surfacg of the spherical
ticles: The r-dependence of the free energy cost ofParticle, which is centered at the origin.

immersing asmall spherical particle at point in the neigh- ~ NOw consider a particle with a SlfrfaSé which deviates
borhood of our particle or wall is proportional to the Slightly from the spherical surfacg S’ is obtained by shift-
r-dependence of the single-particle density profite ing each surface points of S by a small amounty((1s)

(5) Density profile for small particle radius in the semi- toward the center o8. Here (s is the solid angle of the
dilute limit: The full curve in Fig. 9 shows the density profile surface point's. For the par’tu':ular casea(QS)=const or
for the length ratioR: é: R, =1:10:100 which corresponds 7({}s)*cosds, the surfaceS' is also spherical, but, com-
to a large overlap o5=25. Here the density crosses over Pareq toS, its radius is decregse(R(fR— 7) Or _|ts center
from the &independent power law behavior f&,r, <¢ is shifted along the polar axis. To first order in the small

given in Eq.(1.4) to an exponential decay toward the bulk deviation 7, the correlation functiorGg for the deformed
value forR<r, ,& which is ruled by the screening lenggh surfaceS’ is related to correlation functions for the nonde-
1

see Eqs(E16) and (E17). formed spherical surfac via
(6) Surface tension and coefficient of spontaneous cur-
vature: In the Helfrich expansion E@2.28 for a weakly GS’(t;rAvrB):GS(t;rA’rB)+f dSn(Ls)
curved particle surface we have evaluated the scaling func-
tions for the overlap dependence of the surface tensiand X{3(0nd(rg))? d(rp) d(re)ts. (A3)

of the coefficientk of spontaneous curvature both in the
mean field and renormalized tree approaches. In the case
o the mean-field result in Eq82.30), (2.31), (2.32), and Fig. [L(0,(re)2- (ra) d(re)ts

5 agrees qualitatively with the renormalized tree result in

Egs. (3.25, (3.20, (3.28, (3.31), and Fig. 17. However, ={Ind(rs)(ra)}sldnd(rs) d(rp)}s, (A4)

there are qualitative differences in the casexpfis can be due to Wick's theorem. Obviousi@s in Eq. (A3) satisfies

seen by comparing the mean-field result in Fig. 6 with theEq_ (A2) for arbitrary pointst ,, rs off the surface. As we
renormalized tree prediction in Fig. 18. In particular the scal-g, 4\ pelow.

ing law «/(NR2)xs™ =1/~ in the semidilute limit
[which guarantees that only depends on the combination Gg(tira,re)—=[ra=(R=n(Qa) Ndnd(ra) ¢(ra)}s
nRi”’ of the segment density and is proportionalétd® 2] (AS)
leads to ans-independent behavior in the mean-field ap-asr, approaches the surface anglis off the surface. Thus
proximation(with »=1/2) and to a power law decay in the Gg, vanishes at the deformed surfage

overlap s in the renormalized tree approximatigqwith v To derive Eq.(A5) we use the explicit form ofGg,
=0.588. which for a sphere il dimensions is given By

Gs(tira,rg)={d(ra) é(re)}s

gferean is a derivative perpendicular 8, and

=> WG (t;ra.rg;R). (A6)
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Here a=(d—2)/2, ¥ is the angle between, andrg, and
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whereC{* are Gegenbauer polynomials, and

G

<r<r>>“Ka+|(ﬁr>>(la+|<ﬁr<>

o1 (VER) )
—Ka+ t < 1
< (i et

wherer _=min(rp,rg), '~=max(,rg) andl, K are modified
Bessel functions. This implies

{(9nb(rs))d(ral}s

(A8)

=2 W7 r )RR Kt (V) Kot (VER).

(A9)

Equation(A5) now follows since Eq(A9) for r,—R be-
comes as-function in the solid angle, i.42

im R [ A0S (dnb(r9) Blr )= (0
rA~>R
(AlO)

for arbitrary smooth test functions f. While
{(dn(rg)) d(ra)}s vanishes because of the Dirichlet condi-
tion if r, approaches a point on the surfaégeavhich is dif-
ferentfrom rg, the Dirichlet condition is broken fary,—rg
by the operatop,¢(rg).

With the help of Eq(A3) one can express the change in
free energy of a polymer with two fixed ends on deforming

the particle surface

Fs—Fs_ _lnﬁ—les, _
kT L 1Gg

(A11)

in terms of the local polymer pressupg€S) which acts on a
surface elemend S of the nondeformed spherical surfaSe
Here £ ! is the inverse of the Laplace transform in Eq.
(Al). Since the two ends are fixedigt, rg,

P(S)  p(rs;ra.re)

keT  kgT

- L7 Y3(0nd(re))% d(ra) d(re)ts
B E_l{¢(rA)¢(rB)}S .

If only one end is fixed at, and the other end is free,

(A12)

P(S) p(rs;ra)
keT  kgT

L “H3(0n(r9))?- b(ra) fdrged(re)}s
LY p(ra)[drge(rp)}s '
A simple explicit result follows for dong chain with one end
fixed atr, outside the sphere. In this caBgr,<R,, the

Bessel functions in EqA9) can be expanded for small ar-
gument, and one finds

P(rsira)  (d=2)I'(d/2) (ra/R)*-1 1

keT 2797 1 (RIrp)? 2 fra—rg?®
(A14)

(A13)
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In d=3 the derivative of the polymer free energy with re-

spect to the radius of the sphere is given by

fdcp(rs;rA)— 1
“ kgT  ra—R

(A15)

and the repulsive force between the fixed point and the

sphere by

P(rs;ra)  Rirp
keT  ra—R’

f dScosﬁ,s (Al6)

N

Both results are consistent with the free energy cost,

H

1_ - 1

A

of introducing the spherical obstack
The pressure in EqgA12) and (A13) is related to the

density of polymer material near the surface paigt For

example for an ideal chain with two ends fixed gtandrg,

the fraction of monomers,

Fs

ket "

(A17)

1 N
ﬁ(r)drENZ 8(r—r;)dr, (A18)
i=1
in a volume elementr is related to the partition function
ZM of a chain subject to an external potenti&l by

5w(r)|nz (LvrAvrB1R)

WwW=0

(A19)
Here ZI" satisfies the diffusionlike equatiof2.8) with
L’,r,V replaced byL,r,,W. The derivative ofzZ" is re-
lated by

R2
7X<19(r)>A,B:_(

_ M1 - .
<5W(r)z (L,rA,rB,R))W=O

=£1{E¢Z(r)-¢(f )p(r )] (A20)
2 A B

S

to the Ginzburg—Landau correlation function with? in-
serted. Wherr approaches the surfacg of the spherical
particle,

297N —(r=R?3(90(r9)?,

and Eq.(A12) leads to the density-pressure relation,

(A21)

(r—R)? P(rs;ra,re)

(9(r—rg))ap—2 Ri KaT . (A22)
For later use we record the relation

d
- grZ%(LirareiR)

—f d 0 ZM(L; ‘R

- 5W(I’) ( ervrB! )

(r—R)Z) : (A23)
rHrS,W=O
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tion” A with respect toWV. If the extremum occurs atV
=Y, the grand-canonical polymer free enety perkgT in
mean-field approximation is given by

Fe=AlV],

where

(B1)

|4
A[W]=fdr’(—gZ[W](L,r’)—%Wz(r’) . (B2

FIG. 19. Diagrammatic representation of the derivative of the free energy

cost with respect to the radius of the cylindrical partides.(A23), (A24)].
Each diagram has its counterpart in the fugacity expansioriA&2p) of the
polymer density near the surface.

which follows from Eq.(A3) with an angular-independent
7= —dR and from Eqs(A20) and (A21).

The relations Eqgs(A3), (A5), (A10)-(A13) and (A23)
can be generalized in an obvious way to other surf&es
such as cylinders or ellipsoids. In particular, E423) ap-
plies to a cylinder of radiu®R and infinite length ifr is
replaced by the distanag of pointr from the axis of the
cylinder.

2. Density-pressure identity for mutually repelling
chains in the mean-field approximation

To derive Eq.(1.9 it is convenient to use the grand
canonical ensemble. The derivative of the free
cylinder in Eq.(1.2) is given by

d P\ _ 5 & d AU A24
dRksT &4 M| dR7* (A24
and the density profile of free polymers by
N
nM(rL>:<®<r>>E< P ﬁp<r>>
N
232 §_<_Lz(/\/)[w])
L= M OW(r) ¢ W0
(A25)

Hereﬁp=(1/N)E]N:lé(r—rp'j), andZﬁN) is the connected
part of the partition function of\" chains with monomer—

monomer interaction in the tree approximation. There is a

obvious correspondence between tree diagrams of/A&4)
shown in Fig. 19 and tree diagrartwith r-insertions of Eq.
(A25). Using Eq.(A23) for each ideal-polymer line in Eq.

(A24) generates all the corresponding diagrams of Eq.

(A25), with prefactors such that EqL.3) holds in the form
of Eq. (2.22.%°

APPENDIX B: AUXILIARY FIELD AND MEAN-FIELD
APPROXIMATION

and

o

Here we consider a polymer solution with an embedded par-
ticle inside a large but finite volum&. The spatial integra-
tion in Eq. (B2) is over that part of/ which is outside the
volumeV occupied by the particle. Apart from layers with a
width of the order of the correlation length around the par-
ticle and the boundaries of, the solution shows bulk behav-
ior with V(r)=Voui, ZM(L,r")=e"buk, and M=1. The
chain fugacity{ may be eliminated in favor of the chain
density, yielding

I 4

) = e WVbuk M(r) — BV(r).
w=y

SA
SW(r)

(B3)

d Fs d B |4
n=-{47 Wzgd_g fe™Voukt TR bulk
= e Mok, (B4)

energy for a

Note that the/-dependence of,,,, does not contribute to the
derivative, due to the extremum condition EB3). Substi-
tuting Eq.(B4) into Eq. (B3) shows that

nLb

L S
|—4M(r)=EM(r),

i.e., the potential field at the extremum is identical with the
mean-field Eq(2.9), and
vaulk: S (BG)

The first term on the right hand side of E&2) can also be
expressed in terms of the density profilé, since due to the
chain structure

W(r)= (B5)

f dr'zW](L,r'):fdrz[W(L",r)zM(L—L”,r) (B7)

r}or arbitrary L”<L in the finite volumel/. Thus Eqs(B1),

(B2), (B5) and(B7), (2.12 yield

1
M(r)+§SM2(r)

Fe= —nf dr : (B8)

and the free energy cost of immersing the particle has the
form of Eq.(2.13.

APPENDIX C: SOLUTION OF SELF-CONSISTENT

The excluded volume interaction between monomers i&£QUATIONS

the volume integral of the square of the monomer density
operator. The square may be linearized by introducing a flu

tuating potential field/V with a Gaussian weight, and the

mean-field approximation is obtained on replacing functional

integration ovenV by taking the extremum of the new “ac-

C_.

In order to solve the system of Eq&.8—(2.12), we
introduce the Laplace transform of the partition function

F(L,r) [see Eq(Al)]

x(t;r)=LZ(L,r). (C1)
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If we now set

p=r, /YL, r=Lt+S (C2
and

XAp)=x(t;r)/L, (C3
then Egs(2.8) and(2.10 lead to

~p i~ di_l,.,,_. o\ Y~ o

—X:(p)— Txf(p) +[7+ V() Ix(p)=1, (C4
with

SV(p)=8[~1+M(r.)]. (CH
According to Eq.(2.12),

d
M= | S, (9

where the integration pathis parallel to the imaginary axis
and to the right of all singularities of the integrand. The
boundary condition E¢2.11) now reads

XAp—RINL)—0, (o)
and the bulk limit is given by
oo 1
lim X-(p)=—. (Cy

p—»
To solve Eq.(C4) with the conditions Eqgs(C7), (C8),
we assume that the range of the potensi#lis finite, i.e.,

there exist¥ a p, with 8V(p)=0 for 5=5,. Thus, in the
rangep=7p, the relevant linear differential equation is

X7(p) &
X’T p 'Z’)

X-(P)+7x(p)=1 (C9

with the boundary condition EqC8), whereas in the range

Ps=R/I\JL<p<P, we numerically solve the initial value
problems

1"~ dl_l 1~ Sy~ ~
—9:(p)— TQT(P)+[T+ oV(p)19.(p)=1,

- )~ C10
0,79 =0, 9.(py)=0 (€10
and
"o~ di_l 1~ Sy~ ~
—h(p)— —=—hL(B)+[ 7+ VB)1n,(p) =0,
- )~ C11
h(B9=0, hi(Po=1. (€19
The solution to Eq(C4) is given by
~ ~ ~ ~ 1 ~ ~
XAB)=| 9P +esh(B),  —+eip Ko (Byr)
for (RIVL<p<Po, Po<P), (C12

wherea=(d, —2)/2 andK, is a modified Bessel function.
The constantg; andc, are calculated from the continuity
condition ofy, andy. atp="7pg.

Thus after choosing a starti*fgpotential 5'170(“;3), we
calculate with(C10—-(C12 a solution}g0 which by means

T

Maassen, Eisenriegler, and Bringer

of Egs.(C6) and (C5) yields a new potentiabV;(p). Solv-
ing the problem Eqgs(C10—(C12 again with SV(p) re-
placed bysV;(p) and following the same steps leads to a
potential §V,(p) and so on. The sequené&:(p) then con-

verges to the self-consistent potent#(3), which yields
the monomer densityM(r ) directly from Eq.(C5).

APPENDIX D: EXPANSION FOR SMALL OVERLAP

In this section we calculate analytically the scaling func-
tions g(S) and h(S) of the surface tension and the coeffi-
cient of spontaneous curvature in the dilute ligi€ 1. First
we expand the density profil®1(r) in powers ofS

M(r)=MOr)+ S [MO(r)—mHE(n)],

where M [°] is the monomer density for ideal chains. The
form of M [ follows from Eqs.(A25), (B4) and Fig. 19 and
satisfies the identity

(DY

f dr, {MM(r)—[MmPO(r)]% =0 (D2)
r >R
[see Eq(B7)]. Inserting Eqs(D1) and(D2) into Eq.(2.13),
one finds

A

F —
keT

vV, + fr >Rdrl[1—/\/l[°](r)]}

S
+=n Vﬁf dr [1- M) ]2 +0(S?).
2 r, >R

(D3)

To obtain the coefficient of spontaneous curvature, we
expand to first order in R. The expansion forM [ is
given by

MP(r) =M —R)

dl_l rJ__R
2

SMO(r, —R), (D4)

with

MBl(z)=1-8Perfc(y) + 41 erfq 2y),
D
SMOl(z)=8i? erfqy) — 8i? erfq( 2y), (DS)

where ferfc is the second iterated complementary error
function and

oz 1z
Y 2L v2 Ry
After inserting Eq.(D4) into Eg. (D3) and settingr |
=R+ 2z, comparison with Eq(2.28) yields

(D6)

2 S
nUBT:fO dz[l—M{,‘i&(z)+§[1—M[§3(z)]2 +0(8?)
(D7)

and
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K
nkgT

& 1
=2f0 dz z( 1-M3k2)- M [O](z))

+S f;dzz[l—Mm(z)][l—M{)%(z)

—sMO(2)]t +0O(S?). (D8)

All the integrals can be calculated analytically and give the

results in Egs(2.32 and(2.39), respectively.

APPENDIX E: THE SEMI-DILUTE LIMIT

The self-consistent mean-field procedure in E@s8)—
(2.12 simplifies considerably in the semidilute limft— .
Due to “ground-state dominancé’the L'-dependence in

Zi(n—e " Ihy(r) (E1)
factors, i.e.,y is independent of’, and Eq.(2.12 leads to

M(r)=y2(r). (E2)

Thus ¢ vanishes at the particle surface and tends to 1 far

away from the particle. Substituting EqE1) into the
diffusion-type equatior(2.8) and using Eqs(2.9) and (E2)
yields’3

L
A== y(r)+y3(r). (E3
Note that the characteristic lengtfi./S in Eq. (E3) is of the
order of the correlation or screening length?

Equation (E3) can be used to calculate the bulk-
normalized densityM for a planar wall and for a generalized
cylinder of large radiuRR. In this case,

@ d -1 d
Arip(ry )= R+—E p(ry)

ri
d2 d, -1 d
*(an* T )wm (E4
which implies the small-curvature expansion,
(1) = Prpu(X) + Sh(X), (ES
with 8¢y=0((R,/\/S)/R). Here
You(X)=Thx, (E6)
with
x=(r. ~R)SI(20)= - (E7)
is the solution of
1 d? 5
2 a2 Pow= = Ypwt Ypw (E8

and determines the density profilet,,,,= 1//  near a planar
wall. Collecting the terms of ordefl{xl\/g)/R in Eqgs.(E3)-
(E5) leads to the linear inhomogeneous equation,

Density depletion profile 5307
d? NG d
2 _ X
(dx2+2_6¢pw) OP(x) = R _1)&¢pw
(E9)

for 8. The solution of Eq(E9) which vanishes both fox
—0 andx—oe is given by

R, INS
S0 =2 d, - W00, (10
where
v L3 s, 3.1,
(X)= 5|2 Cosiix " Cosfix "2 "X" 27 2°
(E1D)

The behavior ofM near the surface follows from substitut-
ing Egs. (E5), (E6), and (E10, (E1)) into Eg. (E2). This
yields

M (rL_R “slax
— RX
which is consistent with the density-pressure prediction in
Eq. (2.37).
Inserting Eqs(E2), (E5), (E6), (E10), (E1D for M into
Egs.(2.13 and(2.19 leads to the free energy in the semi-
dilute limit. Note that the second term in the integrand of Eq.

(2.13 dominates in the semidilute limitS—o.. On
comparing® the 1R expansion of the integral in Eq&.13),

Ryl J‘

_(di D, (E12

(2.19,
RNS (= RIS |97t
L fo dx 1+XTx} (1= Ypw— A0padY]
dL_ K
—S, O'+T§ [(nkgT), (E13

with the small curvature expansion Eg.28, one finds the
surface tension,

RS
2

0- j—
nkgT

foxdx[l—w;,‘vv(x)], (E14)

and the coefficient of spontaneous curvature,

i = RE [ XX 0T~ AT ),
(E1H

Inserting ¢, and ¥ from Egs.(E6) and (E11) and evaluat-
ing the integrals leads to the semidilute results in EBR2
and(2.35.

After the discussion of a cylinder with large radigs
<R let us now turn to the density profile around a thin cyl-
inder with R<¢. While for R,r, <¢ Eq. (1.4) applies we
find for R<r, ,¢ from Eq.(2.41),

R
M—1-2—e /¢ (E16)
r
with>*
E=LI(2S) =R, /(2VS). (E1
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Here we have taken into account tat is much larger than
r, and¢and have expanded the Debye function in €441
for large argument.

Finally we consider the scaling behavior in the semidi-

lute limit for R/ ¢ arbitrary. From Eq(E3) one finds for the
density profile,

r, R

R

For the free energy cost EqR.13, (2.19 in the semidilute
limit,

M(rl)I'rﬁ( (E18

PV STy +fd3 1-M?2 E19

nkeT 2| Ve rf1=Mm=roly, (E19
one finds the scaling forms,

FIV, w~ )

—— =SR¥Y(R/&)=RR:Y(R/¢) (E20)

nkgT

and Eqgs.(1.5 and(2.298, (2.31)—(2.35 lead to the limiting
behaviors,

Y o T2 AT AT a1
(y)— Y 3y 3( n )

for y—[0.<]. (E21)
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brackets for averages over chain configurations. 2nSfdr [(LI2S) (V) =3¢+ 3 ¢7].

“SFor example, ird=3 dimensions this can be checked for the complete set®*The density bulk correlation function of a semidilute polymer solution in
f(Qg)=€m#sP"(cosdy of spherical harmonics by using the “addition d dimensions decays fof<r<R, in the mean-field approximation as
theorem” to expres@f”z)(cosﬂrsyrA)= Pi(cosd,,) in terms of a sum o (@ D2g=1¢ whereé is given by Eq.(E17).
of products of spherical harmonics. 550ur result confirms the form Ed2.28 of the Helfrich expansion for

50Wwe use the fact that the limit—rg in Eq. (A23) can be interchanged with generalized cylinders with arbitrag, <d.
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