000042967 001__ 42967
000042967 005__ 20180210135501.0
000042967 0247_ $$2DOI$$a10.1088/0953-8984/16/10/R01
000042967 0247_ $$2WOS$$aWOS:000221311700008
000042967 037__ $$aPreJuSER-42967
000042967 041__ $$aeng
000042967 082__ $$a530
000042967 084__ $$2WoS$$aPhysics, Condensed Matter
000042967 1001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b0$$uFZJ
000042967 245__ $$aSqueeze-out and wear: fundamental principles and applications
000042967 260__ $$aBristol$$bIOP Publ.$$c2004
000042967 300__ $$aR295 - R356
000042967 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000042967 3367_ $$2DataCite$$aOutput Types/Journal article
000042967 3367_ $$00$$2EndNote$$aJournal Article
000042967 3367_ $$2BibTeX$$aARTICLE
000042967 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000042967 3367_ $$2DRIVER$$aarticle
000042967 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v16$$x0953-8984$$y10
000042967 500__ $$aRecord converted from VDB: 12.11.2012
000042967 520__ $$aThe dynamics of squeeze-out of thin liquid films between two solids is perhaps the most central topic in tribology. It is directly relevant for wear and indirectly involved in many other important processes, e.g., adhesion and friction. In this review we present a broad overview of the basic principles of squeeze-out, and present a number of applications to adhesion, friction and wear. We first describe the squeezing of 'thick' liquid films (thickness larger than similar to100 Angstrom), which can be described using the Navier-Stokes equations of hydrodynamics, and present experimental illustrations for soft solids (rubber) and hard solids (mica). Next we consider molecularly thin liquid films. Here the squeeze-out occurs in a quantized manner involving a monolayer at each step. We discuss the nature of the nucleation of n --> n - 1 monolayer squeeze-out, where n is the number of trapped monolayers. We consider in detail the nature of the spreading which follows the nucleation and show that the boundary line may exhibit instabilities. Sometimes the squeeze-out is incomplete, resulting in trapped islands. These islands may be pinned, or else they drift slowly to the periphery of the contact area where they get squeezed out through narrow liquid channels. We consider also dewetting at soft interfaces and present an application to the adhesion of soft objects on wet substrates. Finally, we present molecular dynamics and kinetic Monte Carlo simulation results on various aspects of squeeze-out for liquid-like and solid-like lubrication films, and discuss the implications for wear.
000042967 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000042967 588__ $$aDataset connected to Web of Science
000042967 650_7 $$2WoSType$$aJ
000042967 7001_ $$0P:(DE-HGF)0$$aMugele, F.$$b1
000042967 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/16/10/R01$$gVol. 16, p. R295 - R356$$pR295 - R356$$q16<R295 - R356$$tJournal of physics / Condensed matter$$v16$$x0953-8984$$y2004
000042967 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/16/10/R01
000042967 909CO $$ooai:juser.fz-juelich.de:42967$$pVDB
000042967 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000042967 9141_ $$y2004
000042967 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000042967 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000042967 970__ $$aVDB:(DE-Juel1)60086
000042967 980__ $$aVDB
000042967 980__ $$aConvertedRecord
000042967 980__ $$ajournal
000042967 980__ $$aI:(DE-Juel1)PGI-1-20110106
000042967 980__ $$aUNRESTRICTED
000042967 981__ $$aI:(DE-Juel1)PGI-1-20110106