000043064 001__ 43064
000043064 005__ 20180210125929.0
000043064 0247_ $$2DOI$$a10.1016/j.theochem.2004.10.027
000043064 0247_ $$2WOS$$aWOS:000226393300029
000043064 037__ $$aPreJuSER-43064
000043064 041__ $$aeng
000043064 082__ $$a540
000043064 084__ $$2WoS$$aChemistry, Physical
000043064 1001_ $$0P:(DE-Juel1)VDB793$$aKoglin, E.$$b0$$uFZJ
000043064 245__ $$aEvaluation of ab initio methods for the calculation of 13C NMR shifts of metabolites of methabenzthiaruzon
000043064 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2004
000043064 300__ $$a
000043064 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000043064 3367_ $$2DataCite$$aOutput Types/Journal article
000043064 3367_ $$00$$2EndNote$$aJournal Article
000043064 3367_ $$2BibTeX$$aARTICLE
000043064 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000043064 3367_ $$2DRIVER$$aarticle
000043064 440_0 $$013145$$aJournal of Molecular Structure - Theochem$$v712$$x0166-1280$$y1
000043064 500__ $$aRecord converted from VDB: 12.11.2012
000043064 520__ $$aWe have evaluated quantum chemical methods for the calculation of C-13 NMR chemical shifts in 2-aminobenzothiazole (ABT), 2-(methylamino)benzothiazole (MABT) and the reaction product from ABT with benzoic acid, important species in a variety of applications. While using the BLYP DFT method, the GIAO and CSGT methods to compute chemical shifts performed very similar for all three molecules, whereas the LORG methods seem to lead to a discrepancy. PW91 performs similarly, while MP2 leads to unsatisfactory results. The empirical ACD program yields very good absolute values for the NMR shifts compared to the ab initio calculated results, but gives a significant error for one of the carbons in the adduct studied. As a consequence, the well-performing quantum methods are preferred for unambiguous and correct assignment. (C) 2004 Elsevier B.V. All rights reserved.
000043064 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000043064 588__ $$aDataset connected to Web of Science
000043064 650_7 $$2WoSType$$aJ
000043064 65320 $$2Author$$aNMR
000043064 65320 $$2Author$$aC-13
000043064 65320 $$2Author$$aaminobenzthiazole
000043064 65320 $$2Author$$acomputational chemistry
000043064 65320 $$2Author$$aab initio
000043064 65320 $$2Author$$aACD
000043064 65320 $$2Author$$aGIAO
000043064 7001_ $$0P:(DE-Juel1)VDB2348$$aWitte, E. G.$$b1$$uFZJ
000043064 7001_ $$0P:(DE-Juel1)133857$$aWillbold, S.$$b2$$uFZJ
000043064 7001_ $$0P:(DE-HGF)0$$aMeier, R. J.$$b3
000043064 773__ $$0PERI:(DE-600)1491514-5$$a10.1016/j.theochem.2004.10.027$$gVol. 712$$q712$$tJournal of molecular structure / Theochem$$v712$$x0166-1280$$y2004
000043064 8567_ $$uhttp://dx.doi.org/10.1016/j.theochem.2004.10.027
000043064 909CO $$ooai:juser.fz-juelich.de:43064$$pVDB
000043064 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000043064 9141_ $$y2004
000043064 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000043064 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x0
000043064 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x1
000043064 970__ $$aVDB:(DE-Juel1)60228
000043064 980__ $$aVDB
000043064 980__ $$aConvertedRecord
000043064 980__ $$ajournal
000043064 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000043064 980__ $$aI:(DE-Juel1)IBG-3-20101118
000043064 980__ $$aUNRESTRICTED
000043064 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000043064 981__ $$aI:(DE-Juel1)IBG-3-20101118
000043064 981__ $$aI:(DE-Juel1)ZCH-20090406