Forschungszentrum Julich

Zentralinstitut flir Angewandte Mathematik

Interner Bericht

Proceedings of the Workshop on
Parallel/High-Performance
Object-Oriented Scientific Computing
(POOSC’01)

Jorg Striegnitz, Kei Davis* et. al. (Eds.)

FZJ-ZAM-1B-2001-14

FORSCHUNGSZENTRUM JULICH GmbH

Zentralinstitut fiir Angewandte Mathematik
D-52425 Jiilich, Tel. (02461) 61-6402

Interner Bericht

Proceedings of the Workshop on
Parallel/High-Performance
Object-Oriented Scientific Computing
(POOSC’01)

Jorg Striegnitz, Kei Davis* et. al. (Eds.)

FZJ-ZAM-1B-2001-14

Dezember 2001
(letzte Anderung: 17.12.2001)

(*) Modelling, Algorithms, and Informatics Group, CCS-3 MS B256
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Preface

This report comprises the Proceedings of the Workshop on Parallel / High Performance Object-
Oriented Scientific Computing (POOSC’01) that was held at the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA) in Tampa, Florida, USA, on 14
October 2001. The workshop was a joint organization of Research Centre Jiilich, Los Alamos Na-
tional Laboratory and Indiana University.

Today scientific programming has reached an unprecedented degree of complexity. Sophisticated
algorithms, a wide range of hardware environments, and an increasing demand for system integra-
tion and portability have shown that language-level abstraction must be increased without loss of
performance.

Work presented at previous POOSC workshops has shown that the OO approach provides an effec-
tive means for the design of complex scientific systems, and it is even possible to design abstractions
and applications that have to fulfill strict performance constraints.

However, OO still isn’t embraced in high performance computing and there is still demand for
research and discussions. Previous POOSC workshops have proven that a workshop is an ideal
venue for this.

Usually, there are no OOPSLA proceedings for workshops. However, since this years contributions
have underlined the variety and multidisciplinary character of this research field, we as organizers
of POOSC, decided to publish a collection of selected papers ourselves.

We thank all the contributors, referees, attendees and the OOPSLA workshop organizers for helping
in making this workshop a highly successful event.

December 2001 Jorg Striegnitz

Kei Davis

Workshop Organizers

Kei Davis Modelling, Algorithms, and Informatics Group, CCS-3 MS B256
Los Alamos National Laboratory
Los Alamos, NM 87545, USA
kei@c3.lanl.gov

Jorg Striegnitz Research Centre Jiilich
John von Neumann Institute for Computing (NIC)
Central Institute for Applied Mathematics (ZAM)

42425 Jiilich, Germany
J.Striegnitz@fz-juelich.de

Programme Committee

Kei Davis Los Alamos National Laboratory, Los Alamos, NM, USA
Andrew Lumsdaine Indiana University, Bloomington, IN, USA

Bernd Mohr Research Centre Jiilich, Germany

Jeremy Siek Indiana University, Bloomington, IN, USA

Jorg Striegnitz Research Centre Jiilich
Todd Veldhuizen Indiana University, Bloomington, IN, USA

Table of Contents

Implementing a High Performance Tensor Library
W. Landry

Dynamic Compilation of C++ Template Code
M. J. Cole, S. G. Parker

Parallelization of an Object-Oriented Particle-In-Cell Simulation
S. Pinkenburg, M. Ritt, W. Rosentiel

OoLalLa: Transformations for Implementations of Matrix Operations at High Abstraction Levels
M. Lujan, J. R. Gurd, T. L. Freeman

Parallel Code Generation in MathModelica / An Object-Oriented Based Simulation Environment
P. Aronsson, P. Fritzson

Structured Exception Semantics for Concurrent Loops
J. Winstead, D. Evans

Design Patterns for Library Optimizations
D. Gregor, S. Schupp, D. Musser

An Interactive Environment for Supporting the Paradigm Shift from Simulation to Optimization
C. H. Bischof, H. M. Biicker, B. Lang, A. Rasch

Generic Programming for High Performance Scientific Applications
L. Lee, A. Lumsdaine

Implementing a High Performance Tensor Library

Walter Landry
University of Utah
landry@physics.utah.edu

October 2, 2001

Abstract

Template methods have opened up a new way of building C++ libraries. These
methods allow the libraries to combine the seemingly contradictory qualities of ease of
use and uncompromising efficiency. However, libraries that use these methods are noto-
riously difficult to develop. This article examines the benefits reaped and the difficulties
encountered in using these methods to create a friendly, high performance, tensor li-
brary. We find that template methods mostly deliver on this promise, though requiring
moderate compromises in either usability or efficiency.

1 Introduction

Tensors are used in a number of scientific fields, such as geology, mechanical engineering, and
astronomy. They can be thought of as generalizations of vectors and matrices. Consider the
rather prosaic task of multiplying a vector P by a matrix T, yielding a vector @

Qy = Tyw Tyy Tyz P, Yy

If we write out the equations explicitly then
Q:c = T:E:EP:U + T:cyPy + T:csza
Qy = TyPy+ TP, +T,.P,

Alternatively, we can write it as

Q: = Y TyP
J=zy,%

Qy = Z Tyjpj
J=,Y,2

Q. = Y, TP
J=zy,%

1

or even more simply as
Qi= > TP,
J=,y,2

where the index ¢ is understood to stand for z, y, and 2z in turn. In this example, P; and @Q);
are vectors, but could also be called rank 1 tensors (because they have one index). T;; is a
matrix, or a rank 2 tensor. The more indices, the higher the rank. So the Riemann tensor
in General Relativity, R;;z;, is a rank 4 tensor, but can also be envisioned as a matrix of
matrices. There are more subtleties involved in what defines a tensor, but it is sufficient for
our discussion to think of them as generalizations of vectors and matrices.

Einstein introduced the convention that if an index appears in two tensors that multiply
each other, then that index is implicitly summed. This mostly removes the need to write
the summation symbol 3°,_, .. Using this Einstein summation notation, the matrix-vector
multiplication becomes simply

Qi =Ty F;.

Of course, now that the notation has become so nice and compact, it becomes casy to write
much morc complicated formulas such as the definition of the Ricmann tensor

ki — dekl - dlej + ij ml le mj*

There are some subtle differences between tensors with indices that are upstairs (like T¢),
and tensors with indices that are downstairs (like 7T;), but for our purposes we can treat them
the same. Now consider evaluating this equation on an array with N points, where N is much
larger than the cache size of the processor. We could use multidimensional arrays and start
writing lots of loops

for (int n=0;n<N;++n)
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
for(int k=0;k<3;++k)
for(int 1=0;1<3;++1)

{

R[i] [31[k]1 [1] [n]1=dG[i] [3] [k] [1] [n]
- dG[i1 11 [k1[j]1[n];
for(int m=0;m<3;++m)
R[i1 (3] [k] [1] [n]+=G[m] [[k] [n]*G[i] [m] (1] [n]
- G[m] [1] k] [n]*G[i] [m] [] [n];
}

This is a dull, mechanical, error-prone task, exactly the sort of thing computers are supposed
to do for you. This style of programming is often referred to as C-tran, since it is programming
in C++ but with all of the limitations of Fortran 77. We would like to write something like

R(i,j,k,1)=dG(i,j,k,1) - dG(i,1,k,j)
+ G(m,j,k)*G(i,m,1) - G(m,1,k)*G(i,m,j);

2

and have the computer do all of the summing and iterating over the grid automatically.

There are a number of libraries with varying amounts of tensor support ([1][2]|3][4]|5][6]]7])-
With one exception, they are all either difficult to use (primarily, not providing implicit sum-
mation), or they are not efficient. GRPP [6] solves this conundrum with a proprietary
mini-language, making it difficult to customize and extend. With expression templates, it is
possible to create a library within the C+- language which is both efficient and relatively
easy to use.

2 Implementations

2.1 The Easy-to-Implement, Inefficient Solution with Nice Notation

The most straightforward way to proceed is to make a set of classes (Tensorl, Tensor2,
Tensor3, etc.) which simply contains arrays of doubles of size N. Then we overload the
operators +, - and * to perform the proper calculation and return a tensor as a result.
The well known problem with this is that it is slow and a memory hog. For example, the

expression

will generate code equivalent to

double *templ=new double[N];
for(int n=0;n<N;++n)
for(int i=0;i<3;++i)
templ [n]=D[i] [n]*E[i] [n];
double *temp2[3]
temp2[0]=new double[N];
temp2[1]=new double[N];
temp2[2]=new double[N];
for(int n=0;n<N;++n)
for(int i=0;i<3;++i)
temp2[i] [n]1=C[i] [n]*temp1l[n];
double *temp3[3]
temp3[0]=new double[N];
temp3[1]=new double[N];
temp3[2]=new double[N];
for(int n=0;n<N;++n)
for(int i=0;i<3;++1i)
temp3[i] [n]1=B[i] [n]+temp2[i] [n];
for(int n=0;n<N;++n)
for(int i=0;i<3;++i)
Ali] [n]=temp3[i] [n];
delete[] tempil;
delete[] temp2[0];

delete[] temp2[1];
delete[] temp2[2];
delete[] temp3[0];
delete[] temp3[1];
delete[] temp3[2];

This required three temporaries (templ = D;E;, temp2; = C; x templ, temp3; = B; +
temp2;) requiring 7N doubles of storage. None of these temporaries disappear until the
whole expression finishes. For expressions with higher rank tensors, even more temporary
space is needed. Moreover, these temporaries are too large to fit entirely into the cache,
where they can be quickly accessed. The temporaries have to be moved to main memory as
they are computed, even though they will be needed for the next calculation. With current
architectures, the time required to move all of this data back and forth between main memory
and the processor is much longer than the time required to do all of the computations.

2.2 The Hard-to-Implement, Somewhat Inefficient Solution with
Nice Notation

This is the sort of problem for which template methods are well-suited. Using expression
templates [9], we can write

A(1)=B(i)+C(1)*(D(FI*E(F));
and have the compiler transform it into a something like

for(int n=0;n<N;++n)
for(int i=0;i<3;++1i)
{
A[i] [n]1=B[i] [n];
for(int j=0;j<3;++j)
A[i] [n]+=C[i] [n]*(D[j] [n]1*E[j]1 [n]);
}

The important difference here is that there is only a single loop over the N points. The large
temporaries are no longer required, and the intermediate results (like D[j] [n]1*E[j] [n]) can
stay in the cache. This is a specific instance of a more general code optimization technique
called loop-fusion. It keeps variables that are needed for multiple computations in the cache,
which has much faster access to the processor than main memory.

This will have both nice notation and efficiency for this expression. What about a group
of expressions? For example, consider inverting a symmetric, 3x3 matrix (rank 2 tensor) A.
Because it is small, a fairly good method is to do it directly

det=A(0,0)*A(1,1)*A(2,2) + A(1,0)*A(2,1)*A(0,2)
+ A(2,0)*A(0,1)*A(1,2) - A(0,0)*A(2,1)*A(1,2)

4

- A(1,0)*AC0,1)*A(2,2) - A(2,0)*A(1,1)*A(0,2);
1(0,0)= (A(1,1)*A(2,2) - A(1,2)*A(1,2))/det;

I1(0,1)= (AC0,2)*A(1,2) - A(0,1)*A(2,2))/det;
1(0,2)= (A(0,1)*A(1,2) - A(0,2)*A(1,1))/det;
I(1,1)= (AC0,0)*A(2,2) - A(0,2)*A(0,2))/det;
I(1,2)= (AC0,2)*A(0,1) - A(0,0)*A(1,2))/det;
1(2,2)= (A(1,1)*A(0,0) - A(1,0)*A(1,0))/det;

Through the magic of expression templates, this will then get transformed into something
like

for(int n=0;n<N;++n)
det [n]1=A[0] [0] [n1*A[1] [1] [n]*A[2] [2] [n]
A[1]1[0] [n]1*A[2] [1] [n]1*A[0] [2] [n]
A[2][0] [n]1*A[0] [1] [n]1*A[1] [2] [n]
ATO][0] [n]=*A[2] [1] [m]1*A[1] [2] [n]
AT1]1[0] [n]*A[0] [1] [m]1*A[2] [2] [n]
A[2]1[0] [n]1*A[11 [1] (n]1*A[0] [2] [n];
for(int n=0;n<N;++n)
I1[0]1[0] [n]1= (A[1][1] [m1*A[2][2] [n]
- A[11[2] [n1*A[1]1[2] [n])/det[n];
for(int n=0;n<N;++n)
I1[0] [11[n]1= (A[0][2] [n]1*A[1][2] [n]
- A[0][1]1 m]1*A[2][2] [n]) /det[n];
for(int n=0;n<N;++n)
1001 [2] [n1= (A[0][1] [n]1=*A[1][2] [n]
- A[0][2]1 [n]1*A[11[1] [n]) /det[n];
for(int n=0;n<N;++n)
I[1]1[1]1 [n1= (AL[0][0] [n]1*A[2] [2] [n]
- A[0][2] [n1*A[0] [2] [n])/det[n];
for(int n=0;n<N;++n)
I[1]1[2] [n1= (A[0][2] [n]=*A[0] [1] [n]
- A[0][0] [n]1*A[1]1[2] [n]) /det[n];
for(int n=0;n<N;++n)
I1[2] [2]1 [n1= (A[1]1[1] [n]1=*A[0][0] [n]
- A[11[0] [nI1*A[11[0] [n]) /det[n];

+ +

Once again, we have multiple loops over the grid of N points. We also have a temporary,
det, which will be moved between the processor and memory multiple times and can not be
saved in the cache. In addition, each of the elements of A will get transferred four times. If
we instead manually fuse the loops together

for(int n=0;n<N;++N)

{

double det=A[0][0] [n1*A[1] [1] [n]1*A[2][2] [n]
A[1]1[0] [n]1*A[2] [1] [n]=*A[0] [2] [n]
A[2]1 [0] [n]1*A[0] [1] [n]*A[1][2] [n]
A[0] [0] [n]1*A[2] [1] [n]*A[1][2] [n]
A[1][0] [n]1*A[0] [1] [n]1=*A[2] [2] [n]
- A[2]1 [0] [n]1*A[1] [1] [n1*A[0][2][n];
1[0] [0] [n]=(A[1] [1] [n]*A[2] [2] [n]
- A[11[2] [n]*A[1]1[2] [n])/det;

// and so on for the other indices.

+ +

}

then det and the elements of A at a particular n can fit in the cache while computing all
six elements of I. After that, they won’t be needed again. For N=100,000 this code takes
anywhere from 10% to 50% less time (depending on architecture) while using less memory.
This is not an isolated case. In General Relativity codes, there can be over 100 named
temporarics like det. Unless the compiler is omniscient, it will have a hard time fusing all of
the loops between statements and removing extraneous temporaries. It becomes even more
difficult if there is an additional loop on the outside which loops over multiple grids, as is
common when writing codes that deal with multiple processors or multiple resolutions of the
same grid (as happens with adaptive grid methods).

As an aside, the Blitz library [1] uses this approach. On the benchmark page for the
Origin 2000/SGI C++ [8], there are results for a number of loop kernels. For many of them,
Blitz compares quite favorably with the Fortran versions. However, whenever there is more
than one expression with terms common to both expressions (as in loop tests #12-14, 16,
23-24) there are dramatic slow downs. It even mentions explicitly (after loop test #14) “The
lack of loop fusion really hurts the C++ versions.”

The POOMA library [7] uses an approach which should solve some of these problems. It
defers calculations and then evaluates them together in a block. However, it still requires
storage for named temporaries.

Does all this mean that we have to go back to C-tran for performance?

2.3 The Hard-to-Implement, Efficient Solution with only Moder-
ately Nice Notation

The flaw in the previous method is that it tried to do two things at once: implicitly sum
indices and iterate over the grid. Iterating over the grid while inside the expression necessarily
meant, cxcluding other expressions from that iteration. It also required temporarics to be
defined over the entire grid. To fix this, we need to manually fuse all of the loops, and provide
for temporarics that won’t be defined over the entire grid. We did this by making two kinds
of tensors. One of them just holds the elements (so a Tensorl would have three doubles,

and a Tensor2 has 9 doubles). This is used for the local named temporaries. The other kind
holds pointers to arrays of the elements. To iterate over the array, we overload operator++.
A rough sketch of this tensor pointer class is

class Tensorl_ptr

{
mutable double *x, *y, *z;
public:
void operator++()
{
++x;
++y,
++z;
}
\\ Indexing, assignment, initialization operators etc.
}

Making it a simple double * allows us to use any sort of contiguous storage format for the
actual data. The data may be managed by other libraries, giving us access to a pointer that
may change. In that sense, the Tensor is not the only owner of the data, and all copies of
the Tensor have equal rights to access and modify the data.

We make the pointers mutable so that we can iterate over const Tensorl_ptr’s. The
indexing operators for const Tensorl_ptr rcturns a double, not double * or double &, so
the actual data can’t be changed. This keeps the data logically const, while allowing us to
look at all of the points on the grid for that const Tensori_ptr.

We would then write the matrix inversion example as

for(int n=0;n<N;++N)

{
double det=A(0,0)*A(1,1)*A(2,2) + A(1,0)*A(2,1)%*A(0,2)
+ A(2,0)*A(0,1)*A(1,2) - AC0,0)*A(2,1)*A(1,2)
- A(1,0)*A(0,1)*A(2,2) - A(2,0)*A(1,1)*A(0,2);
1(0,0)= (A(1,1)*A(2,2) - A(1,2)*A(1,2))/det;
I1(0,1)= (A(0,2)*A(1,2) - A(0,1)*A(2,2))/det;
1(0,2)= (AC0,1)*A(1,2) - A(0,2)*A(1,1))/det;
I(1,1)= (AC0,0)*A(2,2) - A(0,2)*A(0,2))/det;
I(1,2)= (A(0,2)*A(0,1) - A(0,0)*A(1,2))/det;
I1(2,2)= (A(1,1)*AC0,0) - A(1,0)*A(1,0))/det;
++1;
++A;
}

An example which mixes the pointer and non-pointer tensor classes is

void f(const Tensor2_ptr T, const Tensorl_ptr P,
Tensorl_ptr Q, const int N)

{
for(int n=0;n<N;++n)
{
Tensor2 T_symmetric;
T_symmetric (i, j)=(T(i,j)+T(j,1i))/2;
Q(i)=T_symmetric(i,j)*P(j);
++Q;
++T;
++P;
}
}

This function symmetrizes the matrix T and multiplies it by P, putting the result in Q. The
body inside the loop can also be simplified to remove the named temporary T_symmetric

Q(i)=(T(1,j)+T(j,i))*P(j)/2;
++Q;

++T;

++P;
This solution is not ideal and has a few hidden traps, but is certainly better than C-tran.
It requires a manually created loop over the grid, and all relevant variables have to be
incremented. Care must also be taken not to attempt to iterate through a grid twice. That
is why this function £() passes the tensors by value, and not by reference. Otherwise, the
pointers in Q, T, and P would have been iterated to the end. The parent function calling £ ()
would then not be able to use its copies of Q, T, and P.

In practice, these were not serious problems, because most of the logic of our program is
in the manipulation of local named variables. Only a few variables (the input and output)
neced to be explicitly iterated. Even those that were iterated were locally constructed from
global arrays given by another library that managed multiprocessor computations.

However, this may not be the right kind of solution for generic arrays. They correspond
to rank O tensors (tensors without any indices). It is a win for higher rank tensors because
most of the complexity is in the indices. But for generic arrays, there are no indices. A
solution like this would look almost identical to C-tran.

3 How Well Does it Work?

We have implemented the first (inefficient) method and the third (efficient) method [11]. We
did not attempt to implement the second method, because it was clear that it could not be as
efficient as the second method, while still being a difficult chore to implement. We have also
not attempted a direct comparison with other tensor libraries, because most do not support

‘ Compiler /Operating System ‘ Compiles efficient library?
Comeau como 4.2.45.2 + libcomobetal4 /Linux x86 Yes

Compaq cxx 6.3/Tru64

GNU gece 2.95.2/Linux x86, 2.95.3/Solaris, 2.95.2/AIX
KATI KCC 4.0d/Linux x86, 4.0d/AIX

IBM xIC 5.0.1.0/AIX Yes with occasional ICE’s
SGI CC 7.3.1.1m/Trix Somewhat-no <cmath> and
can’t override template
instantiation limit

Intel icc 5.0/Linux x86 Somewhat-uses excessive
resources and can’t override
template instantiation limit

Portland Group pgCC 3.2/Linux x86 No, can’t handle long
mangled names, no <cmath>
Sun CC 6.1/Solaris Sparc No, doesn’t support partial

specialization with non-type
template parameters

Table 1: Compiler Comparison

implicit summation and none of them support the wide range of tensor types needed (ranks
1, 2, 3 and 4 with various symmetries). This makes replicating the functionality in the tests
extremely time consuming.

We found that, when compiled with KAI’s KCC compiler on an IBM SP2, the efficient
library runs about twice as fast and uses a third of the memory of the inefficient library.
When compiled with GNU gee or IBM’s xIC, the efficient library code was 10-20% slower
than when compiled with KCC.

However, not all compilers support enough of the standard to compile the efficient li-
brary, while the inefficient method works with almost any compiler. A comparison of twelve
combinations of compiler and operating system is shown in Table 1.

Surprisingly, not all of the compilers made <cmath> available, although it is easy to work
around that. IBM’s compiler seems to be immature, with a remarkable number of cases of
Internal Compiler Errors (ICE’s). The Portland Group compiler had trouble with the long
mangled names produced by the compiler. Intel’s compiler would routinely use much more
memory and CPU time than other compilers on the same machine. The Sun compiler seems
to be useless for these kinds of template techniques.

The C++ standard specifies that compliant programs can only rely on 17 levels of tem-
plate instantiation. Otherwise, it would be difficult to detect and prevent infinite recursion.
However, the intermediate types produced by template expression techniques can exceed this
limit. Most compilers allowed us to override the limit on the number of pending instantia-
tions, with the exception of the SGI, Intel and IBM compilers. The SGI and Intel compilers
would not compile any program with too many levels. The IBM compiler did not honor the
standard and happily compiled programs with more than 50 levels of template instantiation.

We made two small benchmarks to test how well the compilers could optimize away the
overhead of the expression templates. The first is a simple loop

Tensorl x(0,1,2), y(3,4,5), z(6,7,8);
for (int n=0;n<1000000;n++)
{
Index<’i’> 1i;
x()+=y(i)+z(1);
+(y(1)+z (1)) -(y(1)+z(1))
+(y(1)+z(1)) - (y(1L)+z(1))
+(y(1)+z(1)) -(y(1)+=z(1))

}
The complexity of the expression is determined by how many (y(i)+z(i))-(y(i)+z(i))
terms there are in the final expression. Note that since we’re adding and subtracting the
same amounts, the essential computation has not changed. We also coded a version of the
code that used normal arrays instead of the Tensor] class, and compared the execution speeds
of the two versions.

For large expressions, KCC was the only compiler that could fully optimize away the
overhead from the expression templates, although we had to turn off exceptions in order to
do it. This is good evidence that we didn’t make any serious optimization errors in imple-
mentation. For the other compilers, the slowdown increased with the number of expressions,
becoming more than 100 times slower than the version using arrays.

This benchmark may be deceiving, though. The versions that use normal arrays all run at
the same speed regardless of how many terms we added. This suggests that the compiler can
remove the identically zero subexpressions. This wouldn’t be possible in a most production
codes, so the relative slowdown may not be as great.

To reduce this effect, we created a second benchmark. It computes the sum

Tensorl y(0,1,2);
Tensorl al(2,3,4);
Tensorl a2(5,6,7);
Tensorl a3(8,9,10);
Tensorl a4(11,12,13);
Tensorl a5(14,15,16);

for (int n=0;n<1000000;++n)
{

const Index<’i’> ij;

10

const Index<’j’> j;
const Index<’k’> k;
const Index<’1’> 1;
const Index<’m’> m;
y(i)+=al(i)
+ 2%a2(i)
+ 3*xal1(j)*a2(j)*a3(i)
+ 4*xal1(j)*a3(j)*a2(k)*a2(k)*as(i)
+ bxal(j)*ad(j)*a2(k)*a3(k)*ab(i)

al(i)*=0.1;
a2(i)*=0.2;
a3(i)*=0.3;
a4 (i)*=0.4;
a5(i)*=0.5;

}
with complexity determined by how much we fill in the ellipses. Again, we also coded versions
that use simple arrays and compared the execution speed of the two. Here, the story is much
different. Figure 1 shows the relative execution times of the the Tensorl and ordinary arrays
versions against the number of operators (4 and *) in the expressions.

The specific compiler options used to create this plot are listed in the appendix. The
performance of some of the compilers may be a little overstated since they don’t optimize the
ordinary array case as well as some other compilers. On Linux x86, the fastest compiler for
the ordinary array code was the Intel compiler, and on AIX, it was IBM’s xIC. So in Figures
2 and 3 we plot the relative execution time of the fastest ordinary array codes versus the
various Tensor codes for Linux and AIX.

The first thing to notice in these plots is that none of the compilers can optimize the
expressions completely. Even for the best compilers, the Tensor class can run as slow as 50%
as ordinary arrays. However, it is unclear how much this matters in real codes. Writing the
equivalent of our General Relativity code using ordinary arrays would be extremely tiresome
and error-prone. However, as noted earlier, the differences between KCC, xIC, and gcc for
our General Relativity code were only 10-20%. Unfortunately, looking at Figure 3, this might
just be because they are all terrible at optimizing. Your mileage may vary.

11

Time of array code/Time of Tensor code

1.8

1.6

1.4

1.2

0.2

'x /’ —

4
l

I
KAIKCC AIX —+—
KAI KCC Linux ——
SGICC —x—
Comeau como —&—
Compag cxx —=—
Intel icc —e—
IBMXIC —e—
GNU gee AIX —=—
GNU gece Linux ——
GNU gee Solaris ——

"'—»

v
!

—

30 40 50

Number of operators

Figure 1: Relative execution times of arrays and Tensorl’s

12

60

Time of Intel array code/Time of Tensor code

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 2: Relative execution times of fastest arrays and Tensor’s on Linux x86

Intel icc
Comeau

gce
KAI KCC

10

20

30
Number of operators

13

40

50

60

Time of IBM xIC array code/Time of Tensor code

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

BMXC o
KAIKCG —+—

gcc —=— |

10 20 30 40 50
Number of operators

Figure 3: Relative execution times of fastest arrays and Tensor’s on ATX

14

60

4 Extending the Library

A reader with foresight may have looked at the rough declaration of Tensori_ptr and thought
that hard coding it to be made up of doublex is rather short sighted. It is not so difficult to
envision the need for tensors made up of int’s or complex<double>. It might also be nice
to use two or four dimensional tensors (so a Tensorl would have 2 or 4 elements, a Tensor2
would have 4 or 16 elements). The obvious answer is to make the type and dimension into
template parameters. We then specialize for each dimension and whether the type is a pointer

template<class T, int Dim> class Tensoril;
template<class T> class Tensori<T,2> {
T x, vy;

}
template<class T> class Tensorl1<Tx,2> {
mutable T *x, *y;

}

template<class T> class Tensori<T,3> {
Tzx, v, z;
}

and so on. We can even make the arithmetic operators dimension agnostic with some template
meta-programming [10]. Then, if you're trying to follow Buckaroo Banzai across the 8th
dimension, you only have to define the Tensorl, Tensor2, Tensor3, etc. classes for eight
dimensions, and all of the arithmetic operators are ready to use.

We have implemented this generalization [12|. Tt uncovers a deficiency in the template
support by gcee, so it can’t compile it. Also, KCC can’t fully optimize complicated expressions
in the first benchmark as it could with the simpler version of the library, leading to code
that runs hundreds of times slower. Interestingly enough, the TinyVector classes in Blitz [1]
are also templatized on type and dimension, and complicated expressions can not be fully
optimized in that kind of benchmark as well.

However, the performance in the second benchmark is not affected in the same way.
Figure 4 shows the relative execution times for arrays versus the more general Tensor’s, and
Figure 5 directly compares the two versions of the Tensor library.

The results are generally mixed, although KCC seems to do better while como does worse.
However, the overall conclusions from the last section are unchanged. This is nice, in the
sense that using a more general library hasn’t caused another hit in performance.

15

Time of array code/Time of general Tensor code

1.8

1.6

1.4

1.2

I

KAI KCC AIX
KAl KCC Linux
SGI CC
Comeau como
Compag cxx
Intel icc

IBM xIC

10 20 30
Number of operators

Figure 4: Relative execution time of arrays and more general Tensor’s

16

40

50

60

Time of original Tensor/Time of general Tensor

14

1.3

1.2

1.1

0.9

0.8

0.7

0.6

0.5

0.4

KAI KCC AIX
KAl KCC Linux
SGICC
Comeau
Compaq cxx
Intel icc

IL‘%M xIC

0 10 20 30

Number of operators

Figure 5: Relative execution time of simple and more general Tensor’s

17

40 50

60

5 Conclusion

The original promise of expression templates as a way to get away from C-tran is not com-
pletely fulfilled. Although the syntax is much improved, there are still cases where a program-
mer must resort to at least some manual loops in order to get maximum performance. Even
with this work, there are still performance penalties which vary from problem to problem.

Appendix: Compiler Options

gee -03
-ftemplate-depth-100
-Drestrict=___ restrict

-finline-functions
-finline-limit-1000000
-flast-math

-fno-rtti
-fno-exceptions

como -Drestrict=
-03
—remove__unneeded _entities
—pending _instantiations=100

icc -restrict
-03
-tpp6
-xi

KCC 4.0d/Linux +K3
—restrict
—no_exceptions
—inline auto space_ time=750000000000000
—inline__implicit_space_ time=200000000000000
—inline_generated _space_ time=40000000000000.0
—inline_auto_ space_ time=100000000000000.0
—max_ pending instantiations 100

KCC 4.0d/AIX +K3
—restrict
—no_ cxceptions
—inlinc_auto_spacc_ time=750000000000000
—inline implicit _space_ time—200000000000000
—inline_generated _space_ time—40000000000000.0
—inline _auto_space_ time—100000000000000.0

18

—max_pending instantiations 100
-gmaxmem=—100000

Compaq cxx -std ansi
-model ansi
-nousing_ std
-noexceptions
-nortti
-Drestrict=___ restrict
-assume noptrs_to_ globals
-assume whole_program
-assume noaccuracy _sensitive
-inline all
-fast
-05
-non_shared
-tune host
-pending _instantiations 1000
-nocleanup

SGI CC -LANG:std
-LANG:restrict=0ON
-64
-03
-LANG:exceptions=OFF
-TPA:space=1000000000
-TPA:plimit=1000000000
-OPT:unroll _times_max=100000
-OPT:unroll _size=1000000
-INLINE=all
-IPA:alias=0ON

Acknowledgements

We gratefully acknowledge the help of Comeau computing in providing a copy of their com-
piler for evaluation. This work was supported in part by NSF grant PHY 97-34871. An
allocation of computer time from the Center for High Performance Computing at the Uni-
versity of Utah is gratefully acknowledged. CHPC’s IBM SP system is funded in part by
NSF Grant #CDA9601580 and IBM’s SUR grant to the University of Utah.

References

[1] Todd Veldhuizen, Blitz, http://www.oonumerics.org/blitz

19

|2] Neil Gaspar, http://www.openheaven.com/believers/neil _gaspar/t_ class.html
|3] Boris Jeremic, nDarray, http://civil.colorado.edu/nDarray /

[4] Wolfgang Bangerth, Guido Kanschat, Ralf Hartmann, Deal.Il, http://gaia.iwr.uni-
heidelberg.de/~deal /

|5] Robert Tisdale, SVMT, http://www.netwood.net/~edwin /svmt/
[6] TensorSoft, GRPP, http://home.carthlink.net /™ tensorsoft /

[7] POOMA, http://www.acl.lanl.gov/pooma/

|8] http://oonumerics.org/blitz/benchmarks/Origin-2000-SGI/

|9] Todd Veldhuizen, “Expression Templates,” C++ Report, Vol. 7 No. 5 (June 1995), pp.
26-31

[10] Todd Veldhuizen, “Using C++ template metaprograms,” C++ Report, Vol. 7 No. 4 (May
1995), pp. 36-43.

[11] http://www.physics.utah.edu/ landry/FTensor.tar.gz

[12] http://www.physics.utah.edu/ landry/FTensor_new.tar.gz

20

Dynamic Compilation of C++ Template Code

Martin J. Cole, Steven G. Parker
mcole@cs.utah.edu, sparker@cs.utah.edu
SCI Institute
University of Utah

Abstract

Generic programming using the C++ template facility has been a successful
method for creating high-performance, yet general algorithms for scientific com-
puting and visualization. However, the use of templated code typically leads to
propagation of more template code. Compiling all possible expansions of these
templates can lead to massive template bloat. Furthermore, compile-time binding
of templates requires that all possible permutations be known at compile time,
limiting the runtime extensibility of the generic code. We present a method for
deferring the compilation of these templates until an exact type is needed. This
dynamic compilation mechanism will produce the minimum amount of compiled
code needed for a particular application, while maintaining the generality and
performance that templates innately provide. Through a small amount of sup-
porting code within each templated class, the proper templated code can be
generated at runtime without modifying the compiler. We describe the imple-
mentation of this goal within the SCIRun dataflow system. SCIRun is freely
available online for research purposes.

Problem Description

SCIRun?! is a scientific problem solving environment that allows the interactive
construction and steering of large-scale scientific computations [1-3]. A scientific
application is constructed by connecting computational elements (modules) to
form a program (network). This program may contain several computational
elements as well as several visualization elements, all of which work together
in orchestrating a solution to a scientific problem. Geometric inputs and com-
putational parameters may be changed interactively, and the results of these
changes provide immediate feedback to the investigator. SCIRun is designed to
facilitate large-scale scientific computation and visualization on a wide range
of machines from the desktop to large shared-memory and distributed-memory
supercomputers.

At the heart of any general visualization system is the data model. The data
model is responsible for representing a wide range of different data representation
schemes in a uniform fashion. In the case of SCIRun, the core piece of our data
model is the field library [4, 5], where a field is simply a function represented over

! Pronounced “ski-run.” SCIRun derives its name from the Scientific Computing and
Imaging (SCI) Institute at the University of Utah.

II

some portion of 3D space. In most cases, that function is represented by some
discrete approximation, such as a tetrahedral grid (i.e. a Finite Element Mesh)
or a 3D rectangular grid (i.e. a Finite Difference mesh, or the product of a 3D
medical scan such as Computed Tomography or Magnetic Resonance Imaging).
Representing each of these fields in the most general form possible would lead
to a number of inefficiencies, including a massive data explosion.

Therefore, we turn to C++ for mechanisms of providing access to these
different field types in a uniform way. Typical operations include computing the
minimum or maximum value in the field, iterating over discrete data points,
and interpolating the value at a specified point in space. In C++, we can use
inheritance and virtual functions to maintain a uniform interface.

We compared the runtime performance in a simple yet representative test
program. The test times virtual method calls vs. template method calls of an
identical function. The results show that there is a performance penalty to using
a virtual interface. On Linux, the virtual method timed at 30.43 seconds, and
the template version at 10.1 seconds, on Irix the same test ran at 10.21 seconds,
and 2.84 seconds respectively. These results have led us away from a virtual
interface and so for this task, we turn to generic programming. Table 1 shows
these results in tabular form.

Table 1. Performance comparison for typical visualization queries using virtual func-
tions and templates

Machine Compiler Processor Virtual |Template

function time| time
SGI Origin 2000 MIPSPro 7.3.1.2{250 Mhz R10000 10.21 s 2.84 s

Linux PC Pentium III| GNU g++ 3.0 750 Mhz 3043 s 10.1s

Generic programming using the C++ template facility has been a successful
method [6-8] for creating high-performance, yet general algorithms for scientific
computing and visualization. Generic programming relies on the compiler to
generate specialized instances of particular algorithms that are tailored to the
underlying data representation. However, the use of templated code typically
leads to propagation of more template code. Compiling all possible expansions
of these templates can lead to massive template bloat. Furthermore, compile-
time binding of templates requires that all possible permutations be known at
compile time, limiting the runtime extensibility of the generic code.

As an example, consider the following realistic example from the SCIRun
field library. Consider the set of different field classes: TetVol (TetraHedral Vol-
ume Grid), LatticeVol (3D Rectangular Lattice Grid), ContourField (A set of
countour lines), and TriSurf (A 3D triangulated surface). On each of these fields,
we can hold several different types of data, such as double, int, char, unsigned
char, unsigned short, short, bool, Vector (3 doubles indicating a direction), and
Tensor (6 doubles).

II1

For these four field types, and these nine primitive types, the compiler would
be required to generate a total of 36 different field combinations. Now consider
these 36 types that are used with a computational or visualization algorithm
that is parameterized on one field type. The compiler would also generate 36
versions of this algorithm. However, if the algorithm required two fields, and
was therefore parameterized on two different field types, the compiler would be
required to generate 362 = 1296 different versions of that algorithm. For an
algorithm with three different field types, 36% = 46656 fully instantiated classes
would be generated. These numbers grow as more field types, data types, and
algorithms are supported.

Our compilers did indeed have problems compiling a fully instantiated version
of our code. The compiler itself ran out of 32 bit address space during a global
optimization pass. At this point, the template bloat moved from an annoyance
to a critical bug.

Since SCIRun is an interactive system, any of these combinations could be
used at any time. However, a typical user will use only a handful of different field
types while using SCIRun. SCIRun is also extensible at run-time through the
dynamic loading of new modules. In particular, new field types can be created
by loaded modules, and these fields can be sent to other, pre-compiled modules.
With a pure template-based approach, modules that were compiled without
support for the new field would not be able to operate.

A different design of the field classes could easily solve this problem, but
would have other weaknesses. If we used virtual functions instead of generic pro-
gramming to access the different types of fields, the system would not suffer from
the combinatoric explosion of templated types. However, this design would suf-
fer a different drawback, namely performance. Virtual function calls are costly,
and therefore prohibit fine-grained access to data elements. Furthermore, vir-
tual functions thwart many of the optimizations performed by compilers, lead-
ing to substantially reduced performance over the template-based approach. As
SCIRun is designed for computation and visualization of large-scale scientific
datasets, we have found the virtual function solution to be unacceptable in many
design situations.

Proposed Solution

Through the use of C++ templates, the compiler creates multiple versions of the
code specific to particular data structures, primitive types, and algorithms. Each
module that needs to work on one of the above mentioned classes, implements
an algorithm templated on the exact field type. It is this algorithm that gets
compiled when it is needed. For the purposes of illustration, consider templates
of this form:

template<class Fieldl, class Field2> class Algorithm;

The system operates in the following simple steps:

v

1. Use C++ RTTI and additional run-time information to determine which
field classes are in use. The calling module also specifies which algorithm is
to be applied to these fields.

2. Generate a small amount of C++ code to instantiate the correct algorithm
with the discovered field types.

3. Fork a process to compile the C++ code into a shared library.

4. Dynamically link this shared library into the running process, and locate the
function that will create the instantiated object.

5. Call this function to create an instance of the specialized algorithm.

6. Make a single virtual function call to the algorithm, passing Fieldl and
Field2 and a generic base class.

7. Since the algorithm knows the concrete type of Fieldl and Field2, it uses
dynamic_cast to get a pointer to the specific type.

8. Finally, the algorithm performs its operation on the data.

To accomplish this, the algorithm, and the templated classes need to provide
some information to the DynamicLoader so that it can create the C++ file that
needs to be compiled. Below we explain the mechanisms that are necessary in
the code to support these operations.

Related Work

Kennedy and Syme [9] describe their implementation of generics in the NET
Common Language Runtime. Their work provides a similar solution to the prob-
lem of bloat. They use JIT compilation to produce the object at run time, an
option enabled by control over the virtual machine. This control enables a faster
compile time, as well as the fact that the mechanism is hidden from the user.
Essentially we have implemented a crude JIT compilation mechanism for C+-+.
Our compilation/link/load takes longer, but since future runs need not compile
and link, the cost is amortized over multiple executions of the SCIRun environ-
ment.

POOMA [10] is a high-performance C++ toolkit for parallel scientific com-
putation that depends heavily on C++ templates for achieving high performance
code. However, with POOMA, all required templates are instantiated at com-
pile/link time instead of dynamically. Since POOMA is not an interactive system,
it does not suffer from some of the same problems as SCIRun; the compiler only
generates template instantiations that are required by the scientific program
instead of every possible combination. Nevertheless, many POOMA compiles
can take considerable time, and some of the template instantiations may never
get executed. POOMA does provide constructs beyond what are required for
SCIRun, including semi-automatic data parallelism for array expressions and
other features. It is possible that our mechanisms could be combined with the
expression template engine (PETE) from POOMA in order to provide dynamic
compilation of complex scientific simulations.

Implementation

Through a small amount of supporting code within each templated class, the
proper templated code can be generated at runtime. The system generates a
small amount of C++ code that includes:

— All C++ header files required to compile the algorithm.
— Namespace satisfaction statements.
— A creation function that returns an instance of the desired algorithm.

An example of such code is shown in Figure 1.

Fig. 1. An example of the small automatically generated C++ code to instantiate the
proper templated class. This will generate the RenderField algorithm, with the field of
type TetVol<double>.

// This is an automatically generated file, do not edit!

#include "../src/Core/Datatypes/TetVol.h"

#include "../src/Core/Algorithms/Visualization/RenderField.h"

using namespace SCIRun;

extern "C" {
RenderFieldBase* maker() {
return scinew RenderField<TetVol<double> >;

}
}

Algorithm structure

A templated algorithm inherits from an algorithm base class. This class defines
the interface that the algorithm should have. Each templated algorithm provides
the underlying implementation for the pure virtual. The interface has no restric-
tions, save that it be virtual. All access to the interface happens at the algorithm
base class level. Typically the interface is a single pure virtual method with ar-
guments that satisfy the passing of data from the calling module. This allows the
entire algorithm to be executed with a single virtual method call. All such al-
gorithm base classes inherit from a common base class that the DynamicLoader
maps to the string representation of the exact type for an algorithm.

TypeDescription

Each object that supports dynamic compilation, must provide a TypeDescrip-
tion object. This object holds strings that describe its type, the namespace that

VI

it belongs to, and the path to the .h file that declares it. The latter is frequently
provided by simply returning the value of the standard __FILE__ preprocessor
macro. Most of this internal type information is not available through the stan-
dard C++ RTTI facility, so TypeDescription provides that augmented internal
information. This object can also recursively contain the TypeDescriptions for
sub types. For example a foo<bar, foobar<int> > has a TypeDescription that
has a both bar, and foobar TypeDescriptions. The foobar TypeDescription, has
the int TypeDescription. A recursive traversal of this object allows us to output
a string that matches the exact type for the object.

CompileInfo

The exact type of an algorithm is composed of the algorithm and a data type.
A module that wants to create such an algorithm can not have an instance of
the algorithm until after dynamic compilation. For this reason, the CompileInfo
object is needed, which provides information similar to the TypeDescription, but
without the mapping to an underlying object. This object is also the structure
that ultimately holds the strings that get written to the .cc file in prepara-
tion for compilation. The Compilelnfo gets filled with its information when it
is passed along to each TypeDescription object that makes up the data type,
as well as to the algorithm. The completed CompileInfo object is passed to the
DynamicLoader when the calling module requests an instance of the specialized
algorithm.

DynamicLoader

The DynamicLoader is the interface for a module to get a handle on the algo-
rithm it needs. Its interface is simple: A module builds up a Compilelnfo for
the module, and asks the DynamicLoader for a handle to algorithm object. The
DynamicLoader then looks up the algorithm in an internal cache. If it does not
exist, it uses the CompileInfo to write a small C++ file to disk in a predefined
directory. This directory has a makefile that knows how to build a shared li-
brary from that C++ file. The DynamicLoader then forks a shell and builds the
desired library. Once the shared library is compiled, it is loaded and stored in
the internal cache. Each dynamically compiled library has a uniformly named
creation function, maker(), which returns a pointer to the algorithm base class.
This function pointer is stored in the hash table, and called each time an al-
gorithm is requested by a module, giving each module a separate instance of
the algorithm, including unique state for each algorithm instance. Since SCIRun
is a multi-threaded program, the DynamicLoader has synchronization code de-
signed such that threads block waiting for a unique type, but it can compile an
unlimited number of distinct algorithms concurrently.

Calling Module

The calling module knows of the DynamicLoader, and has a Field base class that
needs to be compiled into an algorithm. The algorithm base type is known, as it

VII

is integral to the module’s function. The exact algorithm will be templated on the
exact Field type. This is only known to the module through strings, not types.
The module fetches the Compilelnfo from the algorithm base class, by feeding
it the input Field’s TypeDescription object, then asks the DynamicLoader for
an algorithm that matches the CompileInfo. No instance of the exact types are
instantiated until runtime when they are asked for by the module.

Performance

SCIRun is currently supported on Irix and Linux. The runtime compilation and
linking depends of course on the complexity of the algorithm, but it is typically on
the order of seconds. For a user who is not modifying the code that the algorithm
depends upon, this is a one time operation. The library remains on disk, so that
upon the next run the library can simply be reloaded after a makefile-based
dependency check, skipping the compile step.

For a commonly used library in the SCIRun system, the initial compile and
link step takes about 7 seconds on Linux, and about 40 seconds on Irix. Tt
should be noted that the longer Irix compilation and linking often produces
better optimized code.

Since the compilation only happens once, the system rapidly amortizes the
cost of the compilation from the increased performance during execution of the
algorithm. Furthermore, the system facilitates more rapid development cycles,
as the typical developer does not need to wait for the compiler to instantiate a
multitude of template classes at link time.

Disadvantages

This system is not built into the language, so it requires source code, and a
C++ compiler on the system. There is additional code maintenance required.
The information that RTTT lacks, and we require, needs to be added to each new
datatype that is added to the system. The libraries are all created in a single
directory, so users sharing a build must have write permissions in the directory.
The runtime compilation step can be time consuming for a large network of
modules the first time through. Developers may not see compile errors until
runtime, when the actual instantiation of the exact algorithm gets compiled.

Future work

The SCIRun dynamic compilation framework has been used for instantiating
classes that could have been known at compile time. We could achieve higher
performance in some cases by using even more run-time information in the dy-
namic compilation phase. For example, array dimensions or repeatedly used
constant values could be compiled into the template instance to achieve higher
performance.

VIII

The current system does not provide a mechanism for specifying special li-
braries that an algorithm or field class may need. As a result, the makefiles link
the shared object against several known libraries, many of which may not be
needed. This deficiency could be overcome by requiring the developer to specify
required libraries in the TypeDescription and CompileInfo objects.

SCIRun operates under a shared-memory parallel environment. In this case,
we are only required to synchronize demand-compilation within a single process.
Future versions of SCIRun will operate in a distributed-memory parallel envi-
ronment, which will require that multiple processors synchronize to avoid race
conditions when generating code on a single shared filesystem. In this case, the
locking mechanism mentioned above will be extended to use filesystem-based
locks.

Summary

We have provided a mechanism for compiling only the template instantiations
that are needed as opposed to compiling all possible combinations of instanti-
ations. This solution minimizes the biggest problem with using template code,
namely bloat: compiling all possible combinations of template code, increases
total space and compilation time requirements. This reason has been enough
to overshadow the benefits that templates provide in generality and execution
time. The deferred compilation scheme makes the use of templates practical for
an interactive, general purpose system such as SCIRun. This mechanism also
allows SCIRun modules to operate on data types that it knows nothing about
at the time the module is compiled.

References

1. S.G. Parker, D.M. Beazley, and C.R. Johnson. Computational steering software
systems and strategies. IEEE Computational Science and Engineering, 4(4):50-59,
1997.

2. Steven Gregory Parker. The SCIRun Problem Solving Environment and Compu-
tational Steering Software System. PhD thesis, University of Utah, 1999.

3. S.G. Parker and C.R. Johnson. SCIRun: A scientific programming environment
for computational steering. In Supercomputing ‘95. IEEE Press, 1995.

4. S.G. Parker, D.M. Weinstein, and C.R. Johnson. The SCIRun computational
steering software system. In E. Arge, A.M. Bruaset, and H.P. Langtangen, editors,
Modern Software Tools in Scientific Computing, pages 1-44. Birkhauser Press,
1997.

5. P.J. Morgan and C. Henze. Large field visualization with demand-driven calcula-
tion. In Visualization ‘99. IEEE Press, 1999.

6. Todd L. Veldhuizen and M. E. Jernigan. Will C++ be faster than Fortran? In Pro-
ceedings of the 1st International Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE’97), Berlin, Heidelberg, New York, Tokyo, 1997. Springer-
Verlag.

7. S. Haney, J. Crotinger, S. Karmesin, and S. Smith. Pete: Portable expression
template engine, 1998.

IX

8. E. Johnson and D. Gannon. Programming with the hpc++ parallel standard
template library, 1997.

9. Andrew Kennedy and Don. Syme. Design and implementation of generics for the
.net common language runtime. In Programming Language Design and Implemen-
tation, pages 1-12. ACM Press, 2001.

10. S. Atlas, S. Banerjee, J. Cummings, P. Hinker, M. Srikant, J. Reynders, and
M. Tholburn. Pooma: A high performance distributed simulation environment
for scientic applications, 1995.

Martin Cole

Martin Cole is the Software Manager for the BioPSE development effort. BioPSE
is a software tool built within the SCIRun Software System, for the purpose of
bioelectric field modeling, simulation, and visualization. He received his B.S.
in Computer Science in 1994, and went on to work for Parametric Technology
Corporation, specifically on the 3DPaint and CDRS Software systems.

Steven Parker

Steven Parker is a Research Assistant Professor in Scientific Computing and
Imaging (SCI) Institute in the School of Computing at the University of Utah.
His research focuses on problem solving environments, which tie together scien-
tific computing, scientific visualization, and computer graphics. He is the princi-
pal architect of the SCIRun Software System, which formed the core of his Ph.D.
dissertation, and is currently the chief architect of Uintah, a software system de-
signed to simulate accidental fires and explosions using thousands of processors.
He was a recipient of the Computational Science Graduate Fellowship from the
Department of Energy. He received a B.S. in Electrical Engineering from the
University of Oklahoma in 1992, and a Ph.D. from the University Utah in 1999.

OOLALA: Transformations for Implementations
of Matrix Operations at High Abstraction Levels

Mikel Lujin*, John R. Gurd, and T.L. Freeman

Centre for Novel Computing, University of Manchester
Oxford Road, Manchester M13 9PL, United Kingdom
{mlujan, jgurd, lfreeman}@cs.man.ac.uk

Abstract. O0LALA is an object oriented linear algebra library designed
to reduce the effort of software development and maintenance. In con-
trast with traditional (Fortran-based) libraries, it provides two high ab-
straction levels that significantly reduce the number of implementations
necessary for particular linear algebra operations.

Initial performance evaluations of a Java implementation of OoLALA
show that the two high abstraction levels are not competitive with the
low abstraction level of traditional libraries. One of the high abstraction
levels is consistently slower than the low abstraction, while the other is
slower in most cases.

These performance results motivate the present contribution — the char-
acterisation of the set of storage formats (data structures) and matrix
properties (special features) for which a set of standard transformations
are able to map implementations at the two high abstraction levels into
efficient implementations at the low abstraction level.

1 Introduction

Object oriented software construction can be used to simplify the interface of
numerical linear algebra libraries and thus make them easier to use. It can also
be used to arrive at several fundamentally different implementations of linear
algebra operations. The objective is to reduce the effort of developing and main-
taining these libraries; thus a suitable design should significantly reduce the
number of implementations necessary for each particular linear algebra opera-
tion, compared with the large numbers encountered in traditional, Fortran based,
libraries. OOLALA [30,31] is a novel Object Oriented Linear Algebra LibrAry
which embodies such a design.

In contrast with traditional linear algebra libraries, OOLALA provides two
higher abstraction levels at which matrix operations are implemented. Tradi-
tional libraries sacrifice abstraction (when provided by the programming lan-
guage) as a trade-off for performance. In these libraries, the implementations of
matrix operations have embedded knowledge about the data structures (storage

* ML acknowledges the support of a research scholarship from the Department of
Education, Universities and Research of the Basque Government.

formats) and special characteristics (matriz properties) of the matrices passed in
as parameters. These implementations are said to be at Storage Format Abstrac-
tion level (SFA-level). OOLALA adopts the opposite approach; abstraction first,
then performance. The first higher abstraction level, Matriz Abstraction level
{(MA-level), provides random access to matrix elements. The second abstraction
level, Iterator Abstraction level (IA-level) (based on the iterator pattern [19]),
provides sequential access to matrix elements. Both abstraction levels reduce the
number of implementations for any given matrix operation [31].

Initial performance evaluations of a Java implementation of OQOLALA show
that implementations at MA-level and TA-level are not competitive with those
at SFA-level. This motivates the two questions addressed in this paper:

— how can implementations of matrix operations at MA-level and IA-level be
transformed into efficient implementations at SFA-level? and

— under what conditions? i.e. for which sets of storage formats and matrix
properties can this be done automatically?

These questions are addressed as follows. From the perspective of a library
developer Section 2 describes part of OOLALA and its implementation in Java.
Section 3 presents a performance evaluation of the Java implementation of
OoOLALA which compares implementations at the three abstraction levels for
norm1 and matrix-matrix multiplication. Section 4 characterises (defines) sub-
sets of storage formats and matrix properties, and illustrates different sequences
of standard optimising transformations for the defined subsets. These sequences
transform implementations at MA-level and TA-level into efficient implementa-
tions at SFA-level. Note that cache optimising transformations to obtain blocked
[14,17] or recursive implementations [24,4] are not included in these sequences.
Those transformations are not included because previous work (IBM’s Ninja
group [35]) has already enabled compilers to apply these transformations to
implementations at SFA-level. Related work and conclusions are presented in
Sections 5 and 6 respectively.

2 Overview of OoLALA

The design of OOLALA covers issues ranging from the representation of ma-
trices (matrix properties and storage formats) to the representation of matrix
operations. It also includes abstraction levels for implementing these operations,
and enables matrices to be described as compositions or sections of other matri-
ces. This section presents an overview of the Java implementation of OOLALA
and describes it from the perspective of a library developer. A more complete
description of OOLALA appears in [30,31].

The generalised class diagram' of OQoLALA (see Figure 1) can be read as —
“a given matrix can have different matrix properties and, as a function of these

L UML class diagram where the syntax to define attributes and methods has been
relaxed and replaced by pseudo code.

Marrix Property StorageFormat

isPropertyP sumColumns

numRows

isProperty T

?
| | | |

‘ Propertyl ‘ ‘ Properiyl ‘ Property] ‘ ‘ PropenyN ‘

PropertyL. PropenyT ‘ SorageFormatl ‘ ‘ SorageFormaiK ‘

Fig. 1. Generalised class diagram of OoLALA.

properties, can be represented in different storage formats”. The matrix proper-
ties (represented as attributes of class Property or as subclasses of Property)
and storage formats (represented as subclasses of StorageFormat) are not fixed.
This means that, when operated on, the properties and storage format of an
instance of class Matrix can be modified.

Since multiple inheritance is not included in Java, OOLALA modifies its
class diagram and represents each matrix property, that has a multiple inher-
itance relation in Figure 1, as a final subclass of Property. Every class and
method is either abstractor final.ldeally, generic classes would be used so
as to develop only one version of O0OLALA, independent of the data type of
the matrix elements. But, given that Java does not currently support generic
classes, that the official plans? to incorporate generic classes do not support
primitive types (float, double, int, etc.), and that emulating generic classes
with inheritance ([33] App. B.4) delivers poor performance [12,9], O0LALA is
implemented by developing a version for each numerical data type. OoLALA
represents two-dimensional arrays by mapping them to one-dimensional arrays
in a column-wise form (as in the Array Package [34] and JLAPACK [9]). In this
way, a two-dimensional array is stored continuously by columns in memory (as
in Fortran) and the number of exception tests (array index out of bounds and
null object) is halved.

The operation norml (||A|[1) is used to illustrate and understand the dif-
ferences among implementations at the three abstraction levels. The implemen-
tations presented illustrate the final phase into which OOLALA divides a ma-
trix operation. Before executing the implementations presented, OOLALA has
checked the correctness of the parameters (e.g. null references, coherent matrix

% The specification of the JSR-014 Adding Generics to the Java Programming Lan-
guage is available at http://jcp.org/aboutJava/communityprocess/review/jsr014

dimensions, etc.), predicted matrix properties (and, if necessary, modified matrix
properties or storage formats), and selected the appropriate implementation for
the matrix operation. This paper does not describe these three phases, but they
appear in [30].

Figure 2 presents the storage formats and matrix properties used in the
examples. The bottom three storage formats reduce the memory requirements
by not storing the zeros in the matrix. For example, the packed format uses
an one-dimensional array to consecutively store in column order the nonzero
elements of the matrix. The coordinate format requires three arrays; two of
integers and the other of the same data type that the matrix elements. The two
arrays of integers store the indices and the third array the associated value of the
matrix element. The band format uses a two-dimensional array but the number
of rows is the bandwidth of the matrix. Figure 3 presents definition of ||4|,
used in the subsequent examples.

Matrix Property

Data Structure

ai1 @12 a13 Q14
a21 22 Q23 A24
as1 a32 a33 a34
41 242 043 Q44

Q11|Q12|013|A14

a21|a22|Q23(024

31 (232|233 (234

Q441|042 |43 |044

dense dense format
a11 ai12
a12|a23|a34
a1 a22 423
a11|a22|033|044
a3z a33 34
a21|a32 |43
043 (44
banded band format

a11 a12 a13
@22 A23
a33

upper triangular

la11]a12]: - -|azs]ass]

packed format

Q44
sparse

Fig. 2. Examples of matrix properties and storage formats.

1131214

1123|144

Q11|A32|023|A14|044

coordinate format

norml + 0
for j=1ton

auzr <0

for i=1 tom

aux +— aux + |ai;|

end for

norml + max{(auz ,norml)
end for

Fig. 3. Algorithm of ||A4]|;.

2.1 Storage Format Abstraction Level

An implementation is said to be at SFA-level if changing the storage format of
any of the parameters implies that the implementation is invalid. These imple-
mentations know the representations of the storage formats and make explicit
usage of this information in order to access elements and to achieve good per-
formance.

public static double denseNorml (double a[l, int m, int n)
{ // alm] [n]

int ind=0;

double sum;

double max=0.0;

for (int j=0; j<n; j++)
{
sum=0.0;
for (int i=0; i<m; i++)
{
sum+=Math.abs(alind]); // alil[j]
ind++;
}// end for
if (sum>max) {max=sum;}
}// end for
return max;

}

Fig. 4. Implementation of ||A|[1 at SFA-level where A is a dense matrix stored in dense
format.

Figure 4 presents an implementation of || 4[| where A is a dense matrix stored
in dense format®, while Figure 5 presents an equivalent implementation where
A is an upper triangular matrix stored in packed format. The main difference
is the inner loop (i-loop) which is shortened because it is known that when i>j
the matrix elements are zeros and, therefore, these iterations are redundant.

3 Recall that one-dimensional arrays are used instead of a two-dimensional arrays and
that the mapping is, as defined in Fortran, by columns.

public static double upperNorml (double aPacked[]l, int m, int n)
{

int ind=0;

double sum;

double max=0.0;

for (int j=0; j<n; j++)

sum=0.0;
for (int i=0; i<=j; i++)
{
sum+=Math.abs (aPacked[ind]) ;
ind++;
}// end for
if (sum>max){max=sum;}
}// end for
return max;

}

Fig. 5. Implementations of [|A||1 at SFA-level where A is an upper triangular matrix
stored in packed format.

When, for example, A is an upper triangular matrix stored in dense format,
the implementation in Figure 5 does not compute ||4|[; correctly. On the other
hand, the implementation in Figure 4 computes |[A|[; correctly, but it is highly
inefficient.

Implementations at SFA-level do not take any advantage of the class structure
of OOLALA. They simply import the techniques to implement and obtain high
performance from traditional libraries.

2.2 Matrix Abstraction Level

The MA-level resembles the mathematical definition of a matrix; it provides
random access to matrix elements. From a programming point of view, a matrix
is a two-dimensional container of numbers. The basic operations are to obtain
an element of the matrix and to assign a value to an element of the matrix.
An element is determined by its (unicue) position: number of row i and column
j- The two access methods, element (i, j) and assign(i,j,value), constitute
the MA-level interface.

Matrix, Property and StorageFormat provide these two methods. Matrix
implements the methods by delegating to its attribute that is an instance of a
subclass of Property. The subclasses of Property* resolve the elements that are
known due to the specific matrix property that they represent. Otherwise, each
subclass of Property delegates to its attribute that is an instance of a subclass of
StorageFormat®. Subclasses of StorageFormat return the element specified by
two integers, or throw an exception. The exception is thrown by sparse storage

4 Property is an abstract class, and both element and assign are abstract methods.
5 StorageFormat is also an abstract class due to element and assign being abstract
methods.

formats when the element is not found. In this way, the subclasses of Storage-
Format do not decide what value the matrix element has when it is not stored.
This increases their reusability by the different subclasses of Property. Instead,
by catching the exception, each subclass of Property determines the value of
the matrix element in accordance with the matrix property that it models.

public static double norml (DenseProperty a)

{

}

double sum;

double max=0.0;

int numColumns=a.numColumns() ;
int numRows=a.numRows () ;

for (int j=1; j<=numColumns; j++)

{
sum=0.0;
for (int i=1; i<=numRows; i++)
{
sum+=Math.abs(a.element(i,j));
}// end for
if (sum>max){max=sum;}
}// end for

return max;

Fig. 6. Implementations of ||A||: at MA-level where A is a dense matrix.

public static double norml (UpperTriangularProperty a)

{

}

double sum;

double max=0.0;

int numColumns=a.numColumns();
int numRows=a.numRows () ;

for (int j=1; j<=numColumns; j++)

sum=0.0;
for (int i=1; i<=j; i++)
{
sum+=Math.abs(a.element(i,j));
}// end for
if (sum>max){max=sum;}
}// end for

return max;

Fig. 7. Implementations of |[A[|1 at MA-level where A is an upper triangular matrix.

Figures 6 and 7 present the implementations of [|A4]|1 at MA-level, where A
is a dense matrix and A is an upper triangular matrix, respectively. Implemen-
tations at MA-level are independent of the storage format, but dependent on

matrix properties.

Property StorageFormaiPosition

setRowWise() J
serColumnWise()

begin()

beginAr(ij)

nexiVecror(x) ‘

Boolean isMairisFinished() ‘ StorageFormatPosition | ‘ ‘ StorageFormatPositionK ‘

nextElement()
currenElemeni(y,elem)
StorageFormar

Boolean isVecrorFinished()

StorageFormat] e StorageFormatK

Fig. 8. Class diagram for IA-level.

Note that implementations at MA-level, as with implementations at SFA-
level, the loops that traverse the matrix operands are for-loops of the form

for (index=L; index<=U; index+=S),

where L (lower bound), U (upper bound), and S (stride) are constant integer
expressions. In other words, they are classic Fortran do-loops. Hereafter, for-
loop is used to refer to loops of this form.

2.3 Iterator Abstraction Level

The iterator pattern presents a way to traverse different kinds of containers
using a unique interface. The iterator pattern as described by Gamma et ol. [19]
traverses and accesses sequentially the elements in any container. The methods
of an iterator (a) set it to a starting position in the container, (b) test if there
are any more elements to be accessed, (¢) advance one position, and (d) return
the current element.

Figure 8 gives a class diagram for Property with the set of methods that con-
stitute the TA-level; an adapted iterator for two-dimensional containers. Matrix
provides the same methods, but their implementations delegate to its attribute
that is an instance of a subclass of Property. The methods nextElement and
nextVector are defined so that only nonzero elements are accessed. The figure
also presents StorageFormatPosition; the class that holds the current position.

Figure 9 presents the implementation of |[A|[1 at IA-level. Implementations
at TA-level are independent, of storage formats and of those matrix properties
based on structures of nonzero elements. Depending on the matrix properties of
the instance a, currentElement, nextVector and nextElement access different

matrix elements. Implementations at IA-level implicitly determine the elements
to be accessed, while implementations at MA-level make this explicit.

public static double norml (Property a)
{

double sum;
double max=0.0;

a.setColumnWise();
a.begin();
while (l!a.isMatrixFinished())
{
sum=0.0;
a.nextVector();
while (l!a.isVectorFinished())
{
a.nextElement () ;
sum+=Math.abs(a.currentElement());
}// end while
if (sum>max) {max=sum;}
}// end while
return max;

Fig. 9. Implementation of ||A||1 at [A-level.

3 Performance Evaluation

The objective of the experiments reported below is to investigate the relative
performances delivered by each of the three abstraction levels. In some cases,
performance is compared with the equivalent Fortran 77.

The test cases used for the experiments are norml (||A||1) and matrix-matrix
multiplication (C' = AB). The test cases use the double data type. The following
combinations of matrix properties and storage formats have been implemented
in Java: dense matrix in dense format (dp-df), banded matrix in dense format
(bp-df), banded matrix in band format (bp-bf), upper triangular matrix in dense
format (up-df), upper triangular matrix in packed format (up-pf).

The storage formats are organised column-wise and the implemented algo-
rithms traverse matrices column-wise (as in the Fortran BLAS downloaded from
www.netlib.org). The matrices used in the experiments for C = AB are square
matrices of dimensions 200 x 200, 400 x 400, 600 x 600, 800 x 800 and 1000 x 1000,
and only the last three for ||A4|[1. The upper bandwidth and lower bandwidth of
the banded matrices are one quarter of the matrix dimension.

The machine on which the tests were executed is a Sun Ultra-5 at 333 Mhz
with 256 Mb of memory and Solaris 5.8. It runs Sun’s Java SDK 2 Standard
Edition version 1.3.1. The Fortran 77 compiler is the Sun Workshop version 5.0.

The timing results have an accuracy of milliseconds and each value is the
minimum time observed after four invocations of the methods that implement
the matrix operations.

10

The JVM was invoked with the standard -server and non-standard flags
-Xbatch -Xms64Mb -Xmx 128Mb. The compiler javac was invoked with the -0 flag
and the Fortran compiler with the -02 flag; the -02 flag enables basic block
optimisations, but not loop optimisations (unrolling, interchange, etc.). This
was chosen to make a “fair” comparison with current Java technology which is
constrained by the strict Java exception model and may not apply such optimi-
sations.

Table 1 contains the execution times for C' = AB with dense matrices. It in-
cludes figures for both Fortran and Java implementations. Figure 10 presents the
ratios between the execution times of the Java implementations. The following
observations can be made:

— for big matrices (800-1000), SFA-level is faster than non-optimised and com-
petitive with —02 Fortran implementations;

— for small matrices (200-600), SFA-level outperforms the non-optimised For-
tran, by a factor of about 3, but is less efficient than -02 Fortran;

— IA-level is consistently and significantly slower than SFA-level; the slow-down
factor is between 7 and 14 for ||A|[; and between 5.3 and 13.6 for C = AB;

— MA-level is between 3 and 7 times slower than SFA-level for [|A4[|1 and
C = AB, except for ||A|1 and C = AB with de-df, and ||A||1 with up-df.
Tables 2 and 3 present the details of these exceptions.

The next section explores the reasons for the poor performance of TA- and
MA-level compared with SFA-level.

|Fortran|Fortran -0O2|Java SFA-level

200 | 1.330 0.357 0.367
400 | 10.666 2.841 3.835
600 | 40.453 11.656 12.54
800 [127.367| 32.439 31.079
1000|184.131| 64.236 60.89

Table 1. Times in seconds for C = AB with dense matrices on the Sun Ultra-5.

|SFA-level [MA-level
200 | 0.367 0.416
400 | 3.835 4.264
600 12.54 14.310
800 | 31.079 34.787
1000| 60.89 71.121
Table 2. Times in seconds for C = AB at MA-level and SFA-level for the case de-df.

SFA-level (de-df)

11

MA-level (de-df)

600
800
1000

0.017
0.031
0.049

SFA-level (up-df)

0.017
0.030
0.046

MA-level (up-df)

600
800
1000

0.009
0.016
0.025

0.011
0.020
0.030

Table 3. Times in seconds for |[A[|1 at MA-level and SFA-level for the cases de-df and

up-df.

gl HASRFE puani |52

mpnm
b

H ot EASF AR

i gl g Ha

il AR R maiE i

I’F_i::?.:i'.'- |

Hams L& FA H-dlj

Fig. 10. Ratios for C = AB.

4 Transforming Implementations of Matrix Operations

The experimental results of Section 3 provide a motive to search for circum-
stances in which it is possible to automatically transform code at MA- or TA-level
into efficient code at SFA-level. This section describes how known transformation
techniques can be applied systematically in certain circumstances to achieve the

desired effect.

Section 4.1 delimits the extent of the transformations that a general purpose
compiler might apply. It also defines specific subsets of matrix properties and
storage formats which are sufficient to permit the automatic transformation of
implementations at MA- and IA-level into efficient implementations at SFA-

12

level. Section 4.2 presents the transformations for MA-level implementations,
while Section 4.3 presents the transformations for TA-level implementations.

The classes used as examples are summarised in the sequence diagrams of
Figures 11, 14 and 22.

4.1 Preliminaries

An aspect to clarify first, is the subdivision of matrix properties. A matriz prop-
erty is a characteristic of certain matrices that has been identified because (a) it
appears in real world applications and (b) the implementations of certain matrix
operations can exploit it. The implementations might exploit matrix properties
to reduce execution time, to reduce memory requirements, or to increase the
accuracy.

A subset of these matrix properties, namely the mathematical relation prop-
erties, are properties of the whole matrix, rather than of the individual ele-
ments of the matrix. Examples of mathematical relation properties are symmetry
(A=AT), and orthogonality (AT=A"1 or AAT = I); see [20] for more examples
and rigorous formulation of such properties. Mathematical relation properties
enable linear algebra researchers to formulate different algorithms for a given
matrix operation.

A second subset of matrix properties, namely nonzero elements structure
properties, is based on the structure of the nonzero matrix elements. Examples
of this subset are upper triangular property, banded property, block diagonal
property and sparse property, [20]. This latter group of matrix properties spe-
cialises algorithms by elimininating steps of the algorithm which are known to
be redundant or unnecessary (e.g. x=x+zero and y=y*one).

The Role of a General Purpose Compiler General purpose static and
dynamic compilers could transform implementations following the nonzero el-
ements structure specialisation. However, such compilers cannot transform im-
plementations using the mathematical relation properties; this is the reserve of
domain-specific compilers. In other words, a general purpose compiler could spe-
cialise the implementation of ||A||; where A is a dense matrix to the case where
A is an upper triangular matrix. But, it cannot transform LU-factorisation (an
algorithm used for solving systems of linear equations Az = b, where A is a
general matrix) into Cholesky-factorisation (another algorithm used for solving
the same problem, but only applicable when A is a symmetric, positive definite
matrix).

Definitions We now define (a) the subset of matrix properties linear combi-
nation matriz properties (LCMP), (b) the subset of storage formats constant
time element access storage formats (CTSF), and (c¢) the subset of matrices lin-
ear combination and constant time (LCCT) used in the generalisation of the
transformations (Sections 4.2 and 4.3).

13

The set LCMP is defined as the subset of matrix properties such that every
matrix property is based on a boolean expression involving linear combinations
of the indices ¢ and j to determine whether an element a;; might be a nonzero
element. An example of a LCMP is the upper triangular property: a;; is zero
when ¢ > j and might be nonzero when ¢ <= j. The general sparse property
and the orthogonality property are examples of matrix properties that are not
LCMP.

The set CTSF is defined as the subset of matrix storage formats such that are
based on arrays and that every valid and stored matrix element can be accessed
using an algorithm of complexity O(1). An example of an CTSF is the dense (or
conventional) storage format: a m X n matrix A is stored in a two-dimensional
array of the same dimensions so that an element a;; is stored in a[i-11[j-1].
Coordinate (an example is shown in Figure 2) is an example of storage formats
that are not CTSF.

The set LCCT is defined as the subset of matrices such that their properties
belong to LCMP and they are stored in a storage format member of CTSF.

4.2 Matrix Abstraction Level

Dense Case Figure 11 presents the sequence diagram for the execution of the
implementation of ||A||; at MA-level when A is dense and stored in dense format
(see also Figure 6). Compared with the equivalent implementation at SFA-level
(see Figure 4), the main source of overhead at MA-level is the dynamic binding
of a.element (i,]j).

a @ DenseProperty

storage : DenseFormat
‘ I
******** numRows() |
—— -

I
I
I
I
I
|
numColumns() ! numColumns() 1
|

: %

for (j—1; je—numColumns; j++)

for (i=1; i<=numRows; it t)
element(i,j)

element(i.j)

U, - E return array[(j-1*numRows+i-1];
I

I
I

end for | F try {return storage.element(i,j); }
I
I
I
i
I

end for catch(FlementNotFoundFxception e) {return 0.0;}

Fig. 11. Sequence diagram for ||A|[1 implemented at MA-level with A dense and stored
in dense format.

14

Method inlining [13,21, 15,18, 2, 6,16, 25, 37] can be applied to eliminate the
invocations by inserting the code of the invoked methods into the invoking meth-
ods. After applying method inlining,®, the statements inside the nested loop
appear as shown in Figure 12.

if (a instance0f DenseProperty)
{// first guard
double aux;
try
{
if (a.storage instanceof DenseFormat)
// second guard
{aux=a.storage.array[(j-1)*a.storage.numRows+i-1];}
else
{aux=a.storage.element(i,j);}

}
catch(ElementNotFoundException e){aux=0.0;}
sum+=Math.abs (aux) ;

}

else

{sum+=Math.abs(a.element (i,j);}

Fig. 12. Statements inside the nested loop after applying method inlining to the code
in Figure 6.

An analysis of the loops reveals that, for every iteration, a and a.storage
are instances of DenseProperty and of DenseFormat, respectively. It also reveals
that none of the statements inside the try clause can throw an instance of
ElementNotFoundException.” Under these circumstances,

(a) the first guard can be removed because a is a parameter of the final class
DenseProperty,

(b) the second guard for the inlined methods can be placed surrounding the
nested loops, and

(¢) the try-catch can be removed leaving the code shown in Figure 13.

Once these optimisations have been applied, the code obtained is almost
identical to the hand-written implementation at SFA-level (see Figure 4). The
only difference is the index for accessing array. The implementation at SFA-
level uses an index, ind, that is initialised to zero and increases in each iteration.
The compiler optimisation technique known as strength reduction [5] is able to
transform® (j-1)+*a.storage.numRows+i-1 to achieve the implementation at
SFA-level.

5 We present method inlining with guarded class tests for the sake of clarity and
because, although it is not the most efficient [16, 25] it generates the most general
code.

7 ElementNotFoundException is a subclass of Exception defined by OoLaLa. In-
stances of this are thrown by element (i, j) in certain subclasses of StorageFormat
(sparse storage formats) when the matrix element, a;;, is not found.

8 Note that the upper bound of the i-loop, numRows, is a local variable initialised to
a.numRows (), i.e. a.storage.numRows after method inlining,.

15

if (a.storage instanceof DenseFormat)
{

double aux;

for (j=1; j<=numColumns; j++)

{

sum=0.0;

for (i=1; i<=numRows; i++)

{
aux=a.storage.array[(j-1)*a.storage.numRows+i-1];
sum+=Math .abs (aux) ; }

if (sum>max){max=sum;}

}// end for
}// end then
else

{
// original implementation
}// end if

Fig.13. Statements inside the nested loop after removing the guards and the
try-cateh clause from the code in Figure 12.

Upper Triangular Case When considering the implementation of ||A||; with
A upper triangular and stored in packed format, the main source of overhead is
again the dynamic binding (see the sequence diagram in Figure 14). Figure 15
presents the body of the inner loop resulting from applying method inlining to
the code in Figure 7.

Applying the same optimisations as in the dense case, the try-catch clause
can be removed leaving only the statements inside try{. ..}, the first guard can
also be removed, and the second guard can be moved to surround the loops.

This upper triangular case introduces an if-then-else structure in the
nested loops. The inner loop invariant expresses that i <= j which is exactly
the condition of the if clause. Hence, the condition always evaluates to true
and can be substituted with its true-branch. The resulting code, again, is almost
identical to the hand-written code at SFA-level (see Figure 5), except for the
index for array. Again this difference can be overcome by applying strength
reduction.

Generalisation With the given definitions, the following paragraphs argue that
it is possible to transform the implementation of a matrix operation at MA-level
8o that the code is similar to the implementation at SFA-level provided that its
operands are members of LCCT.

Given a general form of a matrix operation at MA-level (see Figure 16), any
invocation of the method element in an instance of a subclass of Property can
be inlined, since OOLALA’s design guarantees that every class is abstract or
final. For simplicity PropertyX is assumed to be a final class. Method inlining
generates the code in Figure 17. This code has first an if clause to guard the
inlined statements of x.element (i, j). The inlined statements are only executed
when the guard is true. When this guard is false, the implementation will
execute the original invocation.

16

‘ : Thread ‘ a : UpperTriangularProperty ‘ storage : UpperPackedFormat

T
|
D |
numRows()
] s ;
numColumns() ! numColumns() :
i
! |
for (j=1; jx=numColumns; j++) | 1
|
|
! :
for (i=1; i<=j; i++) 1 |
element(i,j) | '
if (i<=j) element(i,j) |
else N u ___[return array[i+jG-1¥2-11;
end if . RN !
\ N
\ N
\
end for : N try{return storage.element(i,j):}
end for : N catch(ElementNotFoundException €) {return 0.0;}
| \
|
|

Fig. 14. Sequence diagram for ||A4||1 implemented at MA-level with A upper triangular
and stored in packed format.

if (a instanceof UpperTriangularProperty)
{// first guard
double aux;
try
{
if (i<=j)
{
if (a.storage instance0f UpperPackedFormat)
// second guard
{aux=a.storage.array[i+j*(j-1)/2-111;2}
else
{aux=a.storage.element (i,j);}
}
else {aux=0.0;}
}
catch(ElementNotFoundException e){aux=0.0;}
sum+=Math.abs (aux) ;
}// end then
else
{
sum+=Math.abs(a.element (i,j));
}// end if

Fig.15. The body of the inner loop resulting from applying method inlining in
Figure 7.

Since PropertyX represents a property in LCMP, the inlined statements con-
tain an if (condition) which is a boolean expression involving linear combi-
nations of i and j. The condition determines when the element is known due
to the LCMP or PropertyX delegates to x.storage. A try-catch clause sur-
rounds this invocation; the signature declares that it may throw an instance of

17

ClassOrPrimitiveDataType matrixOperation(..,PropertyX x,..)

{
..%.element(i,j);
}

Fig. 16. General form of matrix operations implemented at MA-level.

ElementNotFoundException. Method inlining is also applied to this invocation
and the statements together with the guard appear inside the try{...}. Because
StorageFormatY is a storage format in CTSF, the inlined statements implement
an algorithm of O(1) complexity.

ClassOrPrimitiveDataType matrixOperation(..,PropertyX x,..)

{

double aux;
if (x instanceof PropertyX) // first guard
{
if (condition) // linear combination using i and j
{
try
{
if (x.storage instanceof StorageFormatY)
// second guard
{aux= ...;} // order one algorithm
else
{aux=x.storage.element (i,j);}

}
catch (ElementNotFoundException e){aux=0.0;}

}

else

{aux=0.0;}
}
else
{aux=x.element(i,j);}

N .

Fig.17. General form of matrix operations implemented at MA-level after method
inlining.

The second step in optimisation is to relocate the try-catch clause. Every
statement that can throw an instance of ElementNotFoundException is inside
the try{...}. Otherwise, the signature of the method element in the subclasses
of Property should declare it; OOLALA’s design avoids this. Each of the state-
ments that throws the exception, except for x.storage.element (i, j), can be
substituted with the statement (or statements) inside the catch{. ..}, as long
as the flow of the program is semantically equivalent.® Once the throws state-
ments have been removed, only the else-branch of the second guard can throw

® For example, the flow of the program can be maintained using Java labelled if’s
and break’s. The if (condition) has a label exception and just after the state-

18

an instance of ElementNotFoundException. Hence, the try-catch clause can
be moved inside the else-branch (see Figure 18).

if (condition) // linear combination of i and j
{
if (x.storage instanceof StorageFormatY)
// second guard
{
aux= ...;
// order one algorithm without throws statements
}
else
{

try {aux=x.storage.element(i,j);}
catch (ElementNotFoundException e){aux=0.0;}
}
}

else

{aux=0.0;}

Fig. 18. General form of matrix operations implemented at MA-level after applying
method inlining and moving the try-catch clause.

Because OoLALA divides a matrix operation into four phases and speci-
fies an order for them, x and x.storage remain, throughout the execution of
the method, instances of PropertyX and StorageFormatY, respectively. Thus,
an analysis of the method should reveal this and enable compilers to place the
guards around the code. The resulting code is presented in Figure 19. The re-
maining try-catch clause is removed when the guards are moved.

The next step in optimisation is to remove if (condition). When this if
clause is not in a loop,'® the performance overhead is negligible. However, when
the if is repeatedly evaluated, it can become a performance problem. The sim-
plest case is when the statements in the loop do not modify the values i and j
and, thus, the condition always evaluates to the same value. Because of this,
loop unswitching [5] can split the loop into two; one with the true-branch and
the other with the false-branch. The condition is evaluated only once in an if
which has as true-branch the first loop and as false-branch the second loop.

The more general case, when the statements in the loop modify the values i
and j, may be addressed by applying first induction variable elimination [5] and
then indezx set splitting [5]. The first transformation ensures that i and j are loop
indices, or functions of loop indices, and, therefore, have upper and lower bounds.
Then, index set splitting transforms the loop into multiple adjacent loops where
each loop performs a subset of the original iterations. These multiple adjacent

ments substituting a throws new ElementNotFoundException(), we introduce break
exception;. This is a brute force approach, but it is always applicable.

10 A single loop is assumed for the sake of clarity. The described transformations are
also applicable to nested loops.

19

ClassOrPrimitiveDataType matrixOperation(.., PropertyX x,..)
1{
if (x instanceof PropertyX &&
X.storage instanceof StorageFormatY)

{

double aux;
if (condition) // linear combination using i and j
{

aux= ...;

// order one algorithm without throws statements
}

else
{aux=0.0;}

}// end then
else
{
// original implementation
}// end if
}

Fig.19. General form of matrix operations implemented at MA-level after method
inlining and removing exceptions ElementNotFoundException.

loops are selected so that the iterations performed by each loop evaluates the
condition to the same value.

for (j=11; j<=ul; j++)

{ 14 s L
for (i=12; i<=u2; i++)ior (=11 j<mui; 4
1 . N for (i=12; i<=Math.min(j,u2); i++)
if (i<=j) -
{aux= 3 {aux= ...;}
BUXE eeed for (i=Math.min(j+1,u2+1); i<=u2; i++)
else
{aux=0.0; }
{aux=0.0;} }// end for
}// end for
}// end for
Original code Transformed code

Fig. 20. An example of applying index set splitting.

For example, consider the code in Figure 20. The condition i<=j is eliminated
and the i-loop is divided into two loops. The first new loop performs the iterations
for which i<=j is true and, thus, performs the true-branch of the condition,
while the second new loop performs the false-branch. Index set splitting can
be applied when the condition in the loop is a linear combination of the loop
indices; which is the case for matrices in LCCT.

The final step in optimisation is to apply strength reduction to the O(1)
algorithm for accessing a matrix element in the storage format.

Discussion In the first case, ||A||1 with A dense matrix stored in dense format,
no condition due to the matrix property has been encountered. In the second

20

case, || A||1 with A upper triangular matrix stored in packed format, the condition
i<=j has been removed because the loop invariant implied that the condition
would be always true. Thus, index set splitting is not required in either case.

if (a instanceof UpperTriangularProperty &&
a.storage instanceof DenseFormat)
{

for (j=1; j<=numColumns; j++)

sum=0.0;
for (i=1; i<=numRows; i++)
{
double aux;
if (i<=j)
{aux=a.storage[(j—1)*a.storage.numRows+i-1]1;}
else
{aux=0.0;}
sum+=Math .abs(aux) ;
}// end for
if (sum>max) {max=sum;}
}// end for
}// end then
else

{
// original implementation
}// end if

Fig. 21. Implementation of ||A|[1 at MA-level where A is an upper triangular matrix
stored in dense format using an algorithm for dense matrices. The code has been
transformed applying method inlining, the try-catch clause has been removed and
the guards for the inlined methods have been moved surrounding the loops.

Suppose that the implementation in Figure 6 is changed so that the parame-
ter a is of class Property and that this implementation is invoked with an upper
triangular matrix stored in dense format. Figure 21 presents the code after ap-
plying method inlining, removing the try—catch clause and moving the guards
for the inlined methods outside of the loop. This code can now be transformed
using index set splitting (a similar example transformation is presented in Figure
20).

The second loop

for (i=Math.min(j+1,numRows+1); i<=numRows; i++)
{

double aux=0.0;

sum+=Math.abs (aux) ;
}// end for

can be removed completely, dead code elimination [5], since constant propagation
[5] and then algebraic simplification [5] remove the statements inside this loop.
Index set splitting, together with constant propagation, algebraic simplification
and dead code elimination, are the final step in specialising an implementation

21

at MA-level of a general algorithm!! into an implementation at SFA-level for
matrices in LCCT.

When the matrices are in LCCT, the optimisations described transform im-
plementations of matrix operations at MA-level into code that resembles the
code at SFA-level. The optimisation can be applied both to implementations
of specialised algorithms that take into account the matrix properties of the
operands and, also, to implementations of general algorithms.

4.3 TIterator Abstraction Level

Upper Triangular Case Figure 22 presents the sequence diagram for the im-
plementation of ||A||, at IA-level where A is an upper triangular matrix stored in
dense format (see also Figure 9). Apart from the overhead of the dynaric bind-
ing, this implementation suffers the repeated execution of certain computations.
The strategy to transform this implementation into an efficient implementation
at SFA-level follows these steps:

— inline the methods invoked in a, a.currentPosition, and a.storage,

— move the guards for the inlined methods to surround the statements of the
method,

— remove try-catch clauses,

— make local copies of the accessed attributes,

— disambiguate aliases,

— remove redundant. computations, and

— transform the while-loops into for-loops.

For a representative selection of the methods invoked in a Table 4 gives the
resulting code after applying method inlining. Since the code becomes verbose
when including the inlined statements with guards, the table presents them with-
out the guards. The table also excludes the else-branch for the if (columnWise)
statements.

The optimisation of moving the guards to surround the code has been de-
scribed in the context of implementations at MA-level. The circumstances that
enable compilers to perform this optimisation are guaranteed by OOLALA’s de-
sign and, also apply to implementations at TA-level. OOLALA’s design divides
the implementation of any matrix operation into different phases and specifies
an order among the phases. Thus, OOLALA ensures that a, a.storage and
a.currentPosition remain, throughout the execution of the method normi, in-
stances of UpperTriangularProperty, DenseFormat and DenseFormatPosition.

Another optimisation described in the context of optimisations at MA-level
and needed for this implementation, is the removal of try-catch clauses. The
method currentPosition (see Table 4) does not throw any exception. It catches
instances of ElementNotFoundException and, in accordance with the corre-
sponding property, resolves the value of the element. The optimisation substi-
tutes the statements that throw new ElementNotFoundException() with the

' An algorithm that considers all matrix operands to be dense matrices.

22

0°0 wxnwar) aspp

[

{:0°0 LINIX)(O PUNOJONIIIW[H)Y2ILD
(WA WA wIndI) A1y

]

{(UWN[ODXOPUTRF=>() KOY XOPUTHIF) |

:
j [HUIWIFHUAUIND
:

(RONXapTIR

UWAOOXPUTIR

(IPISIAUIIGHLHIOWI[F 3%

(0011504) $OU XOPU1IUL = VO S0K

[:0modxaputan:)

W)

DRwg o

(OPAYSIII0NRAS!

S-S MOYINUL([-(i ini0) 1‘3.

(Frwonrod = vonsod

| (I 1)$001PUTNS

wwI0308u0q : SResons GOIFOAIUWIOIANIG - U

15041UaLNg

- .
SHOLIAFPAISIAURGSY §7 ((SMOUWNUJUI YreN==1 LOHUNG (YU QYA < | BINRT L
(sMoywny j
qumpr |-
Vv j MOYYONUNIon = 1
! (UN[O)XAPUTIE = [
i T (DU ULHO19AS]
| {H0PIUSIAVIOGSL U] O8[3 W[
I A
(P pIse0ipaTIs
o = uopsod L T+)s001pu
j QUWNE)XPUNSE = [
1 [
i (010199 APOTSTAVR0GSLY) JE
1] (MO0
7.:5_325_22_8%; 79 sUOAOW@NU== |)$UTAOWAY < [9IAR L -
Osuwnownau
Sfumar |-
(UA0)XIPUTIIE = [
i (IPRYS DLIYIRAS
o

SdoscaemaeeE Lot ;¢

Ui

onys pae

YA U

ISE

(OPYSTULIXLIPINSI) 1

Fig. 22. Sequence diagram for ||A[|: implemented at IA-level with A upper triangular

matrix stored in dense format.

} and maintains an equivalent flow of the pro-

inside the catch{...

statements

gram.

a.isVectorFinished();

23

boolean aux;

DenseFormatPosition currentPosition=a.currentPosition; // R
int i=currentPosition.i; // R

int j=currentPosition.j; // R

DenseFormat storage=a.storage; // R

int numRowsStorage=storage.numRows; // R

int numColumnsStorage=storage.numColumns; // R

boolean columnWise=a.columnWise; // R

boolean elementHasBeenVisited=a.elementHasBeenVisited; // R

if (columnWise)
{
aux=(i>Math.min(j,numRowsStorage) ||
i==Math.min(j ,numRowsStorage)) &% elementHasBeenVisited;
}
else {...aux=...}
return aux;

a.nextElement() ;

DenseFormatPosition currentPosition=a.currentPosition; // R
int i=currentPosition.i; // R

int j=currentPosition.j; // R

int position=currentPosition.position; // R

DenseFormat storage=a.storage; // R

boolean elementHasBeenVisited=a.elementHasBeenVisited; // R
boolean columnWise=a.columnWise; // R

if (columnWise)
{
if (elementHasBeenVisited)
{
it++;
currentPosition.i=i;
position++;
currentPosition.position=position;
}// end if

else {...}
elementHasBeenVisited=true;
a.elementHasBeenVisited=elementHasBeenVisited;

a.currentElement();

double aux;

DenseFormatPosition currentPosition=a.currentPosition; // R
int i=currentPosition.i; // R

int j=currentPosition.j; // R

int position=currentPosition.position; // R

boolean elementHasBeenVisited=a.elementHasBeenVisited; // R

elementHasBeenVisited=true;
a.elementHasBeenVisited=elementHasBeenVisited;
if (i<=j)

DenseFormat storageCurrentPosition=currentPosition.storage; // R

try {aux=storageCurrentPosition.array[position];}

catch (ElementNotFoundException e){aux=0.0;}
}
else
{aux=0.0;}

Table 4. Resulting code after applying method inlining to Figure 9.

24

Some statements in Table 4 have the line-comment // R. This indicates that
these statements are repeated, at least once more, among the statements inlined
due to the other methods. These statements make local copies of the attributes
in a, a.storage and a.currentPosition; this is the third step in optimisation.

The fourth step is to remove these repeated statements by declaring and
initialising local copies at the beginning and only writing back to the attributes
at the end. This step also removes all tests of the form if (columnWise), leaving
only the true-branch. The computations involving elementHasBeenVisited can
also be removed, but the details are omitted for the sake of clarity.

The fifth step, alias disambiguation, notes that a.storage and
a.currentPosition.storage are both references to the same object. Thus in
Figure 23, the local variables numRowsStorage and numRowsCurrentPosition
are copies of the same attribute. Both variables can now be renamed as numRows.
When considering other matrix operations which involve more than one matrix,
alias disambiguation would also be used for the local references to Java arrays.

if (a instance of UpperTriangularProperty &&
a.storage instanceof DenseFormat &&
a.currentPosition instanceof DenseFomatPosition)

double sum;
double max=0.0;
// local copies

j=1;
while (j<=numColumnsStorage)

sum=0.0;
i=1;
position=(j-1)*numRowsCurrentPositiont+i-1;
while (i<=Math.min(j,numRowsStorage))
{
double aux;
if (i<=j) {aux=array[position];}
else {aux=0.0;}
sum+=Math.abs (aux) ;
it++;
position++;
}// end while
if (sum>max) {max=sum;}
jH+;
}// end while

// write back

return max;
}// end then
else
{
// original implementation
}// end else

Fig. 23. Implementation of ||A||1 at IA-level obtained by applying the optimisation
steps 1 to 4.

25

By now, the structure of the nested while-loops is almost the structure of
nested for-loops and standard control-flow and data-flow techniques [1] can be
used to recognise this.

Finally, the loop invariant of the inner loop is i <= j &% i <= numRows
which implies that the if will always take the true-branch. The resulting code
(see Figure 24) is almost identical to the code at SFA-level, except for the state-
ment position = (j-1) * numRows. This difference can be eliminated by ap-
plying strength reduction.

if (a instance of UpperTriangularProperty &&
a.storage instanceof DenseFormat &&
a.currentPosition instanceof DenseFomatPosition)

double sum;
double max=0.0;
// local copies

for(j=1; j<=numColumns; j++)

sum=0.0;

position=(j-1)*numRows;

for (i=1; i<=Math.min(j,numRows); i++)

{
sum+=Math.abs (array[position]);
position++;

}// end for

if (sum>max) {max=sum;}

}// end for

// write back

return max;
}// end then
else
{
// original implementation
}// end else

Fig. 24. Implementation of [|A4[|; at IA-level obtained by elemininating redundant
computations from the code in Figure 23.

Generalisation With the given definitions, the following paragraphs argue that
it is possible to transform the implementation of a matrix operation at IA-level
so that the resulting code is similar to the implementation at SFA-level provided
that the operands belong to LCCT.

Table 5 presents for a selection of the methods that constitute the TA-level
interface the effect that method inlining would have. The table assumes that
the methods are invoked in an instance x of the final class PropertyX and
that x.storage is an instance of the final class StorageFormatY. PropertyX
represents a LCMP and StorageFormatY represents an CTSF; i.e. x is a matrix

26

boolean aux;

StorageFormatYPosition currentPosition=x.currentPosition; // R
int i=currentPosition.i; // R

int j=currentPosition.j; // R

StorageFormatY storage=a.storage; // R

int numRowsStorage=storage.numRows; // R

x.isVectorFinished(); int numColumnsStorage=storage.numColumns; // R

boolean elementHasBeenVisited=a.elementHasBeenVisited; // R

aux=conditionVectorFinished(i, j,numRowsStorage,
numColumnsStorage,...);

// linear combination involving i and j and other constant

// characteristics of the matrix

StorageFormatYPosition currentPosition=x.currentPosition; // R

int i=currentPosition.i; // R

int j=currentPosition.j; // R

StorageFormatY storage=x.storage; // R

int numRowsStorage=storage.numRows; // R

int numColumnsStorage=storage.numColumns; // R

boolean elementHasBeenVisited=x.elementHasBeenVisited; // R

a.nextElement() ; if (elementHasBeenVisited)

{
i=functionNextElementI(i,j,numRowsStorage,numColumnsStorage,...);
// function derived from a condition LCMP
currentPosition.i=i;

}// end if

elementHasBeenVisited=true;

x.elementHasBeenVisited=elementHasBeenVisited;

double aux;

StorageFormatYPosition currentPosition=x.currentPosition; // R
StorageFormatY storageCurrentPosition=currentPosition.storage; // R
int i=currentPosition.i; // R

int j=currentPosition.j; // R

int position=currentPosition.position; // R

boolean elementHasBeenVisited=a.elementHasBeenVisited; // R

a.currentElement(); elementHasBeenVisited=true;
a.elementHasBeenVisited=elementHasBeenVisited;
if (condition) // linear combination involving i and j

{

try {aux=...;} // order one algorithm

catch (ElementNotFoundException e){aux=value;}
}
else

{aux=value;}

Table 5. Resulting code after applying method inlining to an implementation of a
matrix operation at IA-level.

in LCCT. For simplicity, we consider a column-wise traversal and present only
statements for this traversal.

A summary of the information presented in the table follows:

27

— isVectorFinished simply returns the result of a function that takes as pa-
rameters constant characteristics of the matrix (e.g. number of rows, number
of columns, etc.) and the indices of the current position;

— nextElement modifies the indices for the next position using a function that
also take as parameters constant characteristics of the matrix (e.g. number
of rows, number of columns, etc.) and the indices of the current position;

— currentElement implements an O(1) algorithm for finding the element in-
dicated by the current position indices.

The functions, either boolean (for isVectorFinished) or integer (for next-
Vector and nextElement), are derived from a LCMP condition. In the most
simple form, these functions are constants. In the most complex form, they are
linear combinations involving the indices of the current position and constant
characteristics of the matrix.

The first optimising steps (method inlining for x, x.currentPosition and
x.storage, movement of the guards for the inlined statements, removal of try-catch
clauses, to make local copies of the accessed attributes of x, and alias disambigua-
tion) do not present any problems and have been described in previous cases.
The description of how to eliminate the computations involving the local variable
elementHasBeenVisited is omitted for the sake of conciseness.

Figure 25 presents the code after applying the preceding optimisations to the
general case. Now, it can be shown that the indices i and j have lower bounds
and upper bounds, since independently of the matrix and traversing column-
wise, the condition for isMatrixFinished() always includes a term so that j
is in the range 1 to numColumns. A similar argument applies to i. Thus, the
while-loops can be transformed into a form of for-loops (see Figure 26). Finally,
this form of for-loops can be transformed into the traditional form by dividing
the iteration spaces so that:

— conditionMatrixFinished(...) and conditionVectorFinished(...) are
simplified to the form index <= CONSTANT, and

— functionNextVectorJ(...), functionNextVectorI(...), and function-
NextElementI(...) are simplified to the form index +=CONSTANT.

5 Discussion and Related Work

IBM’s Ninja group has developed the base optimisations for high performance
numerical computing in Java [35]. They have developed techniques for finding
exception free regions in for-loops which perform calculations accessing multi-
dimensional arrays. These techniques enable a compiler to eliminate the tests
associated with array accesses and, also, to apply classical loop reordering opti-
misations to the exception free regions. Our transformations take object oriented
numerical computations and transform them into for-loops, in most cases involv-
ing arrays. Apart from the obvious benefit, their work enables us to respect the
exact Java exception model. Our transformations, step by step, do not respect

28

if (x instance of PropertyX &&
x.storage instanceof StorageFormatY &&
X.currentPosition instanceof StorageFomatYPosition)

// local copies

i=iI;

3=id;

while (!conditionMatrixFinished(i,j,numRows,numColumns,...))

{
i=functionNextVectorI(i,j,numRows,numColumns,...);
while (!conditionVectorFinished(i,j,numRows, numColumns,...))
{

double aux;
if (condition) // linear combination involving i and j
{
aux= ...;
// order one algorithm
}
else
{aux=value;}

i=functionNextElementI(i,j,numRows,numColumns,...);
}// end while

j=functionNextVectorJ(i,j,numRows,numColumns,...);
}// end while

// write back

}// end then
else

{

// original implementation
}// end else

Fig. 25. Implementation of a matrix operation at TA-level obtained by applying the
described steps except the transformation of while-loops into for-loops.

the Java exception model. However, if they are applied as a whole and it can
be proved that the generated for-loops are exception free (i.e. successfully apply
Ninja’s technique), then the exception model is not violated.

The Bernoulli compiler [32] incorporates transformation techniques for C++
linear algebra programs implemented at MA-level for dense matrices. The com-
piler takes these programs and descriptions of sparse storage formats, and gen-
erates efficient SFA-level code using the passed in sparse storage formats. Their
work is motivated because MA-level (random access to an element) is not effi-
cient when dealing with sparse storage formats. Their transformation techniques
complement the transformations described in this paper, since they cover gen-
eral sparse matrices and sparse storage formats (which we do not cover) but
they do not cover LCCT. The main difference is that the Bernoulli compiler is
a domain-specific compiler, while our transformations are for general purpose
compilers.

29

for (j=jJ;
j>=1 && j<=numColumns && !conditionMatrixFinished(...);
j=functionNextVectorJ(...))

{

for (i=functionNextVectorI(...);
i>=1 && i<=numRows && !conditionVectorFinished(...);
i=functionNextElementI(...))

{

}// end for

}// end for

Fig. 26. Equivalent for-loops to the while-loops presented in Figure 25.

One of the transformations applied to implementations at MA-level and IA-
level are the removal of try-catch clauses. General techniques for optimising
Java programs in the presence of exceptions are described in [23,29].

Several object oriented linear algebra libraries are surveyed and classified in
[31], and information about numerical computing in Java can be found in the
JavaGrande Forum reports [27,28] and in [7,10,38,12,9, 34, 36,22, 3,26, 35, 11].

OoLALA as a Generator of Specialised Implementations From an al-
ternative point of view, the described optimisations automatically generate the
specialised implementations of most matrix operations covered by the dense and
banded BLAS (Chapter 2 of [8]) and LAPACK. The generation process simply
needs implementations at MA-level of the general algorithms. The implementa-
tions that cannot be generated in this way are those that exploit mathematical
relation properties.

Thread Safety The Java language provides threads as part of the language. In
general, it is not possible to prove whether two or more threads will be accessing
the same data, but the Java memory memory model enables threads to keep
private copies of shared data between synchronisation points.

Note that OOLALA is a sequential library and that the portions of the code,
to which the transformation have to be applied, do not have synchronisation
points. Thus, in order to make the transformations thread safe, all the attributes
of the instances accessed simply have to be copied into private local variables.
This has been included in the transformations for IA-level implementations, but
it is not presented in the case of MA-level implementations.

Block and Recursive Algorithms Given the trend towards more complex
and deeper computer memory hierarchies, block and recursive algorithms [14,
17,24, 4] have been proposed for numerical linear algebra. These algorithms have
as their main advantage that they have a better utilisation of all and each level
of the memory hierarchy. As mentioned earlier, compiler transformations that

30

pursue these objectives are out of the scope of this paper; the work by IBM’s
Ninja group [35] has enabled Java compilers to apply such transformations to
the code produced by the sequences of transformations presented in this section.

On the other hand, the generalisations from the examples do not impose
any constraint by which block and recursive algorithms implemented at MA-
and TA-level cannot be transformed into SFA-level. In addition, none of the
transformations change the order in which matrix elements are accessed and,
thus, the memory access pattern remains unmodified. In other words, block
and recursive algorithms implemented at MA- and IA-level are transformed into
block and recursive implementations at SFA-level.

6 Conclusions

MA-level and TA-level are offered as alternatives to the SFA-level imported from
traditional (Fortran-based) libraries. MA-level provides library developers with
an interface to access matrices independent of the storage format and with ran-
dom access to matrix elements. TA-level provides library developers with an
interface to access matrices also independent of the storage format but with
sequential access to the non-zero elements.

The performance evaluations of a Java implementation of OOLALA show
that MA- and TA-level are not competitive with the SFA-level. TA-level is con-
sistently slower than the low abstraction (between 5.3 and 13.6 times slower),
while MA-level is slower in most cases (between 3 and 7 times slower). A Java
implementation of matrix-matrix multiplication at SFA-level is competitive with
its Fortran 77 equivalent compiled with -02.

The core of the paper is the characterisation of the set of matrix properties
and storage formats together with the transformations that enable implementa-
tions at MA- and TA-level to become efficient implementations at SFA-level. The
transformations can be applied when the operands have certain matrix proper-
ties and certain storage formats. These matrix properties and storage formats
are not too restrictive since they cover the dense and banded BLAS and part of
LAPACK.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles, Tech-
niques and Tools. Addison Wesley, 1985.

2. Gerald Aigner and Urs Holzle. Eliminating virtual function calls in C++ programs.
In Proceedings of the 10th European Conference on Object-Oriented Programming
— ECOOP’96, volume 1098 of Lecture Notes in Computer Science, pages 142-166.
Springer-Verlag, 1996.

3. G. Almasi, F. G. Gustavson, and J. E. Moreira. Design and evaluation of a linear
algebra package for Java. In Proceedings of the ACM 2000 Java Grande, pages
150-159, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

31

Bjarne Stig Andersen, Fred Gustavson, Alexander Karaivanov, Jerzy Wasniewski,
and Plamen Y. Yalamov. Lawra — linear algebra with recursive algorithms. In
Proceedings of the Conference on Parallel Processing and Applied Mathematics,
1999.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations
for high-performance computing. Computing Surveys, 26(4):345-420, 1994.
David F. Bacon and Peter F. Sweeny. Fast static analysis of C++ virtual function
calls. In Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications — OOPSLA’96, pages 324-341, 1996.

Aart J. C. Bik and Dennis B. Gannon. A note on native level 1 BLAS in Java.
Concurrency: Practice and Erperience, 9(11):1091-1099, 1997.

BLAS Technical Forum. Document for the Basic Linear Algebra Subprograms
Standard, August 2001.

Brian Blount and Siddhartha Chatterjee. An evaluation of Java for numerical
computing. Scientific Programming, 7(2):97-110, 1999.

Ronald F. Boisvert, Jack J. Dongarra, Roldan Pozo, Karin A. Remington, and
G. W. Stewart. Developing numerical libraries in Java. Concurrency: Practice and
Ezperience, 10(11-13):1117-1129, 1998.

Ronald F. Boisvert, José E. Moreira, Michale Philippsen, and Roldan Pozo. Java
and numerical computing. IEEE Computing in Science and Engineering, 3(2):18—
24, 2001.

Zoran Budimlié¢ and Ken Kennedy. The cost of being object-oriented: A preliminary
study. Scientific Programming, 7(2):87-96, 1999.

Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in
C++ programs. In ACM SIGPLAN’9 Symposium on Principles of Programming
Languages, pages 397-408, 1994.

S. Carr and Ken Kennedy. Blocking linear algebra code for memory hierarchies.
In Proceedings of the SIAM Conference on Parallel Processing for Scientific Com-
puting, 1989.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy. In Proceedings of the 9th Furopean Confer-
ence on Object-Oriented Programmin — ECOOP’95, Lecture Notes in Computer
Science, pages 77-101. Springer-Verlag, 1995.

David Detlefs and Ole Agesen. Inlining of virtual methods. In Rachid Guerraoui,
editor, Proceedings of the 13th European Conference on Object-Oriented Program-
ming — ECOOP’99, volume 1628 of Lecture Notes in Computer Science, pages
258-278. Springer-Verlag, 1999.

Jack J. Dongarra and David W. Walker. Software libraries for linear algebra
computations on high performance computers. SIAM Review, 37(2):151-180, June
1995.

May F. Fernandez. Simple and effective link-time optimization of Modula-3 pro-
grams. In Proceedings of the ACM Conference on Programming Language Design
and Implementation, pages 103-115, 1995.

Erich Gamma, Richard Helm, Ralph Johson, and John Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison Wesley, 1995.

Gene H. Golub and Charles F. van Loan. Matriz Computations. John Hopkins
University Press, 3" edition, 1996.

David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. Profile-guided
receiver class prediction. In Proceedings of the ACM Object Oriented Programming
Systems, Languages and Applications — OOPSLA’95, pages 108-123, 1995.

32

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Edwin Giinthner and Michael Philippsen. Complex numbers for Java. Concur-
rency: Practice and Ezperience, 12(6):477-491, 2000.

Manish Gupta, Jong-Deok Choi, and Michael Hind. Optimizing Java programs
in the presence of exceptions. In Elisa Bertino, editor, Proceedings of the 14th
European Conference on Object-Oriented Programming — ECOOP 2000, volume
1850 of Lectures Notes in Computer Science, pages 422-446. Springer-Verlag, 2000.
Fred Gustavson. Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM Journal of Research and Development, 41(6):757-756,
1997.

Kazuaki Ishizaki, Motohiro Kawashito, Toshiaki Yassue, Hideaki Komatsu, and
Toshio Nakatani. A study of devirtualization techniques for a Java Just-In-Time
compiler. In Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications — OOPSLA 00, pages 294-310, 2000.
Shigeo Itou, Satoshi Matsuoka, and Hirokazu Hasegawa. AJaPACK: Experiments
in performance portable parallel java numerical libraries. In Proceedings of the
ACM 2000 Java Grande, pages 140-149, 2000.

Java Grande Forum. Making Java Work for High-End Computing, November 1998.
Available at http://www.javagrande.org/reports.htm.

Java Grande Forum. Interim Java Grande Forum Report, June 1999. Available at
http://www.javagrande.org/reports.htm.

Seungll Lee, Byung-Sun Yang, Suhyun Kim, Seongbae Park, Soo-Mook Moon,
Kemal Ebcioglu, and Eric Altman. Efficient Java exception handling in just-in-
time compilation. In Proceedings of the ACM 2000 Conference on Java Grande,
pages 1-8, 2000.

Mikel Lujan. Object oriented linear algebra. Master’s thesis, Department of Com-
puter Science, University of Manchester, December 1999.

Mikel Lujdn, T. L. Freeman, and John R. Gurd. OOLALA: an object oriented
analysis and design of numerical linear algebra. In Proceedings of the ACM Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications —
OOPSLA’00, pages 229-252, 2000.

Nikolay Mateev, Keshav Pingali, Vladimi Kotlyar, and Paul Stodghill. Next-
generation generic programming and its application to sparse matrix computation.
In ACM International Conference on Supercomputing, 2000.

Bertrand Meyer. Object Oriented Software Construction. Prentice Hall, 2% edition,
1997.

José E. Moreira, Samuel P. Midkiff, and Manish Gupta. A standard Java array
package for technical computing. In Proceedings of the Ninth SIAM Conference on
Parallel Processing for Scientific Computing, March 1999.

José E. Moreira, Samuel P. Midkiff, and Manish Gupta. From flop to megaflops:
Java for technical computing. ACM Transactions on Programming Languages and
Systems, 22(2):265-295, 2000.

George W. Stewart. The Jampack Owner’s Manual, 1999. Available at
ftp://thales.cs.umd/pub/Jampack/AboutJampack.html.

Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call
resolution for Java. In Proceedings of the ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications — OOPSLA 00, pages 264-280,
2000.

Peng Wu, Samuel Midkiff, José E. Moreira, and Manish Gupta. Efficient support
for complex numbers in Java. In Proceedings of the ACM 1999 Java Grande, pages
109-118, 1999.

Parallelization of an Object-Oriented
Particle-in-Cell Simulation*

Simon Pinkenburg, Marcus Ritt, and Wolfgang Rosenstiel

Wilhelm-Schickard-Institut fiir Informatik
University of Tiibingen, Department of Computer Engineering
Sand 13, 72076 Tiibingen
{pinkenbu,ritt,rosen}Qinformatik.uni-tuebingen.de

Abstract. We describe our experience made in parallelizing a Particle-
in-Cell simulation. The project was part of our efforts to apply object-
oriented methodologies to the development of parallel physical simula-
tions. Unlike earlier projects, which were developed and parallelized in
cooperation with physicists, the goal was to parallelize a sequential simu-
lation code written in C++ without having support from its developers.
Our interest was to analyze the structure of the original code and the
possibilities ofadding the parallelization after sequential development.
Also, since the parallelization was targeted to distributed memory ar-
chitectures, we wanted to test the deployment of the object-oriented
message-passing library developed in our working group.

Based on a static and dynamic analysis, we describe several general par-
allelization strategies and the implementation of one of them. We give
a introduction to our message-passing library and detail its extension to
collective communication, which was necessary to implement the parallel
algorithm. Runtime measurements made on two different architectures
are compared. We conclude with a discussion of the findings made in
course of the project.

Keywords: Object-orientation, Message-Passing, Simulation, Particle-in-Cell

1 Introduction

This work is part of a government funded collaboration of physicists, mathe-
maticians and computer scientists to develop large-scale physical simulations
for massive parallel computers. Our group is concerned with the development
of adequate runtime environments and libraries to parallelize these simulations
effectively.

While in industry object-oriented techniques and programming languages are
widely used, the scientific computing community still does not employ them in

* This project is funded by the Deutsche Forschungsgemeinschaft as a part of the
Collaborative Research Center 382 (Methods and Algorithms for the Simulation of
Physical Processes on High Performance Computers)

2 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

T, integration of T,

@
T,

2 field integration T weight particles

Monte—Carlo Collision

equations of motion
vV T v

F —vV —=x

p — = F &xv) /= p

Fig. 1. Steps in a Particle-in-Cell simulation with MCC

the majority of the applications. In recent years, some efforts to enable object-
orientation for parallel computing have been made, mainly in the C++ commu-
nity. Efficient and standard-conforming compilers, mathematical base libraries
reduced the performance gap between classical approaches and object-oriented
codes [14]. Parallel programming standards like the Message-passing interface
provide support for object-oriented languages and efforts to establish object-
oriented frameworks for parallel computing are ongoing [15,8,11].

In this paper, we investigate how object-oriented methods can help in the
parallelization of object-oriented codes. A focus is the reusability of the object-
oriented design of a sequential code. In section 2 we give a overview over the
Particle-in-Cell method used in this application. We explore parallelization strate-
gies in section 3 and discuss their implementation in the next section. In section
4, we also present an object-oriented message-passing library supporting collec-
tive communications, which helped to parallelize the application on distributed
memory machine at a reasonable level of abstraction. Measurements of the par-
allel execution are presented and discussed in section 5. We conclude in section
6.

2 Particle-in-Cell simulation with Monte-Carlo collisions

In a Particle-in-Cell simulation, the medium under consideration is represented
by a large number of macro particles, each describing the physics of an ensemble
of real particles. The macro particles reside in a simulation space of finite geomet-
ric boundaries. In contrast to other particle methods, the particle interactions
are calculated using a discrete grid. The grid divides the simulation space into
usually regular subregions or cells (hence the name of the method). Character-
istic physical properties of the particles are weighted on the grid using a kernel

Parallelization of an Object-Oriented Particle-in-Cell Simulation 3

function. The momentum equations on the grid are solved with some standard
method (for example finite differences). Based on these results, the forces are
calculated and interpolated to the particles positions to solve the equations of
motion.

PiC simulations use grid points to reduce drastically the amount of compu-
tation necessary to produce good approximations to the actual behavior of the
underlying physical phenomena. To do this they make use of the common phys-
ical property that the influence of any two macro particles upon one another
quadratically decreases as the geometric distance between them increases. The
computational reduction is accomplished by weighting the contributions of the
particles on the grid cells, using a kernel function of finite domain. In this way,
the computational complexity of simulating n macro particles drops from O(n?)
to O(n).

In this specific application, the PiC method is used to simulate the phenom-
ena in the electrostatic plasma of a direct current glow discharge in a tube. A
plasma medium is an ionized gas, which may be regarded as a collection of ions
and electrons interacting through their mutual electric and magnetic fields. PiC
methods are often used to simulate plasma phenomena by solving Maxwell’s
Equations in a numeric manner. This involves computing the dynamics of a
large number of electrons and ions in the plasma and the influence of the self-
consistent electromagnetic fields. Each macro particle represents about 2 - 10°
real particles. Since the problem to be solved shows a cylindrical symmetry and
the radius components were of no interest, the simulation is effectively one-
dimensional. In order to make a model of the direct particle interactions in the
plasma, the method is extended by Monte-Carlo collision (MCC) processes. The
collision processes prevent regarding the whole physics of the scattering process,
but randomly approximate elastic scattering and the stimulation or ionization
of neutral gas atoms by electrons.

The sequential PiC code in C++ was the result of an effort creating a frame-
work for PiC simulations called Open Particle Framework (OPAR) [2]. While
designed as an extensible framework, it currently implements only the classes re-
quired to simulate the direct current glow discharge. The object-oriented CASE
tool together was used for the static analysis.

The application provides two major abstractions: a task concept and a di-
agnosis subsystem. Tasks define the execution of the simulation. Each physical
entity is encapsulated in a task (by deriving them from class CTask) and imple-
ments its simulation code. The task classes follow the Composite design pattern
and thus a hierarchical execution structure can be defined. Task objects have
an external representation for configuring the simulation. This configuration file
makes it possible to define the tasks, their parameters and the static dependen-
cies (associations) between them. On start of the simulation, the static object
model is reconstructed from this configuration file. Thus, the user is able to
construct arbitrary simulation setups based on the set of implemented physical
entities without recompiling the application.

4 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

The diagnosis subsystem contains classes for producing output from simula-
tion runs. Any diagnosis output (f.ex.particle trajectories or the plasma density
distribution) is implemented in its own diagnosis task. This task can be attached
as a subtask to the physical entity to observe, and produces the desired output.

Since together does not support dynamic analysis by producing an UML se-
quence diagram from a concrete run, the dynamic behavior was analyzed by
manually tracing some executions. In each timestep, the execution engine runs
all configured tasks in the order given by the configuration file. The configura-
tion supports one-time tasks, which can be used for additional setup, and tasks
running the entire simulation time.

3 Parallelization strategies

After initializing the particles, each simulation timestep executes four substeps:
T weights the particles on the grid, 7% calculates the solution on the grid, 75
solves the equations of motion of the particles and Ty applies the Monte-Carlo
processes to the particles.

A parallelization has to give a decomposition of the tasks and consider the
data dependencies between the parallel computations. Regarding time complex-
ity, tasks Ty, T3 and Ty are linear in the number of particles and 7% is linear
in the number of grid points. In Ty, T3 and T4, the computation on different
particles is independent, but there is a data dependency for Ty and T3 to all grid
points (an output dependency in case of Ty, and an input dependency in 73). In
T, the computations on a grid point depend on its neighbors. Therefore, 71, T3
and T, can be decomposed on the number of particles, and 75 on the number of
grid points. For the parallel execution of T and T3, either the data dependencies
on the grid have to be resolved, or concurrent accesses to the grid have to be
synchronized. The same holds for T3 in respect to neighboring grid points.

3.1 Decomposition

A parallel Particle-in-Cell algorithm has the choice of divide up the work done
on the particles, the grid or both. The next sections explore and compare these
different approaches.

Domain decomposition The first possibility, dividing up the grid into sub-
grids of the same size where each of them remains on one processor, is also the
most common way used for particle methods. Each processor thereby keeps one
subgrid and all particles in its local memory.

In step 77 — computing the density — the processors weight the particles on
their part of the grid. Next, the electric fields, potentials and force fields are
locally solved in parallel under the consideration of data dependencies between
the boundary values of each subgrid. Now, the equations of motion can be solved
setting the new positions and velocities of all particles. A synchronization fol-
lows, updating the positions and velocities of the particles on all processors to

Parallelization of an Object-Oriented Particle-in-Cell Simulation 5

regain redundancy. Thereby, only the moved particles are exchanged by a scat-
ter function in order to reduce the communication overhead. The used function
enables every processor to have all new positions and velocities. Finally, the
Monte-Carlo processes are executed in parallel.

The whole communication overhead, neglecting communication of boundary
values, depends on the number of particles, making this strategy only useful for
problems with a large computation on the grid and a small amount of particles.

Particle decomposition The second strategy divides up the particles on each
processor and keeps the grid redundant in memory to resolve data dependencies.
After weighting the particles on the local grid, a global reduction operation,
which sums up all local grids and distributes the result back to all processors,
leaves the application with a redundant global grid. The use of a reduction
operation is legal because of the additivity of the physical quantities weighted on
the grid. Now, the processors can locally compute the electric field, the potential
and the forces on the grid in parallel and subsequently advance their particles
by setting their new positions and velocities. After simulating the Monte-Carlo
collisions the cycle can be repeated.

This strategy parallelizes only the operations on the particles. The compu-
tation on the grid, while executed in parallel, is the same on all processors and
thus adds to the sequential overhead. The additional communication overhead
depends on the number of grid points transmitted in the reduction operation.
This approach is efficient for problems with small grids and a great large number
of particles.

Domain and particle decomposition The third possibility is to combine
both alternatives: divide up the particles and the grid points. Steps Ty, T3 and
T4 — dealing with particles — should be divided by particles and step T> by grid
points.

If the memory is large enough, an implementation could keep the grid redun-
dant and simply merge the steps of the particle and domain decomposition. In
step T, each processor weights its particles on the local grid. After the grid is
subdivided into equal parts, each processor sums up the local contributions of
the subgrid now is responsible for from all other processors. This can be done in
a single reduction operation. In the next step, the processors compute the fields
on each subgrid in parallel, considering the data dependencies between bound-
ary values. Afterwards each processor broadcasts its local grid, bringing all local
grids up-to-date, which makes in turn possible to proceed locally with the com-
putation of new positions and velocities of the particles and the Monte-Carlo
collisions.

This implementation involves a lot of communication overhead. If tight mem-
ory resources prohibit the redundancy of some data structures, like in the algo-
rithm above, this overhead gets even worse. Such an approach is only efficient
for problems with large grids and a large number of particles.

6 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

Conclusion The choice of a parallelization strategy for an application depends
on the percentages of computation spent in updating the particles and the grid.
As a requirement of the PiC method, the number of particles must exceed the
number of grid points. Usually the computation on the grid contributes less than
10% to the total running time, depending on the complexity of the algorithm.
In our case, the number of particles exceeds the number of grid points by a
magnitude of 2 to 4, therefore the computation on the grid contributes less
than 1%. Thus we decided to decompose the computation only by the number
of particles. If the simulation would be extended to three dimensions, which
increases the number of grid points and requires more complex algorithms for the
solution of the field equations, a combined domain and particle decomposition
approach would be most promising,.

3.2 Load balancing

Another important point was to add a load balancing component. Initially, the
particles are distributed equally to all processors. Due to the Monte-Carlo col-
lisions and ionizations done in the last step of the algorithm, the distribution
of the particles changes in course of the simulation. The resulting load imbal-
ance can reduce the speedup significantly. The load balancing component checks
the particles distribution periodically and averages the number of particles on
the processors. Since the running time of a full timestep is very small, the load
balancer must be carefully tuned to add little overhead. This was achieved by
checking the balance only every few steps and executing the averaging process,
which implies the communication of the particles, only if the imbalance exceeds
a configurable limit. Further, the averaging process is stopped, if a sufficient
balance is reached. For this application, the load balancer starts rebalancing at
20% imbalance and stops at 5% imbalance. This can be usually done in a single
communication step, which keeps the overhead small.

4 Implementation

A goal of the implementation was to parallelize the application without substan-
tially rewriting the sequential code. The implementation had to modify three
parts of the code: At initialization the particles must be distributed equally to
all processors, between T} and T3, the redundant grid must be updated, and
in after some number of timesteps, the particles must be load balanced. Where
it is possible, the implementation follows the task model. Initialization of the
particles is done in tasks of class CGeneration. Since the particles are not ini-
tialized from external values but created on startup, the initial distribution of
particles to processors could be done by modifying this task (by inheritance) to
assign newly created particles to the processors in a round-robin fashion. This
step requires no communication.

The summation of the local grids could be implemented transparently as a
subtask of class CDensity, which is responsible for weighting the particles to the

Parallelization of an Object-Oriented Particle-in-Cell Simulation 7

grid. The subtask executes the reduction operation after the local updates are
done.

Since the load balancer depends on the particles, it has been implemented
as a subtask of class CSpecies, the representation of the particles. After the
integration of the equations of motion, this subtask is responsible for checking
and, if necessary, averaging the particle distribution.

4.1 TPO++

The implementation of the communication was done in TPO++ [3], an object-
oriented message-passing library developed in our group. In this section, we give
an overview of point-to-point communication in TPO++. For this application,
TPO++ has been extended to collective communication, which is discussed in
more detail in the next subsection.

TPO++ implements an object-oriented interface for the functionality of the
well-known MPI 1.2 message-passing standard [11]. It is intended to fill the se-
mantic gap between current the message-passing standard MPI and the object-
oriented programming paradigm. This includes a type-safe interface with a data-
centric rather than a memory-block oriented view and concepts for inheritance
of communication code for classes. Other goals were to provide a light-weight, ef-
ficient and thread-safe implementation, and, since TPO++ is targeted to C++,
the extensive use of all language features that help to simplify the interface.
A distinguishing feature compared to other approaches [6,7,1,12] is the tight
integration of the Standard Template Library (STL). TPO++ is able to com-
municate STL containers and adheres to STL interface conventions. All commu-
nication methods provide the same orthogonal interface for specifying the data
objects to communicate. A sender has two options: provide a single datatype
(basic or object) or a range of data elements by using a pair of STL iterators.
A receiver has the third option to provide a special back inserter (in analogy to
the ST back inserters) that allocates the memory on the receiving side auto-
matically.

The following code examples illustrate some of the features of TPO++. Fig-
ure 2 shows two classes enabled for transmission in TPO++-. For types with a
trivial copy constructor like Point, a single declaration is sufficient to achieve
this. For more complex types like Circle, the user has to provide two marshalling
methods named serialize and deserialize. Figure 3 shows the communica-
tion of a single object and a collection of objects of class Circle from process 0
to process 1.

For further details on TPO++ and a comparison with other object-oriented
message-passing systems see [3].

4.2 Collective communication in TPO-++

The implementation of collective communication in TPO++ covers the func-
tionality of MPI 1.2. MPT provides three groups of collective primitives:

8 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

class Point { class Circle {
public: public:
Point() : x(0), y(0) {} Circle() : radius(0.0) {
private: center = new Point(0.0);
int x, y; }
}; ~“Circle() { delete center; }
TPO_TRIVIAL (Point); void

serialize(Message_data& m) const {
m.insert (*center) ;
m.insert (radius) ;
}
void
deserialize(Message_data& m) {
m.extract (*center) ;
m.extract(radius) ;
}
private:
Point* center:
double radius;
};
TPO_MARSHALL (Circle) ;

Fig. 2. Examples of two classes enabled for transmission in TPO++.

using namespace TPO;

if (CommWorld.rank() == 0) { // sender
Circle c;
CommWorld.send(c, 1);

vector<Circle> vc(20);

CommWorld.send(ve.begin(), vc.end(), 1);
} else { // receiver

Circle c;

CommWorld.receive (c) ;

vector<Circle> vc(20);
CommWorld.receive(ve.begin(), vc.end());

Fig. 3. Transmission of user-defined objects.

Parallelization of an Object-Oriented Particle-in-Cell Simulation 9

vector<double> vd(10);
TPQ: : CommWorld.bcast (vd.begin(), vd.end(), 2);

Fig. 4. Broadcast of a container of floating-point values in TPO++ rooted at process 2.

— The basic collective primitives broadcast and barrier.
— Four data-exchange primitives (scatter, gather,allgather and alltoall).
— Four combination primitives (reduce, allreduce, reduce_scatter and scan).

The goal of the TPO++ implementation of collective communication was to
provide a interface consistent with its point-to-point interface and the STL con-
ventions. Of course, the implementation should show a reasonable performance
compared to MPIL. The existing interfaces suggest an implementation of collec-
tive operations as methods of class TPO: : Communicator. The methods should
accept the different kind of data structures discussed in section 4.1. For the
details of the interface, several characteristics different from the point-to-point
communication are relevant:

Five primitives (broadcast and the combination primitives) are rooted oper-
otions, i.e. they are asymmetrical in respect to one process. The root must
be somehow given for these operations. Since it is likely to change in subse-
quent calls, we chose to add it to the methods parameters. Figure 4 gives an
example of broadcasting a vector of floating point values.

The data-exchange and combination primitives are operations on different in-
put and output data structures, given in the same call. With two variants to
send and three variants to receive date, we have a maximum of six possible
overloaded methods for these operations. Looking more closely, not all pos-
sibilities are reasonable, for example a scatter operation, which sends only
one element, is impossible®. Table 1 summarizes the overloaded methods of
these operations.

The data-exchange primitives also come in a vector-variant, which does not re-
quire the data structures of the participating processes to be of the same size.
MPT allows the clients for p processes to pass p memory blocks of different
size and offset relative to a common base address. An obvious generalization
in C++ is to allow the clients to pass a number of element ranges, each
given by a begin and end iterator. Several different realizations of such an
interface are imaginable. TPO++ favors a container of pairs of begin and
end iterators. This simplifies the interface, since only one additional param-
eters is needed, and enhances readability and safety due the explicit pairing
of corresponding iterators. For convenience in the common case of adjacent
element ranges of different sizes, TPQ++ provides another interface, where
only a single container of p + 1 iterators defining the p segments of different
length is required.

3 Except in the boundary case of one process, in which no communication is needed.

10 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

The four combination operations require another parameters, the operation

to be applied to the elements given by the processes. Standard operations
defined in MPI include for example the sum or the minimum of the values.
In conformance with the STL, TPO++ allows the client to pass an arbitrary
function object. Unlike the STL, MPT further requires the client to state the
commutativity of the operation, which is realized by a boolean class attribute
of the function operators type. Figure 5 gives an example of an user-defined
function operator and a reduction in TPO++.
The implementation of function operators cannot hide entirely the MPT layer
and some deviations of the STL semantics. Unlike STL function operators,
the function operators in TPO++ obviously cannot be state-dependent,
since the operations are executed on different hosts in different instances.
Moreover, TPO++ requires the data objects used in reduction operators to
provide a default constructor and to be of constant size. These restrictions
result from the constraints of MPI user-defined combination operations.

Receiver
Sender Single Collection Back-inserter
Single Broadcast, Reduce, Scan, Allreduce (All)Gather (All)Gather
Collection Scatter All operations All operations

Table 1. Overload collective communication methods. The sender can pass single ob-
jects or arbitrary collections of elements in STL containers. The receiver can get single
objects, collections of elements in STL containers or allocate the space automatically
using a back-inserter.

// user-defined operator vector<double> source(20);
// for combination operations vector<double> result(20);
template <class T>
class sum { // reduction
public: CommWorld.reduce (source.begin(),
static bool commute; source.end(),
void operator() (T& inout, result.begin(),
const T& in) { result.end(),
inout += in; sum<double>(),
} 0);
}

template <class T>
bool sum<T>::commute = true;

Fig. 5. Example of an user-defined reduction operation sum and its application in the
reduction of a container of floating-point values rooted at process 0.

Parallelization of an Object-Oriented Particle-in-Cell Simulation 11

Related work To our knowledge, three object-oriented message-passing sys-
tems, mpi++ [6,7], para++ [1] and OOMPI [12] implement collective commu-
nication primitives, which significantly differ from the MPI C++ bindings [9,
10].

Para++ implements the concept of C++ 10 streams for message-passing and
provides only a broadcast and multicast primitive for collective communication?.
Obviously, having only broadcast is not sufficient for most applications.

mpi++ implements the full set of MPI 1.2 collective communication prim-
itives. In mpi++ collective communication primitives are implemented in two
template classes, Collective and Reduction. Collectiveis parameterized with
the type information about the data to send and receive, its methods implement,
all basic and data-exchange primitives, and its attributes hold the communicator
to use and possibly the root of the collective communication. The derived class
Reduction implements the combination primitives and encapsulates additional
information about the type of operation to apply. Different to TPO++, mpi++
reintroduces, in analogy to MPI, its own type system, but does not support
the STL. Also, the interface is built around the operations, which are reified as
classes, and avoids method parameters in favor of attributes.

OOMPI implements the full set of MPI 1.2 collective communications. One of
basic abstractions in OOMPI, class Port is used to specify the master for rooted
operations. All other operations are implemented in the communicator class
Intra_comm. Class OOMPI_Op is a simple wrapper for MPI operators. The con-
structor also accepts user-defined MPI operators. Unfortunately, at this point,
the underlying MPT layer is visible for the user.

5 Performance measurements

The performance of the Particle-in-Cell code has been measured on two differ-
ent architectures, the Cray T3E, a conventional supercomputer installed at the
German supercomputer center in Stuttgart [4] and Kepler, a self-made clustered
supercomputer® based on commodity hardware [13]. The T3E has 512 nodes,
each equipped with a DEC Alpha EV5 21164 processor running at 450 Mhz and
128 MB of RAM. The interconnect organizes the nodes in a three-dimensional
torus (8 x 8 x 8), and every connection to the 6 neighbors provides a nominal
bidirectional bandwidth of about 500 MB/s. Measurements of MPI application
to application performance gives a bandwidth of about 300 MB/s and 15us la-
tency. Keplers 96 nodes are running two Pentium IIT processors at 650 Mhz and
have 1 GB of total memory, or 512 MB per processor. Kepler has two intercon-
nects, a fast ethernet for booting the nodes and administration purposes and a
Myrinet network for parallel applications. The latter has a multi-staged hierar-
chical switched topology organized as a fat tree. The nominal bandwidth of 133

4 In MPI, the multicast is realized by creating a new communicator containing only a
subset of all processes.
6 As of July 2001 Kepler occupies rank 290 at the TOP 500 list of supercomputers.

12 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

1000 steps 1 oo
90 - 90 o -
5000 steps- 12440’
deal —— K
0 ;
70
60
£
S 50
o1
i3
j=5
%)
40
30
20
10
0 0
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Processors Processors
T T T T
1000 steps —+— 1.2 014partic|es —
120 » - 120 » -
5000 steps < %-- 1.2+10'6 particles < *--
Ideal Ideal
100 100
80 80
o o
E) E)
=1 =1
8 8
& 60 & 60
40 - 40 g
e
20
—_— R
60 80 100 120 40 60 80 100 120
Processors Processors

Fig. 6. Measurements on Kepler cluster. Upper row: Load balancing disabled. Lower
row: Load balancing enabled. Left column: 1.2 * 10*® particles for different numbers
simulation steps. Right column: 5000 simulation steps for different number of particles.

1006 steps
920 - 90 ; 4
1.2‘I1O
80
70
60
£
S 50
o1
i3
j=5
%)
40
30
[
20 1
10
o L
0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Processors Processors
T T T
14
1.2
120 2000 steps ----- | 120 0]
5000 steps~--*-- 061076 < x--
Ideal Ideal
100 100
80 - 50
) -
o %7 3
g : g
& e : 2 e *
,)(‘
* .
40 ¥
- 40
s
- - %
20
20 .
*
o = . i
20 40 60 80 100 120 0
Processors 20 40 60 80 100 120
Processors

Parallelization of an Object-Oriented Particle-in-Cell Simulation 13

121014

Fig. 7. Measurements on Cray T3E. Upper row: Load balancing disabled. Lower row:
Load balancing enabled. Left column: 1.2 + 10'® particles for different numbers simula-
tion steps. Right column: 5000 simulation steps for different number of particles.

14 Simon Pinkenburg, Marcus Ritt, Wolfgang Rosenstiel

MB/s is the maximum PCI transfer rate, measurements give about 115 MB/s
bandwidth and 7us latency.

The Particle-in-Cell application has been run with couple of different param-
eters. Three different numbers of particles have been used to observe the effects
of a varying computation to communication ratio. Three different numbers of
simulation steps show the growing imbalance without load balancing and the
improvements after load balancing. All measurements have been made on up to
128 processors.

Figure 6 shows the results for the Kepler cluster, figure 7 for the Cray T3E.
Note that the speedups of the large runs on Cray T3E with 1.2 101 particles
and 5000 simulation steps are based on the runtimes for 8 processors, which
improves these speedups artificially. The problem did not fit in a smaller number
of processors. For the same reason, the largest runs on Cray T3E use only 0.6 *
10'® simulation particles.

The different number of simulation steps show the effect of a growing im-
balance if load balancing is disabled, which results in a decreasing performance
with increasing number of simulation steps. With load balancing enabled, the
picture is reversed. The speedups improve and the application can profit from the
increasing number of particles created in course of the simulation. For smaller
number of simulation particles, the load balancing is not able to improve the
speedups, in case of 1.2 10'* particles they even decrease. Regarding the initial
number of simulation particles, the results clearly show a break-even between
1.2 x 10" particles, showing moderate speedups, and 1.2 x 106 particles, with
very good performance. For 1.2 « 10'* particles, the application can gain only
limited runtime improvement.

6 Conclusions

While the task model allows flexible combination of physical entities, the config-
uration is restricted to a sequential execution model. In this particular domain,
an extension could provide parallel execution primitives. A shortcoming of this
implementation is the lack of a consistent organization beyond the task ab-
straction. For example, the objects defining the geometry and representing the
particles are used globally, and therefore are tightly coupled to all other classes.
As a consequence of this, it is impossible to configure the application without
knowing the classes in detail. The lack of documentation makes it even more
complicated.

The use of a design tool simplified the reverse-analysis of the application sub-
stantially as well as the understanding of the class dependencies, which otherwise
would have not been possible. Regarding the parallelization, static and dynamic
analysis helped to select from the theoretical approaches the most reusable strat-
egy, which is not necessarily the most efficient one. In this case, both strategies
were the same, which simplified the parallelization substantially. The subse-
quent addition of a parallelization without modification of the sequential code

Parallelization of an Object-Oriented Particle-in-Cell Simulation 15

was possible due to the flexibility of the task model. The tool also helped a lot
documenting the code.

References

1.

2.

10.

11.
12.

13.

14.

15.

O. Coulaud and E. Dillon. Para++: C++ bindings for message-passing libraries.
In EuroPVM Users Meeting, September 1995.

T. Daube and H. Schmitz. OPAR: Open architecture C++ plasma simulation
code. Ruhr-Universitét Bonn, 1998.

T. Grundmann, M. Ritt, and W. Rosenstiel. TPO++: An object-oriented message-
passing library in C++. pages 43-50. IEEE Computer society, 2000.

High performance computing center Stuttgart. Cray T3E-900/512. Online. URL:
http:/ /www.hlrs.de/hw-access/platforms/crayt3e (January 2001).

M. Hipp, S. Hiittemann, M. Konold, M. Klingler, P. Leinen, M. Ritt, W. Rosenstiel,
H. Ruder, R. Speith, and H. Yserentant. A parallel object-oriented framework for
particle methods. In E. Krause and W. Jiger, editors, High Performance Comput-
ing in Science and Engineering ’99, pages 483-495. Springer-Verlag, 1999.

D. Kafure and L. Huang. mpi++: A C++ language binding for MPI. In Proceedings
MPI developers conference, Notre Dame, IN, June 1995.

D. Kafure and L. Huang. Collective communication and communicators in mpi++.
Technical report, Department of Computer Science Virginia Tech, 1996.

Los Alamos National Laboratory. POOMA, 2000. Online:
http:/ /www.acl.lanl.gov/PoomaFramework.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical Report UT-CS-94-230, Computer Science Department, University of
Tennessee, Knoxville, TN, May 1994.

Message Passing Interface Forum. MPI-2: Eztensions to the Message-Passing In-
terface, July 1997.

M. Snir and W. Gropp. MPI: The complete reference. MIT Press, 1998.

J. M. Squyres, B. C. McCandless, and A. Lumsdaine. Object Oriented MPI: A
Class Library for the Message Passing Interface. In Proceedings of the POOMA
conference, 1996.

University of Tiibingen. Kepler cluster website. Online. URL: http://kepler.sfh382-
zdv.uni-tuebingen.de.

T. Veldhuizen. Arrays in blitz++. In D. Caromel, R. Oldehoeft, and M. Tholburn,
editors, Computing in Object-Oriented Parallel Environments (ISCOPE’98), pages
223-231, 1998.

G. V. Wilson and P. Lu, editors. Parallel Programming using C++. The MIT
Press, Cambridge, 1996.

Parallel Code Generation in MathModelica / An Object
Oriented Component Based Simulation Environment

Peter Aronsson, Peter I'ritzson
(petar,petfr)@ida.liu.se

Dept. of Computer and Information Science,
Linképing University, SE-581 83 Link&ping, Sweden

Abstract. Modelica is an a-causal, equation based, object oriented modeling lan-
guage for modeling and efficient simulation of large and complex multi domain
systems. The Modelica language, with its strong software component model,
makes it possible to use visual component programming, where large complex
physical systems can be modeled and composed in a graphical way. One tool
with support for both graphical modeling, textual programming and simulation is
MathModelica.

To deal with growing complexity of modeled systems in the Modelica language,
the need for parallelization becomes increasingly important in order to keep sim-
ulation time within reasonable limilts.

The first step in Modelica compilation results in an Ordinary Differential Equa-
tion system or a Differential Algebraic Equation system, depending on the spe-
cific Modelica model. The Modelica compiler typically performs optimizations
on this system of equations to reduce its size. The optimized code consists of
simple arithmetic operations, assignments, and function calls.

This paper presents an automatic parallelization tool that builds a task graph from
the optimized sequential code produced by a commercial Modelica compiler. Var-
ious scheduling algorithms have been implemented, as well as specific enhance-
ments to cluster nodes for better computation/communication tradeoff. Finally,
the tool generates simulation code, in a master-slave fashion, using MPL.

Keywords: Object Oriented Modeling, Visual Programming, Components, Schedul-
ing, Clustering, Modelica, Simulation, Large Complex System

1 Introduction

Modelica is an a-causal, object-oriented, equation based modeling language for
modeling and simulation of large and complex multi-domain systems [15, 8] con-
sisting of components from several application domains. Modelica was designed
by an international team of researchers, whose joint effort has resulted in a gen-
eral language for design of models of physical multi-domain systems. Modelica
has influences from a number of earlier object oriented modeling languages, for
instance Dymola [7] and ObjectMath [9].

The four most important features of Modelica are:

— Modelica is based on equations instead of assignment statements. This per-
mits a-causal modeling that gives betler reuse of classes since equations do
not specify a certain data flow direction. Thus a Modelica class can adapt to
more than one data flow context.

— The possibility of having model components of physical objects from sev-
eral different domains such as e.g. electrical, mechanical, thermodynamic,
hydraulic, biological and control applications can be described in Modelica.

— Modelica is an object-oriented language with a general class concept that
unifies classes, generics (known as templates in C++) and general subtyping
into a single language construct. This facilitates reuse of components and
evolution of models.

— The strong software component model in Modelica has constructs for cre-
ating and connecting components. Thus the language is ideally suited as
an architectural description language for complex physical systems, and to
some extent for software systems.

The class, also called model, is the building block in Modelica. Classes are in-
stantiated as components inside other classes, to make it possible to build a
hierarchical model of a physical entity. For instance, an electrical DC motor
can be composed of a resistor, an inductance and a component transforming
electricity into rotational energy, see Figure 1. The model starts with two im-
port statements, making it possible to use short names for models defined in the
Modelica.Electrical. Analog.Basic package (the first import statement) and us-
ing the short name for the StepVoltage model defined in the Modelica package
Modelica.Electrical. Analog.Sources (the second import statement). The import
statements are followed by several component instantiations, where modification
of components is used. The modification of components is a powerful language
construct that further increases the possibility of reuse. The next part of the model
definition is the equat ion section, see Figure 1. It can consist of arbitrary equa-
tions, involving the declared variables of a model. It can also contain connect
statements, which are later translated into equations that couple variables in dif-
ferent components together.

One tool for developing models, for simulation and for documentation is Math-
Modelica [14]. It integrates Modelica with the mathematical engineering tool
Mathematica and the diagram editor Visio 1o allow the user o work with mod-
els both in a powerful computer algebra system and by using component based
modeling in a drag and drop/connect fashion in a graphical environment, see Fig-
ure 2. In MathModelica a model can also be entered in a Mathematica notebook
document as ordinary text. For example, the dcmotor model can be simulated
by:

Simulate [decmotor, {t,0,50}];

The MathModelica environment then compiles the Modelica model into C, which
is then linked with a solver into an executable file. The result from running the
simulation consist of a number of variables changing over time, i.e. they are func-
tions of time. In MathModelica these variables are directly available and can be,
for instance, plotted, see Figure 3.

When a model described in Modelica is to be simulated the involved models,
types and classes are first fed to a compiler. The Modelica compiler flattens the

model dcmotor
import Modelica.Electrical.Analog.Basic.*;
import Modelica.Electrical.Analog.Sources.StepVoltage;
Resistor R1(R=10);
Inductor L(L=0.01);
EMF emf;
Ground G;
StepVoltage src;
equation
connect (src.p,R1l.p);
connect (Rl.n,L.p);
connect (L.n,emf.p);
connect (emf.n,G.p);
connect (G.p,src.n);
end dcmotor;

Fig. 1. A simple model of a DCmotor described in the Modelica modeling language.

N e e e P

% Cod Ll MILE | Aokl L m i A -
: w1 — T -- L e Y]
o e g 1 - —
e =8 -] ~—* | .
gl deLe
T e Eries T F i L
e _L__‘E‘ =4 5
el 1L
Se--| == ol
1
; |
0T 0 T e 5 Hiwawsr -= s g I _-L-_n_-ri

Fig. 2. Visual component based modeling in MathModelica.

PlotBimilation|[(inertia.¢) [E], {t, 0, 50}1]

— {inectia.$) " [t]

Fig. 3. A Notebook document containing a plot command.

object oriented structure of a model into a system of differential algebraic equa-
tions (DAE) or a system of ordinary differential equations (ODE), which during
simulation is solved using a standard DAE or ODE solver. This code is often
very Lime consuming to execule, and there is a great need for parallel execution,
especially for demanding applications like hardware-in-the-loop simulation.

The flat set of equations produced by a Modelica compiler is typically sparse,
and there is a large opportunity for optimization. A simulation tool with support
for the Modelica language would typically perform optimizations on the equation
set to reduce the number of equations. One such tool is Dymola [6], another is
MathModelica [14].

The problem presented in this paper is to parallelize the calculation of the states
(the state variables and their derivatives) in each time step of the solver. The code
for this calculation consists of assignments of numerical expressions, e.g. addi-
tion or multiplication operations, to different variables. But it can also contain
function calls, for instance to solve an equation system or to calculate sin of a
value, which are computationally more heavy tasks. The MathModelica simula-
tion tool produces this kind of code. Hence we can use MathModelica as a front
end for our automatic parallelization tool. The architecture is depicted in Figure 4,
showing the parallelizing tool and its surrounding tools.

To parallelize the simulation we first build a task graph, G = (V, E) where
each task v € V corresponds to a simple binary operation, or a function call. A
data dependency is present between two tasks v1, v2 iff v2 uses the result from
v1. This is represented in the task graph by the edge e = (w1, v2). Each task

Modelica model (.mo)

MathModelica

C code

Parallelizer

Parallel C-code with MPI
Solver (library)

C compiler MPI(library)

C compiler
Sequential executable

Parallel executable

Fig. 4. The architecture of a Modelica simulation environment

is assigned an execution cost which corresponds to a normalized execution time
of the task, and each edge is assigned a communication cost corresponding to a
normalized communication time between the tasks if they execute on different
processors. The goal is to minimize the execution time of the parallel program.
This often means that the communication between processors must be kept low,
since interprocessor communication is very expensive. When two tasks execute
on the same processor, the communication cost between them is reduced to zero.

Scheduling and partitioning of such task graphs described above has been studied
thoroughly in the past three decades. There exists a plethora of different schedul-
ing and partitioning algorithms in the literature for different kinds of task graphs,
considering different aspects of the scheduling problem. The general problem of
scheduling task graphs for a multi-processor system is proven to be NP com-
plete [16].

The rest of the paper is organized as follows: Section 2 gives a short summary of
related work. Section 3 presents our contribution of parallelizing simulation code.
In section 4 we give some results of our contribution, followed by a discussion
and future work in section 5.

2 Related Work on Multiprocessor Scheduling

A large number of scheduling and partitioning algorithms have been presented
in the literature. Some of them use a list scheduling technique and heuristics [1,
4,5,10,12,13], some have been designed specifically for simulation code [20].
A list scheduler keeps a list of tasks that are ready to be scheduled, i.e. all its
predecessors have already been scheduled. In each step it selects one of the tasks
in the list, by some heuristic, and assigns it to a suitable processor, and updates
the list.

Another technique is called critical path scheduling [17]. The critical path of
a task graph (DAG) is the path having the largest sum of communication and
execution cost. The algorithm calculates the critical path, extracts it from the task
graph and assign it (o a processor. Afler this operation, a new critical path is found
in the remaining task graph, which is then scheduled to the next processor, and
so on. One property of critical path scheduling algorithms is that the number of
available processors is assumed to be unbounded, because of the nature of the
algorithm.

An orthogonal feature in scheduling algorithms is task duplication [11,17,21].
Task duplication scheduling algorithms rely on task duplication as a mean of re-
ducing communication cost. However, the decision if a task should be duplicated
or not introduces additional complexity to the algorithm, pushing the complexity
up in the range O(n®) to O(n?) for task graphs with n nodes.

3 Scheduling of Simulation Code

Simulation code generated from Modelica mostly consist of a large number of
assignments of expressions with arithmetic operations to variables. Some of the
variables are needed by the DAE solver to calculate the next state, hence they
must be sent to the processor running the solver. Other variables are merely tem-
porary variables whose value can be discarded after the final use.

The simulation code is parsed, and a fine grained task graph is built. This graph,
which has the properties of a DAG, can be very large. A typical application (a
thermo-fluid model of a pipe, discretisized to 100 pieces), with an integration time
of around 10 milliseconds, has a task graph with 30000 nodes. The size of each
node can also vary a lot. For instance, when the simulation code originates from a
DAE, an equation system has to be solved in each iteration if it can not be solved
statically at compile time. This equation system can be linear or non-linear. In the
linear case, any standard equation solver could be used, even parallel solvers. In
the non-linear case, fixed point iteration is used. In both cases, the solving of the
equation system is represented as a single node in the task graph. Such a node
can have a large execution time in comparison to other nodes (like an addition or
a multiplication of two scalar floating point values).

The task graph generated from the simulation code is not suitable for schedul-
ing to multiprocessors, using standard scheduling algorithms found in literature.
There are several reasons for this, the major reason is that the task graph is too
fine grained and contains too many dependencies for getting good results on stan-
dard scheduling algorithms. Many scheduling algorithms are designed for coarse
grained tasks. The granularity of a task graph is the relation between the com-
munication cost between tasks and the execution cost of tasks. The large amount

of dependencies present in the task graphs also makes it necessary to allow task
duplication in the scheduling algorithm. There are several scheduling algorithms
that can handle fine grained tasks as well as coarse grained tasks. One such cat-
egory of algorithms is non-linear clustering algorithms [18,19]. A cluster is a
set of nodes collected together to be executed on the same processor. Therefore
all edges between two nodes that belong to the same cluster has a communica-
tion cost of zero. The non-linear clustering algorithms consider putting siblings'
into the same cluster to reduce communication cost. But these algorithms does
not allow task duplication. Therefore they are not producing well on this kind of
simulation code.

A second problem with the task graphs generated is that in order to keep the task
graph small, the implementation does not allow a task to contain several opera-
tions. For instance, a task can not contain both a multiplication and a function call.
The simulation code can also contain Modelica when statements, which can be
seen as a 1T statement without e 1 se branch. These need to be considered as one
task, since if the condition of the when statement is true, all statements included
in the when clause should be executed. An alternative would be to replicate the
guard for each statement in the when clause. This is however not implemented
yet, since usually the when statements are small in size and the need of splitting
them up is Tow.

To solve the problems above, a second task graph is built, with references into
the original task graph. The implementation of the second task graph makes it
possible to cluster tasks into larger ones, thus increasing the granularity of the
task graph. The first task graph is kept, since it is needed later for generating
code. The two task graphs are illustrated in Figure 5.

Fig. 5. The two task graphs built from the simulation code.

! A sibling s, to a task n is defined as a node where 1 and s has a common predecessor.

In this framework we have investigated several scheduling algorithms. Our early
approaches found that the a task duplication algorithm called TDS [3] did not
produce well. The main reason for this was the task granularity. The TDS algo-
rithm can produce the optimal schedule if the task graph has certain properties,
however fine grained task graphs as produced by our tool do not possess these
properties.

We have also partially implemented a non-linear clustering algorithm called DSC
[18], but measurements from this were not satisfying either. The clusters pro-
duced by the algorithm were too small, giving a parallel execution time much
larger than the sequential execution time.

The combination of large fine grained task graphs and many dependencies makes
it hard to find alow complexity scheduling algorithm that produce well. However,
an approach that actually did produce speedup in some cases is a method we call
full task duplication. The idea behind full task duplication is to prevent communi-
cation in a maximum degree, and instead of communicating values duplicate the
tasks that produces the values. Figure 6 illustrates how the full task duplication
algorithm works. For each node without successors, the complete tree of all its
predecessors are collected into a cluster. Since all predecessors are collected no
communication is necessary. The rationale of this approach is that, given a large
fine grained task graph with many dependencies, it is cheapest to not communi-
cate at all, but instead duplicate. The method also works better if the height of the
task graph is low in relation to the number of the nodes, since the size of each
cluster is dependent of the height of the task graph and the number of successors
of each node.

Fig. 6. By duplicating all predecessors, each cluster forms a tree

When all nodes without successors have been collected into clusters, a reduction
phase is started to reduce the number of clusters until the number of clusters

matches the number of available processors. First, clusters are merged together
as long as they do not exceed the size of the largest cluster. In this way, the clusters
are load balanced since each cluster will be limited by the maximum cluster size.
If the number of clusters is still larger than the number of available processors,
the algorithm selects two clusters with the highest number of common nodes and
merge them together. This is then repeated until the number of clusters matches
the number of available processors.

4 Results

The early attempts of implementing standard scheduling algorithms did not pro-
duce speedup at all. Therefore, the full task duplication method was invented. The
results we present here are theoretical results achieved by running the algorithm
and measuring the parallel time of the program by calculating the size of the
largest cluster. In the future, when we have fully implemented code generation
with MPI calls, we will run the simulation code on different parallel architectures
like Linux clusters and SMP (Shared Memory Processors) machines.

Figure 7 gives some theoretical results for a couple of different models. The
Pressurewave examples are a thermo-fluid application where hot air is flowing
through a pipe. The pipe is discretisized into 20 and 40 elements in the two ex-
amples. The Robot example is a multi-body robot with three mechanical joints
with electrical motors attached to each joint. As shown in Figure 7, the results
are better for the discretisized models than for the robot model. For the robot
model, new scheduling methods are surely needed to get a speedup at all. The
full task duplication algorithm could not produce better speedup than 1.27 for
tWo processors.

The speedup figures are calculated as speedup = Pseq/(Ppar + CommCost)
where Pseq is the sum of the execution cost of all nodes and Ppqr is the maximum
cluster size. CommClost is for simplicity reasons assumed to be zero, even if it
is a large cost. Since these figures are only measurements on the scheduled task
graph and not real timing measurements from a running application, we can make
this simplification. The focus here is on explaining the complexity and special
needs of scheduling simulation code from code generated from Modelica models.

Speedup n=2 n=4 n=6 n=8
Pressurewave2(1.54 262 3.60 445
Pressurewave40 1.52 282 321 5.13
Robot 1.27 - - -

Fig. 7. Some theoretical speedup results for a few examples.

5 Discussion and Future Work

Simulation code generated from equation based simulation languages is highly
optimized and very irregular code. Hence, it is not trivial to parallelize. The
scheduling algorithms found in literature are not suited for fine grained task
graphs of the magnitude produced by our tool. Therefore, new clustering tech-
niques with task duplication are needed.

Due to the large task graphs, caused by the large simulation code files, the clus-
tering algorithm must be of low complexity. The large number of dependencies in
the task graphs also requires us to use task duplication to further decrease the par-
allel time of a task graph. Therefore, future work includes finding new scheduling
algorithms that are suited for large fine grained task graphs with many dependen-
cies and that use task duplication, and still have a low complexity.

The full task duplication algorithm can be further improved by cutting trees of at
certain points and instead introduce communications. This will be further inves-
tigated in the near future to see if it is a fruitful approach to further reduce the
parallel time of a simulation program.

Future work also includes parallelization of code using inline solvers and mixed
mode integration [2]. This means that the system can be partitioned into parts,
each with its own inline solvers, which reduces the dependencies between these
parts. This will hopefully reveal more parallelism in the task graph, which will
improve our results.

6 Acknowledgments

This work started with support from the Modelica Tools project in Nutek, Kom-
plexa Tekniska System and continues in the EC/IST project RealSim.

References

1. A. Radulescu, A. J.C. van Gemund. FLB:Fast Load Balancing for
Distributed-Memory Machines. Technical report, Faculty of Information
Technology and Systems, Delft University of Technology, 1999.

2. A. Schiela, H. Olsson. Mixed-mode Integration for Real-time Simulation. In
P. Fritzson, editor, Proceedings of Modelica Workshop 2000, pages 69-75.

3. S. Darbha, D. P. Agrawal. Optimal Scheduling Algorithm for Distributed-
Memory Machines. IEEE Transactions on Parallel and Distributed Systems,
vol. 9(no. 1):87-94, January 1998.

4. C.Hanen, A. Munier. An approximation algorithm for scheduling dependent
tasks on m processors with small communication delays. Technical report,
Laboratoire Informatique Theorique Et Programmation, Institut Blaise Pas-
cal, Universite P.et M. Curie, 1999.

5. C.Y. Lee, J.J. Hwang, Y.C. Chow, F.D Anger. Multiprocessor Scheduling
with Interprocessor Communication Delays. Operations Research Letters,
vol.7(no. 3), 1988.

6. Dymola, http://www.dynasim.se.

7. H. Elmqvist. A Structured Model Language for Large Continuous Systems.
PhD thesis, Department of Automatic Control, Lund Institute of Technology,
T.und, Sweden, 1978.

10.

11.

14.
15.
16.

17.

19.

20.

21.

P. Fritzson, V. Engelson. Modelica - A Unified Object-Oriented Language
for System Modeling and Simulation. In Proceedings of the 12th European
conference on Object-Oriented Programming, 1998.

. P. Fritzson, L. Viklund, J. Herber, and D. Fritzson. High-level mathemati-

cal modeling and programming. IEEE Software, vol. 12(no. 4):77-87, July
1995.

G. Sihand E. Lee. Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures. IEEE Transactions on
Farallel and Distributed Systems, vol. 4(no. 2), 1993.

G.L. Park, B. Shirazi, J. Marquis. DFRN: A New Approach for Duplica-
tion Based Scheduling for Distributed Memory Multiprocessor Systems. In
Proceedings of Parallel Processing Symposium, 1997.

. J.J. Hwang, Y.C. Chow, ED. Anger, C.Y. Tee. Scheduling Precedence

Graphs in Systems with Interprocessor Communication Times. Journal on
Computing, vol. 18(vol. 2), 1989.

. M. Y. Wu, D. Gajski. Hypertool: A Programming Aid for Message-Passing

Systems. Transactions on Parallel and Distributed Systems, vol. 1(no. 3),
1990.

MathModelica, http://'www.mathcore.se.

The Modelica Language,

http:/fwww.modelica.org.

R.L. Graham, L.E. Lawler, J.K. Lenstra and A.H. Kan. Optimization an Ap-
proximatioin in Deterministic Sequencing and Scheduling: A Survey. Annals
of Discrete Mathematics, pages 287-326, 1979.

S. Darbha, D. P. Agrawal. Optimal Scheduling Algorithm for Distributed-
Memory Machines. Transactions on Parallel and Distributed Systems, vol.
9(no. 1), 1998.

. T. Yang, A. Gerasoulis. DSC: Scheduling Parallel Tasks on an Unbounded

Number of Processors. Transactions on Parallel and Distributed Systems,
vol. 5(no. 9), 1994.

V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiproces-
sors. MIT Press, Cambridge, MA, 1989.

B. E. Wells. A Hard Real-Time Static Task Allocation Methodology
for Highly-Constrained Message-Passing Environments. The International
Journal of Computers and Their Applications, 11(3), December 1995.

Y-K. Kwok, [. Ahmad. Exploiting Duplication to Minimize the Execution
Times of Parallel Programs on Message-Passing Systems. Transactions on
Parallel and Distributed Systems, vol. 9(no. 9), 1998.

Structured Exception Semantics
for Concurrent Loops

Joel Winstead and David Evans
{jaw2u,devans}@cs.virginia.edu

University of Virginia, Department of Computer Science

Abstract. Concurrent languages have offered parallel loop constructs
for some time to allow a parallel computation to be expressed in a sim-
ple and straightforward fashion. Modern programming languages include
exceptions to allow for clean handling of errors or unexpected conditions,
but few concurrent languages incorporate exception handling into their
models for parallel loops. As a result, programmers that use parallel
loops cannot use exceptions to simplify their programs. We present a
semantics for handling exceptions in parallel loops that is predictable
and that reduces to the familiar semantics for sequential loops. This se-
mantics provides guarantees about the behavior of parallel loops even in
the presence of exceptions, and facilitates the implementation of parallel
algorithms. A Java library implementation of this semantics is presented,
along with a description of a source-to-source translation.

1 Introduction

Exceptions generated in parallel loops create problems that can be difficult to
resolve. Parallel loop semantics allow more than one iteration of a loop to be ex-
ecuted at a time. Because any statement can generate an exception, this makes
it possible for more than one unhandled exception to be raised concurrently in
the same loop, a situation that does not occur in sequential loops. However, the
exception semantics of most languages do not allow more than one exception
to be raised at a time. It is not clear how to deal with this situation in a con-
sistent way. It may not be consistent with the language’s exception model to
propagate both exceptions; if only one exception is allowed, one must be chosen
and the others ignored, and there may be consequences for ignoring an excep-
tion generated by the program. Although sequential loops simply stop executing
once an exception occurs, there are several ways abnormal termination could
be handled in the parallel case, and one must be chosen that is reasonable and
understandable.

Exception handling should be well-integrated with other parts of the language
and exceptions should be handled in a consistent way regardless of the context
in which they are generated. One proposed way of dealing with the problem of
exceptions in parallel loops is simply to forbid them, and treat any exception that
reaches the top level of a parallel loop as a fatal error. This is an unsatisfactory
solution because exceptions in the context of a parallel loop are not handled in a

manner that is consistent with the way exceptions in other contexts are handled,
and it does not allow them to be caught by handlers higher in the call chain than
the parallel loop, even if matching handlers exist. Ideally, an uncaught exception
generated in a parallel loop should propagate out of the loop like any other
exception, and be handled in a way that is consistent with the way exceptions
are handled in other contexts.

Even in the event of exceptions, a loop may produce partial results that are
still useful, so it is important to be able to make strong assertions about the
state of the program after a parallel loop has terminated exceptionally. A good
semantics for exception handling in parallel loops should provide a way to assert
strong postconditions for both normal and exceptional loop terminations.

We propose a semantics for exceptions in parallel loops that solves these prob-
lems by always propagating the exception that occurs structurally first in the
loop, not the exception that occurs first in time. This removes the nondetermin-
ism that results when more than one iteration of the loop throws an exception,
and allows exceptions to be handled in a manner that is consistent with the way
exceptions are handled in sequential loops. It allows stronger postconditions to
be asserted about the result of the loop even in the case when an exception is
thrown, because it allows the exception handler to know that all structurally
prior iterations of the loop have completed without exceptions.

The semantics presented here should be useful for scientific computing and for
applications where parallelism in the program is used to improve performance,
and where partial results are useful. It allows a large class of sequential loops to
be parallelized with predictable and consistent semantics even in the presence
of exceptions. It may be useful for debugging these kinds of applications, even
where partial results are not useful, because it allows determinism in the case
of multiple exceptions. It may also be useful in libraries where exceptions are
caused not by programming errors in the library, but by bad data passed to
the library. Because it integrates the exception semantics with the concurrency
constructs, a programmer need not know whether a method in a library uses
parallel loops in order to write correct code that uses exceptions.

Our semantics is most likely not useful for systems programming or real-
time systems where concurrency is an inherent part of the problem to be solved,
rather than a means to better performance. These kinds of computations do
not benefit from parallel loops, and are better expressed as separate routines
executing concurrently rather than one loop executing in parallel. The kind of
concurrency normally provided by Java Threads [1] or Ada tasks [2] is probably
more appropriate for this kind of system.

2 Parallel Loops

A parallel loop is a for loop in which the iterations of the loop execute con-
currently rather than sequentially. When the program reaches a parallel loop it
spawns multiple threads to execute the iterations of the loop, and requires that
all threads complete before the program continues with the next statement. Each

thread within the loop receives its own copy of the iteration variable so that the
threads can perform independent computations. For example, the following loop
computes the vector sum of two arrays in parallel:

parfor (int i=0; i<N; i++)
ali] = b[i] + c[il;

Each iteration of the loop has its own value for ¢ and operates on a different
part of the data. Assuming that a does not share storage with b or ¢, all iterations
of the loop can execute simultaneously. The program does not return to the
surrounding block and continue with the next statement until all iterations have
completed. This particular loop can be executed efficiently in parallel because it
has no data dependencies between iterations.

Parallel loops may be either synchronous or asynchronous. Synchronous loops
imply synchronization between statements in different iterations of the loop; the
form of the implied synchronization varies from language to language, but all
generally require each iteration to execute the same statement at the same time.
A Fortran forall loop containing a single assignment statement as its body, for
example, requires that the value of the right-hand sides of the assignments must
be computed first for every iteration of the loop before any actual assignments are
made, thus avoiding potentially harmful effects. This semantics is particularly
well-suited to vector machines.

Asynchronous loops do not have any implicit synchronization between state-
ments in different iterations. This allows the iterations of the loop body to pro-
ceed independently of one another. Explicit synchronization statements can be
used to provide a stronger ordering on loops that require it. Asynchronous loop
semantics are well-suited to systems that implement parallelism as threads that
are scheduled independently. Asynchronous loops have appeared in Composi-
tional C++ [3], Modula-3* [4], and other parallel languages.

Some implementations, such as the forall loops in Fortran 95 [5], require
that the number of iterations of the loop, and their index values, be known when
the loop starts; this simplifies the implementation and allows all iterations to
start immediately, at the cost of flexibility. Other parallel loop constructs, such
as the parfor construct in Compositional C++, do not have this restriction,
and have the control portion of the loop execute sequentially while spawning
threads to execute the body of the loop [3]; this allows loops where the number
of iterations is not known in advance, or that do not have integer indices.

3 Exception Semantics for Parallel Loops

Although parallel loops have been implemented in a number of languages, few
have been implemented in languages that have exceptions, and even fewer have
attempted to address the semantics of an uncaught exception that occurs within
a parallel loop. Exceptions in parallel loops introduce several difficult situations
that must be addressed, especially when exceptions occur within more than one
iteration of the loop. When an exception occurs within a sequential loop, the

loop simply stops executing and the exception is propagated to the calling block;
because of sequential loop semantics, the handler may assume that this was the
only exception that occurred, and that all iterations up to the exception com-
pleted normally. When an exception occurs within a parallel loop, the iteration
that generated the exception necessarily stops executing, but it is less clear what
to do about the other iterations, and how or if the exception should be propa-
gated. The question of what to do if more than one iteration of the loop throws
an exception is a difficult issue as well, because the exception semantics of most
languages do not allow two exceptions to be raised simultaneously.

3.1 Goals for Exception Semantics

A simple approach to the problem of exceptions in parallel loops is to ignore
uncaught exceptions in concurrent code, or to forbid them altogether. The de-
signers of Ada, when confronted by the issues exceptions raise in a concurrent
context, chose to ignore uncaught exceptions that reach the top level of a task.
If an uncaught exception occurs in an Ada task, the task terminates without
handling the exception or passing it on to an outer block that can handle it; this
policy was chosen to prevent the problems that would result if the exception
was passed to a parent task asynchronously [6]. The designers of pSather chose
to forbid exceptions in a concurrent context [7] [8] [9]. These solutions deny
concurrent programmers the expressive and robustness benefits of exceptions.

Programmers should be able to use exceptions in concurrent constructs as
they would normally in the programming language, and be able to reason about
their behavior. A good semantics for uncaught exceptions in parallel loops should
be consistent. If the exception which is propagated from the loop is chosen non-
deterministically, this could make the program difficult to reason about. Some
forms of nondeterminism are unavoidable and even desirable in an asynchronous
loop, because the parallel loop semantics impose only a partial order on the
statements in the loop; however, the ability to predict and reason about the
exception, if any, produced by the loop would make programs easier to write.

In order to recover from an exception in a loop, it is important to know the
state of the program after loop termination. A good exception semantics should
allow a strong postcondition to be asserted about the state of the program after
an exception has been thrown. This postcondition can then be assumed by the
exception handler, which can use the information in its recovery.

An exception semantics should also enable a clear termination condition for
the loop. If an iteration within a loop terminates with an exception, and other
threads within the loop depend on the normal completion of that iteration,
a deadlock could result. A good exception semantics should provide a way to
prevent this sort of problem from occurring whenever possible.

3.2 Exception Propagation

Java, C++, and other object-oriented languages which have exceptions can only
raise one exception at a time. In a parallel loop, however, it may be possible to

raise multiple exceptions within the same block of code. It is important to have
a clear semantics for what should happen in this case.

One possibility is to handle each exception in the loop as it happens, while
allowing other iterations in the loop to continue, possibly generating more excep-
tions. This solution would create consistency problems because it would allow
code within the loop to run at the same time as code in outer blocks, and could
even result in destroying stack frames that are part of the loop’s context. This
would create code safety problems, and is inconsistent with the concurrent loop
semantics defined in the previous section, because the semantics state that all
iterations of the loop must complete before any outside exception handler begins.

Another possibility is to merge all of the exceptions together into a single
exception that contains an array storing the exceptions generated by each it-
eration of the loop. This allows all exception information to be kept. The cost
of this approach is that each iteration of the loop must be allowed to run to
completion in order to determine which exceptions will be thrown. This could
result in deadlock if there are dependencies between events in different iterations
of the loop. Code written to catch and handle exceptions would need to be more
complicated, because either catch expressions would need to be able to match
patterns in the array, or some mechanism would be required to apply the chain
of exception handlers to each exception in the array. This would be particularly
complex if some exceptions were handled higher in the call chain, while others
were handled at lower levels.

A scheme for collapsing multiple exceptions into a single exception in a
Modula-3* parallel loop is described by Heinz [10]. If a single exception is gener-
ated by the loop, or if all exceptions in the loop are identical, a single copy of the
exception is propagated out of the loop. If the exceptions are not all identical,
a special exception is generated to note the inconsistency. This approach allows
multiple exception cases to be handled in languages that can only raise a single
exception at a time. However, it requires all iterations of the loop to complete,
and requires programmers to handle the case of inconsistent exceptions.

In many cases, if multiple exceptions occur in a parallel loop, the exceptions
are all related to the same problem, and it is only necessary to propagate one of
the exceptions to ensure a proper recovery; other exceptions can be discarded.
Philippsen and Blount describe an implementation of asynchronous parallel loops
in Java that uses this approach [11] [12]. The first exception that occurs in time
is propagated out of the loop; other iterations are canceled, and any exceptions
they generate are ignored. This approach loses some information and introduces
nondeterminism in the exception that is returned, but keeps within the single-
exception model of the language, and does not require every iteration of the loop
to complete.

Our approach is to return not the first exception that occurs in time, but
the exception that occurs structurally first in the loop. This removes the non-
determinism in the exception that is propagated, and loops can be written in
a way that guarantees that the most important exception, if any, will be the
one that is propagated out of the loop. Our semantics requires structurally prior

iterations of the loop to complete so that any structurally earlier exceptions can
be obtained. Structurally later iterations, however, can be canceled, thus elimi-
nating deadlock in situations where no iteration of the loop waits for an event
in a structurally later iteration.

3.3 Cancellation and Loop Termination

In order to determine what exception semantics is most appropriate for parallel
loops, the termination condition imposed by each exception semantics must be
considered. A straightforward solution is to require all iterations of the loop to
terminate, even in the event of an exception. This approach is used by Heinz in
Modula-3* loops [10]. In cases where some iterations of the loop wait or depend
on events that occur in other iterations, the loop may deadlock. In particular, if
an iteration of the loop terminates with an exception before creating an event
that some other iteration is waiting for, the loop will deadlock because the
second iteration is waiting for an event that will never occur. This situation
can be created by the use of mutual exclusion for a shared resource, which is
common in asynchronous parallel programs. Requiring all iterations of the loop
to terminate even in the event of an exception is practical if it is known that
there is no communication or explicit synchronization between iterations, but
many loops do not satisfy this condition, so this solution cannot be used for a
general parallel loop.

Another solution is to cancel some iterations of the loop in the event of an
exception in order to guarantee that the loop terminates. One approach is to
cancel all iterations in the loop other than the one that generated the excep-
tion. This approach guarantees that the loop will terminate in the event of an
exception. Because it cancels some iterations, this cancellation strategy is not
consistent with any approach to exception propagation that requires all itera-
tions to complete. In addition, because this approach cancels both structurally
prior and structurally later iterations, it cannot be used if the semantics requires
the structurally first exception from the loop to be propagated. This approach
is consistent with an exception propagation semantics that requires the first
exception in time to be propagated.

Because canceling structurally prior iterations is inconsistent with a seman-
tics that propagates the structurally first exception, we adopt a cancellation
strategy that cancels structurally later iterations only. Because it requires some
iterations of the loop to complete, it can result in deadlock if an iteration waits
for an event that is generated by a structurally later iteration; however, if no iter-
ation waits for an event generated by a later iteration, this cancellation strategy
guarantees that the loop will terminate in the event of an exception, provided
that the structurally prior iterations themselves terminate. This approach is con-
sistent with a semantics that propagates the structurally first exception out of
the loop.

3.4 Loop Postconditions

In order to write correct programs, it is important be able to make assertions
about the state of the program after loop termination, even in the event of an
exception. The exception semantics directly affects the kinds of postconditions
that can be asserted about a loop that terminates with an exception.

Because different iterations of a parallel loop may share some context and
data, and there is no explicitly defined order between events in one iteration
of the loop and events in another, the postcondition that can be asserted of
one iteration of the loop is not necessarily the same as the strongest postcon-
dition that could be asserted of the same sequence of statements if executed in
a sequential context. The postcondition for each iteration of the loop must be
true for any possible interleaving of the different iterations of the loop and any
potential interactions between them, and may not assume anything about the
progress of other iterations. For example, consider the following loop:

parfor (int i=0; i<100; i++)
A[i] = ixi;

If this loop were executed sequentially, the postcondition of iteration ¢ = 0
would be A[0] = 0 with all other elements of A unchanged, or A[0] = 0 A Vi :
t > 0: A[i] = Appeli]. It it were executed concurrently, however, the strongest
postcondition that can be asserted for iteration ¢ = 01is A[0] = 0A Vi : 0 <
i < 100 : (A[f] = Apre[i] V Afi] =) AVi : i >= 100 : A[i] = Ape[i). This
weaker postcondition takes into account the fact that the other iterations may
not have completed by the time iteration ¢ = 0 has. If different iterations of the
loop attempted to write different values to the same variable without explicit
synchronization, the postconditions for all iterations of the loop must account
for each possible ordering of the writes.

The loop guarantee is the strongest condition that can be asserted of the
loop at all times, and must allow for every possible interleaving of iterations,
and every possible partial result. For this loop, this is (Vi : 0 <4 < 100 : A[i] =
Apre[f] V Afi] = 4%) A (Vi : 4 > 100 : A[i] = Apreli]), expressing the fact that any
combination of the iterations may have completed.

The postcondition of the loop as a whole is the conjunction of the loop
guarantee and the postconditions of all iterations of the loop that are known
to have completed. For the above example, this is (Vi : 0 < ¢ < 100 : A[¢] =
i2) A (Vi 2 ¢ > 100 : A[i] = Apre[i]), assuming that all iterations complete.
The terms in the individual iteration postconditions that expressed uncertainty
about the progress of the other iterations are absorbed when the fact that each
iteration has completed is included in the postcondition.

If one or more iterations of the loop terminate with exceptions, the postcon-
ditions for these iterations may not be true, and they cannot be used in the loop
postcondition. The cancellation strategy may prevent further iterations from
completing, and the postconditions of these iterations may not be used either.
In addition, although the exception propagation policy does not affect which
iterations will complete, it may limit the knowledge the exception handler has

of the completion status of the loop. For any iteration that does not complete,
the strongest postcondition that can be asserted is the uncertainty about how
much progress the iteration made, which includes each potential partial result
of the iteration; this condition of uncertainty is included in the loop guarantee.

If the first exception thrown in time is propagated from the loop, and other
exceptions are ignored, an exception handler may not assume anything about
the termination of other iterations of the loop, regardless of the termination
strategy used. Even if the cancellation strategy allows other iterations of the
loop to complete, it is possible that some of them may terminate exceptionally,
and it would not be safe for the exception handler to assume anything about
them. In this case, no iteration of the loop can be assumed to have completed,
and no postcondition can be asserted of the loop that is stronger than the loop
guarantee.

If the structurally first exception is propagated from the loop, and other
exceptions are ignored, then all iterations structurally prior to the one that
terminated abnormally are known to have completed. However, nothing can be
asserted about the completion status of any other iterations, because any of
them may have terminated exceptionally. If this exception propagation policy
is used, the strongest postcondition that can be asserted of the loop as the
exception handler is entered is the conjunction of the loop guarantee with the
postconditions of all iterations structurally prior to the one that terminated with
the exception. In the above example, if an exception occurred in iteration ¢ = 50,
the exception handler could assume (Vi: 0 <4< 50: A[i] = i) A (Vi: 50 <i <
100 : A[i] = Apreli] V A[f] = 4%).

Because propagating the structurally first exception in the loop yields the
most useful loop postcondition, and because canceling structurally later threads
in the loop increases the class of problems for which the loop terminates in the
exception case, we propose a semantics for parallel loops that propagates the
structurally first exception. Under this semantics, the effect and postcondition
of a loop that terminates with an exception is determined by the structure of
the loop, not by the accident of its execution.

4 Extending Java with Parallel Loops

We chose to implement this semantics for parallel loops using Java as the base
language. Although Java is not as commonly used for scientific computing as
C+-+, its language specification includes concurrency, and its class hierarchy in
which all exceptions are derived from a single Throwable type makes it possible
to implement the extensions using a source-to-source translation. Because the
C++ specification does not offer these features, a C++ implementation could
probably not be done as a source-to-source translator. While we chose Java for
its simplicity, we believe these ideas could be implemented in C++ or other
object-oriented languages.

Concurrency in Java is expressed using objects, rather than through a control
flow construct. Fach thread of control in the program is implemented as a sep-

arate object that either extends the Thread class or implements the Runnable
interface and has a controlling Thread object. Every object in Java has its own
associated monitor which is used for synchronization. There are no explicit par-
allel constructs similar to parallel loops. This model is well suited for writing
programs with separate, unrelated tasks that execute concurrently, such as hav-
ing one thread compute in the background while another thread handles the user
interface. This technique is used mainly to separate the tasks in an application
and to reduce latency in user interfaces. This thread model is not well suited for
data parallelism, where many threads are to perform the same or similar opera-
tions on different pieces of data as part of the same task, because the constructs
for declaring, starting, and joining tasks are not control flow constructs that can
easily be used in an algorithm description.

In order to define a parfor loop for Java that uses the structured exception
semantics, we must modify the Java language semantics for a for loop. The Java
Language Specification [13] defines a sequential for loop in terms of a condition
Expression, a ForUpdate statement, and a contained body Statement:

— If the Expression is present, it is evaluated, and if evaluation of the Expres-
sion completes abruptly, the for statement completes abruptly for the same
reason. Otherwise, there is then a choice based on the presence or absence
of the Expression and the resulting value if the Ezpression is present:

e If the Expression is not present, or it is present and the value resulting
from its evaluation is true, then the contained Statement is executed.
Then there is a choice:

* If execution of the Statement completes normally, then the following
two steps are performed in sequence:

- First, if the ForUpdate part is present, the expressions are eval-
uated in sequence from left to right; their values, if any, are
discarded. If evaluation of any expression completes abruptly for
some reason, the for statement completes abruptly for the same
reason; any ForUpdate statement expressions to the right of the
one that completed abruptly are not evaluated. If the ForUpdate
part is not present, no action is taken.

- Second, another for iteration step is performed.
+ If execution of the Statement completes abruptly, see §14.13.3 below.

o If the Fxpression is present and the value resulting from its evaluation
is false, no further action is taken and the for statement completes
normally.

In order to achieve parallel execution of the loop, we must modify this defini-
tion so that instead of executing the Statement directly, it starts a thread which
executes the Statement concurrently. The Statement thread receives its own copy
of the iteration variable so that it may execute independently of the loop control
and the other iterations. In addition, we must add a rule that states that when
the loop completes, either normally or abruptly, it must wait for all concurrent
Statement threads to complete.

These changes allow the loop to execute concurrently, but further changes
are needed to handle abrupt termination in the event of an exception. Section
14.13.3 of the specification describes abrupt termination of a for loop in the
case of a break or continue statement, and states that “If execution of the
Statement completes abruptly for any other reason, the for statement completes
abruptly for the same reason.” For simplicity, we do not allow break, continue,
or return statements in parfor loops, although they could be introduced in
ways consistent with our semantics. Hence, the only form of abrupt termination
we consider here is through exceptions. In the event of an abrupt termination,
the control portion of the loop should complete immediately, and no further
Statement threads should be started. Any running Statement threads that were
started after the Statement that generated the exception should be interrupted,
which will allow them to terminate cleanly. Once all Statement threads have
completed, the loop should terminate by propagating the structurally earliest
exception.

Together, these changes produce the following specification for a Java parfor
loop:

— First, the parfor control loop is executed:

If the Expression is present, it is evaluated, and if evaluation of the Expres-
sion completes abruptly, the parfor control completes abruptly for the same
reason. Otherwise, there is then a choice based on the presence or absence
of the Expression and the resulting value if the Ezpression is present:

o If Expression is not present, or it is present and the value resulting from
its evaluation is true, and no existing Statement thread has terminated
exceptionally, then a thread is started to execute the contained Statement
concurrently with the parfor control. A copy is made of the iteration
variable, the new thread uses the copy.

* Then the parfor control performs the following two steps in se-
quence:

- First, if the ForUpdate part is present, the expressions are eval-
uated in sequence from left to right; their values, if any, are
discarded. If evaluation of any expression completes abruptly for
some reason, the parfor control completes abruptly for the same
reason; any ForUpdate statement expressions to the right of the
one that completed abruptly are not evaluated.

- Second, another parfor control step is performed.

e If the Frpression is present and the resulting value of its execution is
false, no further action is taken and the parfor control completes nor-
mally.

— If a Statement thread terminates abruptly, all running Statement threads
that were started after the one that terminated abruptly are interrupted.
The parfor control then completes without starting any new Statement
threads.

— When the parfor control completes, it must wait for all of its Statement
threads to complete before terminating. If any errors or exceptions occurred

in the execution of either the parfor control or any Statement threads, the
error or exception from the earliest iteration is propagated as the reason for
the parfor statement’s termination.

To illustrate the semantics, consider the array assignments example intro-
duced in §3.4. If A is an array of size 50 instead of size 100, any attempt to
access elements 50 through 99 will result in an ArrayBoundsException. Be-
cause the iterations of the loop execute in parallel, however, it is not possible to
know in advance which iteration will cause an exception to be thrown first, nor
is it possible, once that statement has been reached, to know which iterations of
the loop have already completed or how much of the array has been filled.

With the proposed semantics for abnormal loop termination, although it
cannot be known which iteration will generate the first exception, we do know
that the structurally first exception will be the one that is propagated, and
that all lower iterations will complete before the loop terminates. This means
that even though we cannot know whether iteration ¢ = 50 or iteration ¢ = 60
will generate an exception first, we do know that the ArrayBoundsException
generated by iteration ¢ = 50 will be the one propagated by the loop, and the
handler for that exception may safely assume that iterations ¢ = 0..49 have
completed and that the array up to the point the exception occurred has been
filled, and this can be asserted as a postcondition of the loop.

The result of an exception with this semantics is consistent with the seman-
tics of a normal sequential for loop. In a normal for loop, only one iteration
of the loop executes at a time, and the iterations execute in order. If an excep-
tion is thrown in one iteration of the loop, the loop terminates immediately and
propagates the exception to the calling block, and no further iterations of the
loop are executed. The program may safely assume that all iterations up to the
iteration that threw the exception have completed normally, and the handler
for the exception can use this information when recovering. Even if there are
additional problems that would have caused higher-numbered iterations of the
loop to throw exceptions, only the first such problem is caught and reported.
Our proposed exception semantics for parallel loops shares these properties: the
lower-numbered iterations of the loop are guaranteed to have terminated nor-
mally, and the exception that is propagated is the one from the lowest-numbered
iteration that threw an exception.

4.1 Handling Exceptions from Parallel Loops

In order for an exception handler to be able to make use of the loop postcondi-
tion described above, it must know how much of the loop completed and what
iteration it was that generated the exception. To support this, we allow catch
and finally clauses to be attached directly to parfor statements. The iteration
variable for the loop remains in scope within these clauses. Because more than
one copy of the iteration variable exists in the parallel loop semantics, we must
specify what the iteration variable in the exception handlers refer to.

If an exception occurs within the body of the parallel loop, the value of the
iteration variable in the handler should be the same as the value of the iteration
variable in the instance of the body that raised the exception. If an exception is
generated in the sequential control portion of the loop, then the handlers should
see the current value of the iteration variable from the control portion when it
stopped. This allows the handler to know which iteration caused the exception,
so that it can use this information when recovering from the exception.

If an exception occurs in the initialization statement of the loop, which
declares the iteration variable, the variable is undefined, and the catch and
finally clauses of the loop cannot be allowed to execute because the result
would be undefined and could introduce a code safety issue. For these purposes,
the initialization statement can be considered to be outside of the loop, and out-
side of any attached catch and finally clauses. Exceptions generated by the
initialization statement can still be handled, but they must be handled outside
of the loop.

If no catch clause attached to the loop handles the exception, the exception
will propagate up the call chain normally, and the information about which it-
eration caused the exception will be lost. An alternative might be to include the
information about which loop and which iteration threw the exception in the
exception object itself. However, this is undesirable. It would require a funda-
mental change to Java’s exception model which would affect much more than
just loops, and that would make the parallel exception semantics inconsistent
with all normal Java programs. Furthermore, it is unlikely that the informa-
tion about which iteration caused the exception would be useful outside of the
context of the loop.

Although an exception handler inside the loop body, rather than outside the
loop, would also have access to the value of iteration variable, such a handler
would not have the knowledge that all iterations of the loop have completed.
An exception handler outside the loop body, but without access to the iteration
variable, would not be able to take advantage of the fact that all structurally prior
iterations have completed normally. The possibility that an exception handler
could use both the value of the iteration variable and the knowledge that all loop
iterations have completed (and structurally prior iterations completed normally)
justifies allowing a special handler to be attached to the loop which preserves
the value of the iteration variable.

4.2 Safe Thread Cancellation

The semantics require that all iterations structurally prior to an iteration that
causes an exception must be allowed to complete, because they may also throw
exceptions, and we want to propagate the exception that is structurally first, not
first in time. Any higher iterations that have not yet started will never be started,
and higher iterations that are already running are interrupted. The purpose of
this is to cancel those iterations that occur logically after the exception and are
therefore invalid.

Cancellation of running threads is difficult to do safely in an object-oriented
language [7]. Simply terminating a thread with no mechanism to allow cleanup
is unsafe and deadlock-prone, because the thread may be holding locks or may
have temporarily placed an object in an inconsistent state. For this reason, a
mechanism to allow the thread to exit cleanly is needed.

One mechanism for terminating a thread provided by early versions of Java
allowed an exception to be delivered to a thread asynchronously, though the
Thread.stop() method. This is dangerous, however, because it can deliver an
exception to code that was not designed to handle that particular exception.
Although it is theoretically possible to write code that can handle asynchronous
exceptions, it is very cumbersome to read and very difficult to get correct, par-
ticularly when the exception is delivered in a finally clause or synchronized
block. In any case, the mechanism is not guaranteed to cause the thread to stop:
the thread’s code could be written in a way to trap such exceptions and ignore
them. Because of these problems, Sun chose to deprecate this feature of Java
[14].

Instead, Sun recommends using the Thread. interrupt () mechanism to can-
cel running threads, which is safe because it causes the thread to be interrupted
only at well-defined points in the code. Certain library routines can generate an
InterruptedException, which is a checked exception which must be caught or
declared. Other code can explicitly check to see if it has been interrupted by
using the Thread.interrupted() call, and it is the responsibility of the pro-
grammer to make sure that the thread exits cleanly. Although it is possible for
code to ignore the interruption and continue running, this is not worse than
the Thread.stop() method, which cannot provide this guarantee either, and is
much harder to use safely [1].

For these reasons, we attempt to terminate running iterations of the loop
using the interrupt mechanism. Because poorly written code could ignore the
interrupt mechanism, the semantics cannot provide a guarantee that canceled
iterations will terminate promptly, or even that they will terminate at all; how-
ever, correct Java code should terminate when interrupted. Because the loop
semantics require all iterations of the loop to terminate before the loop itself
terminates, the semantics cannot guarantee for arbitrary loops that the loop as
a whole terminates either, even when a loop iteration raises an exception. Care
must be taken to make sure that loops are written such that they will terminate
cleanly, even in the presence of exceptions. This is already the case for sequential
loops, and for all Java code, so this limitation of the parallel loop semantics is
not worse than the limitations of the exception semantics for any other construct
of Java.

4.3 Example

Suppose we wished to use a computer to render frames of an animation. Because
each frame is independent of other frames in the video, they can be rendered in
parallel, saving computation time. A procedure to do this is:

void render frames(Frame[] frames,int start,int end) {
parfor (int i=start; i<end; i++) {
images[i] = frames[i].render();
}

}

This loop would render the separate frames of the sequence in parallel. How-
ever, if an exception occurred while rendering the frames, the loop would stop.
Because many frames have already been rendered at this point, and because ren-
dering is a computationally expensive task, we would prefer to keep the partial
results even in the event of an exception, and use these when recovering from
the exception. For example, if the machine runs out of memory while rendering
the frames, we would like to be able to recover from this situation by saving
the completed frames to disk, and then continuing where the program left off.
It is advantageous to save a contiguous block of frames together because this
maximizes the effectiveness of a compression algorithm. Our proposed exception
semantics allows this to be expressed easily:

void render frames(Image images[],Frame[] frames,
int start,int end) {

parfor (int i=start; i<end; i++) {
images[i] = frames[i].render();

} catch (OutOfMemoryException e) {
// Delete frames that come after the exception
for (int j=i; j<end; j++) {

images[j] = null;

¥

// Save earlier, completed images
save_images(images,start,i-1);
// Delete completed images to recover memory
for (int j=0; j<i; j++) {

images[j] = null;

frames[j] = null;
}
// Render remaining images through recursive call
render frames(images,frames,i,end);

¥

This example recovers from an exception by deleting all rendered images that
come logically after the frame that caused the exception, and saving all images
that come logically before the exception. Images that come logically after the
exception are not saved, because they may not be complete, and would not
be contiguous with the earlier frames. Because the postcondition guarantees
that the exception thrown is the structurally first exception and that all prior
iterations have completed, these images can be saved to disk together and do not

need to be recomputed. Because these images are in a contiguous block without
holes, it should be possible to compress them easily; this would not be possible if
all completed images were saved, including any completed frames logically after
the image that caused the exception.

5 Implementation

The proposed language extensions can be implemented using a library of new
classes that encapsulate the loop and exception semantics, and a source-to-source
translator that translates the extensions into standard Java code that uses the
library. The resulting code can then be compiled by any Java compiler. This
chapter describes the implementation of the library, and the design of a source-
to-source translator. The source-to-source translator for our extensions has not
yvet been implemented, but similar extensions have been implemented as source-
to-source translators before, and implementation of our extensions would be
straightforward.

5.1 Strategy

An extension to Java could be implemented as a Java library, a source-to-source
translator, a full compiler generating standard JVM bytecode, or a compiler
generating special bytecode for a modified JVM.

A modified JVM would allow the most flexibility in what can be implemented,
but would come at the cost of portability and interoperability with existing Java
code. The JVM’s built-in Thread class could be redefined so that uncaught
exceptions generated by the thread would be passed to the parent thread upon
termination; the parent thread could receive the exceptions when it attempts to
join the child threads. This implementation technique would require a compiler
to recognize the parfor loops and generate the code needed to implement them.

A full compiler has the ability to perform some transformations that generate
valid JVM bytecode but cannot be expressed in Java in source form, but is also
complex and can introduce interoperability problems. A source-to-source trans-
lator cannot perform as many transformations as a full compiler, but because
its output is standard Java source code, it does not introduce any portability or
interoperability problems. In addition, the code generated by a source-to-source
translator is readable, which makes debugging and analysis easier. For these rea-
sons, we chose to implement the extensions as a library along with a description
of a source-to-source translation. A more detailed analysis of these options for
implementing parallel loops in Java is provided by Philippsen [11].

The implementation described here uses an inner class to represent each
parallel loop, and a set of methods that spawn threads, execute the loop, and
wait for the threads to terminate. If an exception is generated by the loop, the
loop class waits for structurally prior iterations to complete, and re-throws the
structurally first exception to the calling code. This allows the parallel loop

constructs to be implemented without changing the virtual machine, and allows
code with parallel loops to work transparently with standard Java code.

Although we have not implemented an automatic source-to-source translator
for our proposed extensions, we describe here how the extended features could
be translated mechanically into normal Java code. Other researchers have im-
plemented automatic translators that generate standard Java code for parallel
loops using similar techniques [12] [11] [15] [16], and it should be straightforward
to modify one of these translators to use our proposed exception semantics.

5.2 Loop Translation

To implement parfor loops, the ParforLoop class manages a single parallel loop
and is responsible for creating threads, waiting for them to complete, catching
exceptions, interrupting running threads, and propagating exceptions back to
the caller. ParforLoop has undefined abstract methods for the condition expres-
sion, update statement, and loop body; each method takes an Object parameter
that holds the current value of the loop’s iteration variable. The class is not in-
stantiated directly: in order to use the class, a child class must be derived from
it that defines these methods for the particular loop that is to be executed.

A parfor loop is translated as an inner class that extends the ParforLoop
class and defines the abstract methods, and executed by calling the ParforLoop
class’s loop method. This transformation requires a few fairly simple substitu-
tions.

The loop is described by overriding the abstract condition, update, and
body functions to contain the loop’s condition expression, update statement,
and body implementation, respectively. These functions each take a reference
to the iteration variable as a parameter. The loop is actually executed by a
call to the ParforLoop.loop method, which is passed the initial value of the
iteration variable. This method executes the control portion of the loop and
starts threads to execute the body of the loop, and does not return until the
loop has terminated.

Each iteration of the loop is executed by an instance of the Structured-
Thread class. This class calls the ParforLoop’s body method, and catches any
exceptions that occur. If an exception occurs, it passes it to the ParforLoop ob-
ject’s catchExceptionmethod, which actually implements the exception seman-
tics by storing the exception along with its iteration number in the ParforLoop
object, and interrupting any structurally later threads that are still running.

Once all iterations have stopped executing, ParforLoop.loop propagates
any exception that occurred by re-throwing it to the calling block. If the loop
has any extended catch or finally clauses attached, for which the iteration
variable is to remain in scope, the handlers described there are made part of
a try..catch block surrounding the call to loop. The value of the iteration
variable is retrieved by calling the getIteration() method of the ParforLoop
object, so that the handlers may use this information in their recovery.

5.3 Performance

The overhead associated with our exception semantics should not significantly
affect the performance of concurrent Java programs. The cost of setting up the
loop and starting threads is linear in the number of iterations of the loop. In the
normal case in which there are no exceptions, the cost of joining the threads in
the loop and cleaning up is also linear in the number of iterations of the loop,
and introduces little overhead.

If the loop terminates exceptionally, the running time may be longer than
other methods because our semantics requires all earlier iterations of the loop to
complete when an exception is thrown, while other semantics allow all threads
to be terminated immediately in this situation. However, the running time of
this should not be any worse than that of normal execution of the loop. It is
possible that a loop which uses concurrency control constructs incorrectly or
which ignores the InterruptedException may deadlock or enter an infinite
loop if an exception occurs; however, this is the result of an incorrect program
and not the result of the translation.

The translation does increase code size. Any program using the translation
must use the ParforLoop library. The translation itself creates a new inner class
and several methods for each loop, and creates additional code to handle each
type of exception that could be expected from the loop. The increase in code
size is linear in the number of translated parfor loops. Relaxation of the Java
requirement that all exceptions must be caught or declared (except for errors
and run-time exceptions) would make the translation simpler and would reduce
the size of the translated code.

The library described here uses the simple approach of spawning a separate
Java thread to execute each iteration of the body of the loop. Other methods of
implementing parallel loops in Java achieve higher performance by not using a
one-to-one mapping of loop iterations to threads; see [15] for a comparison. How-
ever, such a strategy must deal with the possibility that there are dependencies
between different iterations, and it can be difficult to determine when two itera-
tions can be executed sequentially and when they must be executed concurrently.
The mechanisms needed to deal with this situation are complex. Because our
purpose here is to demonstrate our proposed exception semantics, rather than
how to achieve optimum performance, we chose the simpler one-to-one mapping
of iterations to threads. Our exception semantics could be incorporated into an
implementation that uses a more efficient mapping of iterations to threads.

6 Conclusions

The goal of our semantics for exceptions in parallel loops is to facilitate the writ-
ing of parallel programs by making them more predictable and understandable,
while allowing exceptions to be used in a consistent way with other language
features. Under our semantics, exceptions can be used in any context, and have
a well-defined meaning even in parallel loops. Exceptions in parallel loops behave

in a manner analogous to exceptions in sequential loops, because in both cases
the structurally first exception thrown is the one that is propagated out of the
loop. The attempt to cancel later iterations through interruption is consistent
with the fact that later iterations in a sequential loop do not run. The pro-
posed exception semantics are a generalization of the standard Java semantics
for sequential loops, and remain consistent with them.

Our semantics allow strong postconditions to be asserted in the presence of
exceptions, because the exception that is propagated is chosen deterministically,
based on the structure of the program rather than on the accident of its exe-
cution. This also provides repeatability for some kinds of errors in concurrent
programs, which facilitates debugging. Other semantics for exceptions in parallel
loops, such as propagating the first exception that occurs in time, do not have
this property. Of course, there are other sources of nondeterminism in concur-
rent programs, and this semantics does not eliminate all of them; indeed, that
would not be possible without giving up the benefits of parallelism. But it does
eliminate some nondeterminism in a way that should make program behavior
more predictable and easier to understand and reason about.

The semantics also allows stronger assertions about what partial results have
been computed in the exception case. Keeping partial results in the case of an
exception can save time when recomputing or recovering from the exception.
Partial results may be useful in some cases even when the program does not
attempt to repair and recompute after the exception has been handled. Other
choices for an exception semantics do not allow strong postconditions to be
asserted.

For some loops, it does not matter which exception is structurally first, or
what partial results have been computed, and for these loops, propagating the
first exception in time and canceling or interrupting all remaining threads in the
loop may make more sense. One possibility is to use one keyword to indicate
parallel loops for which partial results are useful and deterministic exception
semantics is desired, in which our exception semantics would be used, and an-
other keyword to indicate parallel loops which express inherently concurrent
algorithms for which it is not important which exception is structurally first.

Our semantics is presented in the context of Java, but it could be applied
to other languages. The partial results feature may be particularly helpful in
implementing the retry keyword in languages that have one, such as Eiffel [17].
This would allow the loop to restart at the point the logically first exception
occurred, while keeping previously computed partial results.

The ability to express concurrency in a clean and natural way is an impor-
tant feature to have in modern programming languages. Parts of programs that
express concurrency or parallelism should be well integrated with the rest of
the language, and it is important for language designers to consider how con-
currency interacts with exception handling in particular. We have presented a
concurrency construct for Java that provides exception semantics that are con-
sistent and integrated with the language, and that can be implemented with
modest overhead.

Acknowledgements

This work was supported by NSF CCR-0092945 and NASA NRC 99-LaRC-4.
The authors thank Paul Reynolds and John Thornley for helpful comments and
suggestions.

References

1.

2.

ot

10.

11.

12.

13.

14.

15.

16.

Sun Microsystems: Java 2 Platform, Standard Edition, v 1.2.2 API Specification.
(1999) http://java.sun.com/products/jdk/1.2/docs/api/index.html.

Barnes, J.G.P.: An overview of Ada. Software - Practice and Experience 10 (1980)
851887

Carlin, P., Chandy, K.M., Kesselman, C.: The Compositional C++ language defi-
nition. Technical Report 1993.cs-tr-92-02, Department of Computer Science, Cal-
ifornia Institute of Technology (1993)

Heinz, E.: Modula-3*: An efficiently compilable extension of modula-3 for ex-
plicitly parallel problem-oriented programming. In: Joint Symposium on Parallel
Processing, Tokyo, Waseda University (1993) 269-276

Adams, J.C.: Fortran 95 Handbook. MIT Press, Cambridge, MA (1997)

Ichbiah, J.D., Heliard, J.C., Roubine, O., Barnes, J.G.P., Krieg-Brueckner, B.,
Wichmann, B.A.: Rationale for the design of the ADA programming language.
ACM SIGPLAN Notices 14 (1979) 1-247

Fleiner, C., Feldman, J., Stoutamire, D.: Killing threads considered dangerous
(1996)

Murer, S., Feldman, J.A., Lim, C.; Seidel, M.: pSather: Layered extensions to
an object-oriented language for efficient parallel computation. Technical Report
TR-93-028, International Computer Science Institute, Berkeley, CA (1993)
Stoutamire, D., Omohundro, S.: The pSather 1.1 manual and specification. Tech-
nical Report TR-96-012, International Computer Science Institute, Berkeley, CA
(1996)

Heinz, E.A.: Sequential and parallel exception handling in Modula-3*. In
Schulthess, P., ed.: Advances in Modular Languages: Proceedings of the Joint Mod-
ular Languages Conference, Ulm, Germany (1994) 31-49

Philippsen, M.: Data parallelism in Java. In Schaefer, J., ed.: High Performance
Computing Systems and Applications. Kluwer Academic Publishers, Boston, Dor-
drecht, London (1998) 85-99

Blount, B., Chatterjee, S., Philippsen, M.: Irregular parallel algorithms in JAVA.
In: Parallel and Distributed Processing, 6th International Workshop on Solving
Irregularly Structured Problems in Parallel. Number 1586 in Lecture Notes in
Computer Science, Puerto Rico, Springer Verlag (1999) 1026-1035

Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Second edn.
Addison-Wesley (1997)

Sun Microsystems: Java 2 Platform, Standard Edition, v 1.2.2 API Spec-
ification. (1999) http://java.sun.com/products/jdk/1.2/docs/guide/misc/thread-
PrimitiveDeprecation.html.

Oliver, J., Ayguade, E., Navarro, N.: Towards an efficient exploitation of loop-level
parallelism in Java. In: Java Grande. (2000) 9-15

van Reeuwijk, C., van Gemund, A., Sips, H.: Spar: A programming language
for semi-automatic compilation of parallel programs. Concurrency: Practice and
Experience 9 (1997) 1193-1205

17. Meyer, B.: Eiffel: The Language. Prentice Hall International, Hemel Hempstead,
UK (1992)

Design Patterns for Library Optimization*

Douglas Gregor, Sibylle Schupp, and David Musser

Computer Science Department
Rensselaer Polytechnic Institute
{gregod,schupp ,musser}@cs.rpi.edu

Abstract. We apply the notion of design patterns to optimizations per-
formed by designers of software libraries, focusing especially on object-
oriented numerical libraries. We formalize three design patterns that we
have abstracted from many existing libraries and discuss the role of these
formalizations as a tool for guiding compiler optimizers. These optimizer
operate at a very high level that would otherwise be left unoptimized by
traditional optimizers. Finally, we discuss the implementation of a design
pattern-based compiler optimizer for C++ abstract data types.

1 Introduction

Design patterns have been widely accepted as an invaluable tool for the design of
software systems. They represent abstract notions of the behavior of code with-
out collapsing under the weight of implementation details, and therefore serve
as an efficient method of communicating design. Design patterns are not synthe-
sized but instead are abstracted from commonalities in design found amongst
many successful software systems. As abstractions, these design patterns must be
customized for any specific task at hand, but any instance retains the properties
of the design pattern(s) applied.

Design patterns need not be limited to high-level design. Techniques em-
ployed by designers of high-performance software libraries to enable code opti-
mizations also constitute design patterns. Especially in object-oriented libraries,
there are standard ways for example to minimize the number of temporaries,
to manipulate the evaluation of an expression, or to choose among functionally
equivalent expressions. It is essentially because of these optimization patterns
that libraries in higher level programming languages such as C++ or Java have
become competitive with those written in C or Fortran. Often, however, the
price for using these patterns is code clarity.

In an object-oriented numeric library, for example, it is often possible to di-
rectly express mathematical formulae by using operators on user-defined types,
but these operator expressions are known to cause a large number of extrane-
ous temporary values to be computed and stored. While these temporaries may
be inexpensive for fundamental integer or floating-point types, or even small

* This work was supported in part by the National Science Foundation (NSF) NGS
Grant 0131354.

user-defined types, such as complex numbers, temporaries for large user-defined
types, such as arbitrary-length integers, arbitrary-precision floating point num-
bers, or matrices, can become very costly. Programmers have reacted to these
extra costs by reverting from the more natural operator-centric representation
of mathematical expressions to the use of procedure calls that require fewer
temporaries and result in better overall performance.

Design patterns for optimization provide a new perspective on the ways in
which library authors design code for maximal performance. These optimiza-
tion patterns offer the same benefits as traditional design patterns in that they
succinctly communicate design, but have additional value in that they can be
directly transformed into optimization opportunities for compilers. They are
based on the observation that the transformation of, e.g., an operator-centric
expression to an equivalent procedural form is a largely mechanical task for the
programmer, which, however, cannot be automated as long as the programmer
cannot communicate to the compiler the kind of transformation it should per-
form. What is needed for automation is an optimization scheme a programmer
can refer to and a categorization of related optimizations, including the semantic
conditions under which they can be applied.

Optimization patterns help make the process of specifying such transfor-
mations manageable by defining an abstract form that these transformations
may be derived from. Assuming a compiler supports a particular optimization
pattern, a user (i.e., library designer) can refer to this pattern and identify
the characteristics that make a given transformation an instance of this design
pattern. Conversely, an optimization that is given in the form of an optimiza-
tion pattern has been proved to be applicable across several libraries, and thus
has established itself as an optimization methodology. It is therefore worthwhile
to develop compiler optimizers based on design patterns. Our Simplicissimus
project [15] has already produced one such compiler optimizer that can handle
optimization patterns; we hope that other open compilation environments will
follow.

We have surveyed several C++ object-oriented numerics libraries and ab-
stracted design patterns that are common amongst these libraries. In this paper
we introduce three patterns that are important, but not restricted to numerical
applications: the Replacement pattern, the Assignment Replacement pattern,
and the Temporary Removal pattern. As it turns out, the Assignment Replace-
ment pattern can be understood as a direct refinement of the Replacement pat-
tern, while the Temporary Removal is a subpattern of the Replacement pattern
that adapts instances of the Assignment Replacement pattern.

We begin the presentation with examples of optimizing designs gathered from
C++ object-oriented numerics libraries in Section 2 that motivate the abstraction
that underlies each pattern. In sections 3 and 4 we formalize, discuss, and illus-
trate the Replacement pattern and the two subpatterns Assignment Replacement
and Temporary Removal. Section 5, finally, summarizes the implementation of
optimization patterns within the Simplicissimus framework and briefly show its
integration into the GNU C++ compiler. The emphasis of the paper, however, is

on the concept of a design pattern for optimization, and the main purpose of
the paper is to initiate the identification and refinement of these patterns.

2 Optimization Methods used by Library Designers

We surveyed several object-oriented numerics libraries, including LiDIA [16], the
Matrix Template Library (MTL) [14, 13], the Number Theory Library (NTL) [12],
and the Basic Linear Algebra Subprograms (BLAS) [9], searching for design
patterns commonly used to facilitate optimizations that could be leveraged by
a compiler optimizer instead of relying on the library user. The most common
technique is the use of procedures or functions in lieu of operator expressions.
These functions can be placed into roughly three categories: shorthand func-
tions, operations that write their result directly to a target, and functions that
combine several operations into one call. Each of these categories will be further
described with examples from the aforementioned libraries.

Throughout this paper, by semantic equivalence of two expressions we mean
equivalence of the observable behavior of the expressions. Expressions e; and e
have the same observable behavior if replacing an instance of one with the cor-
responding instance of the other will not change a program barring exceptional
conditions (e.g., memory allocation failure). We denote this relation by ey = e».

In addition to standard mathematical notation, we use the infix copy assign-
ment operator “:=’ that replaces the value of the left-hand operand with the
result of computing the right-hand operand. The result of this operation is the
left-hand operand.

2.1 Shorthand Functions

Shorthand functions often encapsulate operations that are expressible by com-
mon operations but may be computed more efficiently within a single function.
Such operations include complex conjugation, inverses, and taking the square of
a value. Figure 1 illustrates examples of shorthand functions in NTT and LiDTA.

Library| Operation |Semantics
NTL Inverse(x) 1/z
LiDIA |z.AssignZero()| z:=0
LiDIA |z.EqualsOne()| =z=1

Fig. 1. Shorthand operations

2.2 Targeted Operations

The return value of an operation is often the cause of unwanted temporaries.
Even in simple assignments, such as y := a X z, a temporary is generated by the

multiplication a x £ and must be copied into y. As a reaction to this, library
authors create procedures that store the result directly into one of its operands.
Figure 2 illustrates some examples of this pattern.

Library Operation Semantics
LiDIA add(x, y, 2) r:=y+z
LiDIA |multiply(x, y, 2)|z:=y X 2
NTL Sub(x, y, 2) Ti=y— 2
NTL Inverse(x, y) z:=1/y
MTL | transpose(A, B) | B:= AT

Fig. 2. Targeted operations

2.3 Composite Operations

Certain sets of operations are often used in conjunction. Library authors have
used this as an opportunity to introduce new functions that perform all oper-
ations in one step without the creation of temporaries and with efficiency that
would otherwise not be achieved using separate functions. The most obvious
implementation of this technique is in the BLAS libraries, where operator ex-
pressions are not included but instead complicated general-purpose routines are
supplied. Some examples of composite functions are listed in Figure 3.

Library Operation Semantics
MTL mult(4, x, y, 2) z:=Axz+y
MTL mult(4, B, C) C:=AxB+C
BLAS AXPY(a, x, y) y:=axzx+y
BLAS |GEMM(a, 4, B, b, O)|C:=ax A’ x B'+bx C',where z' = 2,27, or z¥

Fig. 3. Composite operations. The BLAS library’s GEMM subroutine has been sim-
plified from its original thirteen arguments for brevity.

3 The Replacement Pattern

Shorthand, targeted, and composite operations often have semantics that are
expressed via mathematical formulas. In the majority of object-oriented numerics
libraries, these mathematical formulas are also directly expressible, but come at
a cost in efficiency. The programmer is expected to transform the mathematical
formulas into a set of function or procedure calls to evaluate them. Informally
speaking, the Replacement pattern is a natural abstraction of this expression
transformation for optimization and can be likened directly to a rewriting system

where the left-hand side of a rewrite rule denotes the mathematical expression
and the right-hand side denotes the equivalent, more efficient, procedure call. In
the rest of this section we formalize the Replacement pattern in terms of sets of
rewrite rules.

3.1 Definitions and Notation

Expressions are finite tree structures built from a given finite set F' of function
symbols and a denumerably infinite set V of variable symbols; the set of all such
expressions is denoted T(F, V). An equation is a pair of such expressions, say
(t1,u1), usually written t; = uy, and the equality rules of inference are captured
in the notion of rewriting a subexpression of an expression using an equation as
a rewrite rule. Specifically, a pair of expressions (I,7) is a rewrite rule if [is not
just a variable and the variables that appear in r also appear in I. We usually
write the rule as [— r, and [is called the left-hand side and r the right-hand
side of the rule. Note that in some cases an equation ¢ = u could be used as a
rewrite rule as either t — u or u — t.

A substitution is a mapping o from expressions to expressions that is de-
termined entirely by its value on a finite number of variables; a substitution is
denoted by an expression of the form {t1 /v1,...,t/vk}, read “substitute ¢; for
v1, ..., tg for vg.” The k > 0 variable symbols vy, .. ., v, must be distinct, and
the case k = 0 is the identity substitution ¢ such that ¢(¢) = ¢ for all expressions
t. Following convention we write an application of a substitution as to rather
than o(t).

To define rewriting precisely we also need some notion of position of an occur-
rence of a subexpression s within an expression ¢. One way to do this to introduce
an extra variable symbol O and the concept of a box expression: an expression
in T(F,V U {0O}) with a single occurrence of 0. Then an ordinary expression
t in T(F,V) can be described as some box expression #; with a subexpression
s replacing the box, which we make precise as an application of a substitution:
t= tl{S / D}

For a given rewrite rule [— r, a relation on pairs of expressions, ¢ rewrites
to u, can be defined as: for some subexpression s of ¢ and box expression ¢; such
that ¢ = #1{s/0}, there is a substitution ¢ such that s = lo and u = ¢, {ro/O}.
We write this as ¢t — u using [— r, overloading the use of the symbol —. For a
given set of rewrite rules R, we say t — u using R if t — « for some rule [— »
in R.

These definitions can be extended to conditional rewriting: a conditional
rewrite rule is a triple of expressions (I, r,p) where (I,r) is a rewrite rule and p
is a predicate expression whose variables also appear in [. We usually write the
rule as | — r (if p). For a set of such conditional rules R the rewriting relation
t — u using R is defined by ¢t — w if there is a rule [— r (if p) in R such that
t — u using ! — r and po is true, where o is the same substitution used in the
rewrite.

The nature of the condition on a rewrite rule depends partly on the program-
ming language used and its type system, partly on the program transformation

in which the expression e takes place. Conditions include conceptual or type re-
quirements as well as the specification of computational behavior, e.g., freedom
from side-effects of a functional expression, or anti-aliasing of pairs of variables.
We want to emphasize, however, that especially in the examples listed the va-
lidity of a condition cannot (efficiently) be deduced in an automated way. What
can be automatically checked, however, are assertions of properties, including
the logical implications of these assertions. We therefore assume that the pat-
tern designer asserts certain properties of variables and other subexpressions,
and that a condition is then checked against these declarations. Likewise is it
the pattern designer, and not a program, that claims the semantic equivalence
of two expressions.

3.2 The Replacement Pattern

We assume there is a cost function available from expressions to reals (or any
totally ordered domain) so that costs of expressions can be compared. We also
recall the relation of semantic equality, =, as introduced in Section 1.

Definition. Let L and R be expressions and P be a predicate expression. A
Replacement pattern is a triple

(L,R,P)
such that

1. L = R whenever P holds
2. cost(R) < cost(L)

Operationally speaking, a Replacement pattern can be implemented in a
framework of conditional rewrite rules. Some patterns can be implemented as a
single conditional rewrite rule, L — R (if P). This is the case, for example, with
the shorthand operation Inverse in Figure 1, with the rewrite rule

1/z — Inverse(z)

where there is no condition required. Similarly, the Replacement patterns for
the other two shorthand operations in Figure 1 can each be implemented with
a singe rule. More generally, the implementation of a Replacement pattern can
require several rules if there are expressions that are semantically equivalent to
L that are not instances of L in the strict syntactic sense of matching defined
by the rewrite system. Consider, for example, the Replacement pattern instance
that targets the BLAS AXPY routine in Figure 3, which is commonly used for
manipulation of vectors. Formally, this instance is

(y :=ax z +y, AXPY(a,z,y), Pa,z,y))

(To simplify the discussion in this section we do not spell out the constraints
represented by the predicate P; details of such constraints in several examples

are however discussed in Section 5.) We can use this triple first of all to form
the rewrite rule

(y :=axz+y) - AXPY(a,z,y) (if Pa,z,y)),
but if we want the same optimization in the case a = 1 we also need the rule
(y ===z +y) > AXPY(L,z,y) (if P(1,2,y)),

since y := x + y doesn’t syntactically match y := a x z + y (because it lacks
an occurrence of the multiplication operator, x). Similarly, to reflect the role of
commutativity of + in semantic equivalence of expressions, we need two more
rules

(y :=y+axz)—> AXPY(a,z,y) (@f Pla,z,y)),
(y =y +x) = AXPY(1,z,y) (if P(1,2,9)).

(We could get by without such additional rules if we were implementing in terms
of a more powerful form of rewriting, such as so-called associative-commutative
rewriting.)

Thus, in general, to implement the Replacement pattern (L, R, P) we require
a set of n rewrite rules I; — r; (if p;) such that I; = r; = Lo; and p; = Po; for
some substitution o;, fort =1,...,n.

Given that pattern designers are responsible for determining the semantic
equality of left- and right-hand side as well as for identifying the constraints
that hold for instances of L, the rewrite framework is left with three tasks. First,
it performs the syntactic match between an actual subexpression s and a left-
hand side, I, of one of the rewrite rules I - r (if p), obtaining a substitution
o such that lo = s. Second, it checks the constraints po by inferring whether
or not declaratively asserted properties of the actual subexpression s preserve
the constraints. If the constraints are satisfied, it applies the rewrite rule and
replaces s with the corresponding instance ro.

Note that for a set of rewrite rules and a given actual expression the selection
of an appropriate rewrite rule is not necessarily unique: the actual expression
can match, and satisfy the conditions, of more than one left-hand side. The
cost function associated with each rule can then be used to compute the locally
optimal selection.

All examples we have seen so far can be considered as instances of the Re-
placement pattern. Some share additional characteristics, however, and further-
more refer to expression schemes that occur sufficiently frequently to establish
patterns on their own, or, more precisely: subpatterns of the Replacement pat-
tern. A subpattern inherits all properties of its superpatterns but may add prop-
erties, both to the left-hand side of its superpattern and to its right-hand side.
Any optimization for a given pattern is valid for any subpatterns of that pat-
tern, and the subpattern relationship is necessarily transitive. The next section
presents two examples of subpatterns.

4 Assignment Replacement and Temporary Removal

As the survey in Section 2 has shown, a great deal of emphasis within numerical
computing is placed on the removal of temporaries. Therefore, many instances
of the Replacement pattern within numerics libraries are designed specifically to
remove extraneous temporaries. In this section we first introduce the Assignment
Replacement pattern, an abstraction from the targeted operation discussed ear-
lier, then the Temporary Removal adaptor that further eliminates temporaries
by adding appropriate expressions. While the Assignment Replacement pattern
is a syntactic refinement of the Replacement Pattern, the Temporary Removal
adaptor applies to Replacement patterns and generates new instances of As-
signment Replacement patterns (which are then eligible for optimization with
existing pattern instances).

4.1 The Assignment Replacement Pattern

As motivation we again consider the Replacement pattern for the BLAS routine,
(y := az +y,AXPY(a,z,y), P). We consider here just the first of the four rewrite
rules that implement this pattern as discussed in the previous section.

(y:=axz+y)— AXPY(a,z,y) (if P).

If we consider the naive computation of the expression y := a X x + y, three
loops are required for evaluation: one for the scalar multiplication, one for the
vector addition, and one for the vector copy. For each of the two temporaries
created by this expression, memory for the vector’s storage must be allocated
and later freed by the destruction of the temporary. On the other hand, the
procedure call AXPY(a, z,y) requires no temporaries and a single loop. Since the
discussion of targeted expressions in Section 2.2 has shown that copy assignments
are a frequent source of temporaries (see Figure 2) the introduction of a separate
optimization pattern for copy assignments seems to be appropriate.

Definition. An Assignment Replacement pattern is a Replacement pattern (L, R, P)
such that the root of L is a binary function (operator) that represents an assign-
ment to its left operand.

As with the Replacement pattern, instances of the Assignment Replacement
pattern may vary greatly in generality and scope. The LiDIA routine add may
only be useful for the expression listed in Figure 2, whereas the BLAS routine
GEMM has many possible instances, as is illustrated in the form of rewrite rules
in Figure 4.

What, however, happens if an actual expression does not quite match, even
semantically, the left-hand side of an Assignment Replacement pattern?

(C:=ax Ax B+bxC)— GEMM(a, A, B,b,C)
(C:=AxB+bxC) — GEMM(1,A,B,bC)
(C:=ax Ax B) — GEMM(a, A, B, 0,C)
(C:=C+axAxB) —GEMM(a,A,B,1,C)

Fig. 4. Rewrite system for optimizing to the GEMM function

4.2 The Temporary Removal Adaptor

Consider an expression z := a X -+ that is similar to the semantic specification
of AXPY, but is not semantically equivalent. In this case, two temporaries will
be generated. It is possible, however, to remove one of these temporaries by
executing z := y followed by the procedure call AXPY(a,z,2). Similarly, the
expression a X + y may be optimized into a call to AXPY depending on the
nature of y. If y is a temporary value, overwriting it with another temporary
value is reasonable assuming that y is not reused. In fact, the semantics of most
programming languages does not support the direct reuse of temporaries, making
this a reasonable assumption. An expression such as a X £ + b x y can therefore
be optimized into ¢ := b x y followed by a call to AXPY(a,z,t). Generalizing the
two examples, we introduce the Temporary Removal adaptor.

Definition. Let (L, R, P) be an Assignment Replacement pattern where L is
of the form y := e for some variable y and expression e. We further assume
that e = e;{y/0O} and R = R;1{y/0O} for some box expressions e; and R;.
From this pattern the Temporary Removal adaptor produces the following new
Replacement patterns:

(z =€, (z =Y, RI{Z/D})a P),
(e, (var t =y, Ry {t/O}), P).

where var ¢t = y denotes the declaration of a temporary variable ¢ (local to the
expression sequence) and its initialization to the value of y.

Applied to the just discussed AXPY Assignment Replacement, for example, the
Temporary Removal adaptor generates the following two Replacement patterns:

(Z =aXz+y, (Z =Y, AXPY(G"T’Z))’ P)’
(axz+y, (var t =y, AXPY(a,z,1)), P).

In the same way the Assignment Replacement used in the MTL library (see
Figure 3)
(C:=AxB+C,mlt(4,B,C),P)

generates the two patterns

p),

(D= Ax B+C, (D :=C, mlt(4,B,D)),
t)), P),

(Ax B+, (var t = C, mult(4A, B,

and the GEMM Assignment Replacement (see Figure 4)
(C:=C+axAx B,GEMM(a, A, B,1,C), P)
the two patterns

P)7

(D:=C+axAxB,(D:=C, GEMM(a, A, B,1, D)),
t)), P).

(C+ax AxB, (var t = C, GEMM(a, A, B, 1,

5 Implementation

The implementation of an optimizer for the Replacement pattern and its sub-
patterns essentially requires the implementation of an expression rewrite system
with rewrite rules supplied by the user. An immediate requirement of such a sys-
tem is that the implementation of expression matching must be generic enough
to support any form of expression, including user-defined operators (in the form
of overloaded operators or function calls). Additionally, the user must be able
to examine an expression to determine the semantics of the expression and its
subexpressions to ensure correctness when applying a rewrite rule. Finally, the
user must be able to construct new expressions to complete the rewriting step.

5.1 Internal Representation

Simplicissimus’ internal representation consists entirely of C++ expression tem-
plates, a set of classes representing unary, binary, ternary, and other operations
that are parameterized by the operators and operands, in a form similar to
functional prefix form. Expression templates were discovered as an optimization
technique for numerical computing [19] but have also been used for delayed eval-
uation and functional composition [8,4]. Simplicissimus’ expression templates
differ from most in that they have no run-time components: distinct variables
and literal values are modeled as types, so that C++ expressions can be fully
expressed as C++ types and manipulated at compile time.

Compile-time manipulations of expressions using expression templates have
several advantages. They do not exist at run-time, so they incur no run-time
overhead. They are also natural to work with within C++, using well-known
template metaprogramming techniques [17] and especially partial specialization
for rule matching, which is further described in Section 5.2. Finally, they are
platform- and compiler-independent. because they represent C++ with C++; this
will be further discussed in Section 5.5.

The form of an expression template is similar to that of function prefix form.
An expression z + y * z can be expressed in prefix form as (+ z (x y 2)) and,
similarly, as the expression template
Expr<BinaryExpr<Add, X, Expr<BinaryExpr<Mul, Y, Z> > > >. Here weuse
the type names Add and Mul to represent addition and multiplication, respec-
tively. Each operator or function will have a unique type (generally an empty
class) that represents it in an expression template. Expressions are wrapped

in class templates that contain the operator name and its operand(s), and are
named based on the arity of the operation (UnaryExpr, BinaryExpr, etc.). The
Expr class is a wrapper around each expression template that makes all expres-
sion templates easily distinguishable from other types.

The leaves of an expression tree—literal values and variables—are each ex-
pressed using unique types. The class template Variable is parameterized by
the type of the variable (e.g., int) and by an integer identification number that is
unique to that variable. In our example above, X may be Expr<Variable<int,0>>
whereas Y could be Expr<Variable<int,1>>. Similarly, a class template Literal
contains literal values, where a literal can be any C++ literal, but the notion has
been extended slightly to include user-defined literals for abstract data types.

5.2 Matching Expressions

Expression templates naturally lend themselves to pattern-matching via partial
specialization. Partial specialization allows multiple definitions of class templates
where each definition specifies the partial type structure of types it will be in-
stantiated with. Expression templates use type structure to express expression
evaluation, thus partial specialization can trivially be used to specify and match
expressions. Figure 5 illustrates the primary template and one specialization of
the class template AXPYMatch. The template can match any expression template
via the primary template (the valid member will be false) but it can also
match an expression a1z +y where + is represented by the type VectorAdd and
* is represented by the type VectorScale, in which case valid will be true to
signify a match.

template<typename ExprT> struct AXPYMatch
{ static const bool valid = false; };

template<typename A, typename X, typename Y>
struct AXPYMatch< Expr< BinaryExpr<
VectorAdd,
Expr<BinaryExpr<VectorScale, A, X> >, Y> > >
{ static const bool valid = true; };

Fig. 5. Using partial specialization to perform a syntactic match

5.3 Semantic Constraints

Semantic constraints determine whether or not a particular expression that syn-
tactically matches the left-hand side of a rewrite rule will be semantically equiv-
alent if the expression is rewritten. The check for semantic equivalence relies
primarily on traits that describe the computational behavior of expressions,
including which operands are modified, whether an operation has side effects

beyond what is reflected in the operands and return value, and whether the op-
eration is applicative (i.e., predictable given a set of operands and regardless of
program state).

We will extend the expression matching class template AXPYMatch described
in Section 5.2 to validate the semantic constraints of the AXPY subroutine in
addition to matching the structure. This dual purpose is reasonable because
semantic constraints are generally expressed as predicates based on the variables
bound when matching the expression.

template<typename Exprl, typename Expr2> struct SameVariable
{ static const bool value = false; };

template<typename T, int ID>
struct SameVariable<Expr<Variable<T, ID> >, Expr<Variable<T, ID> > >
{ static const bool value = true; };

template<typename ExprT> struct AXPYMatch
{ static const bool valid = false; };

template<typename A, typename X, typename Y>
struct AXPYMatch< Expr< BinaryExpr<
VectorAdd,
Expr<BinaryExpr<VectorScale, A, X> >, Y> > >
{
static const bool valid = !SameVariable<X, Y>::value
&& 'X::has_side_effects && 1Y::has_side_effects;
};

Fig. 6. Expressing the semantic requirements of the AXPY transformation using traits

Figure 6 illustrates the validation of the semantic constraints on AXPY. Al-
together three constraints on its parameters z and y, logically connected to the
member valid, have to be met. For one, neither the evaluation of nor the eval-
uation of y may have side effects, because the order of evaluation may change
when rewriting an expression as a function call. The compile-time value of the
member has_side_effects of any expression template is recursively determined
using expression and user-defined operation traits. Additionally, z and y may
not be the same variable. The SameVariable class template of Figure 6 deter-
mines if the given expression templates are the same variable in the simplest
case. A completely developed version of SameVariable is more extensive in that
it takes into account user-defined operators that return references to one of their
arguments, such as the C++ assignment operator.

5.4 Temporary Removal Adaptor

The optimizations described for temporary removal in Section 4.2 are imple-
mented in Simplicissimus as a class template InPlaceOperationSimp. The class
template InPlaceOperationSimp is instantiated with a class template T that
implements the functionality specific to an particular instance of the Tempo-
rary Removal adaptor. The functionality required by T is implemented by three
members:

— valid: a boolean value that is true iff the syntactic and semantic constraints
on the pattern are met;

— result: the type of the variable that is the target of the assignment in the
underlying Assignment Replacement;

— rewrite with target: a class template that performs a rewrite of the given
expression to the procedural form using the given target expression.

We complete the optimization of the AXPY function in Figure 7 with our final
implementation of the class template AXPYMatch. This class is to be directly
used with the InPlaceOperationSimp template to generate the rewrite rule
class AXPYSimp that performs three temporary-removing optimizations within
the Simplicissimus system: the AXPY Assignment Replacement along with the
two optimizations generated by the AXPYMatch adaptor.

(y == a x z +y) - AXPY(a,z,y),
(z ‘=a Xz +y) e (Z =Y, AXPY(CI,.’L’,Z)),
axzc+y — (var t =y, AXPY(a,2,1t)).

template<typename ExprT> struct AXPYMatch
{ static const bool valid = false; };

template<typename A, typename X, typename Y>
struct AXPYMatch< Expr< BinaryExpr<
VectorAdd,
Expr<BinaryExpr<VectorScale, A, X> >, Y> > >
{
static const bool valid = !SameVariable<X, Y>::value
&% 1X::has_side_effects && !'Y::has_side_effects;
typedef Y target;

template<typename Z> struct rewrite_with_target
{ typedef Expr<TernaryExpr<AXPY, A, X, Z> > result; };
h

struct AXPYSimp : public InPlaceOperationSimp<AXPYMatch> {};

Fig. 7. Optimizations for the BLAS AXPY function based on the Temporary Removal
adaptor

Partial specialization is again used to match AXPY’s semantic constraints. The
valid member is true whenever the expression is matched, and the target of the
AXPY function is identified as Y by the target member type. The actual rewrit-
ing into the more efficient form using AXPY is performed by the class template
rewrite with target, which trivially builds an expression template using the
ternary operation AXPY.

5.5 Integration in the GNU C++ Compiler

Simplicissimus is a stand-alone optimizer written in the C++ template sublan-
guage, and is therefore naturally compiler-neutral. Such a design allows optimiza-
tions based on Simplicissimus, such as the implementation of the Replacement
and its subpatterns, to be portable as well.

Integration of the Simplicissimus optimizer with a new compiler requires a
transformation from the compiler’s internal representation to Simplicissimus’s
expression templates for optimization, and then the reverse transformation to
utilize the results of the optimization. Within the GNU C++ compiler, approxi-
mately 2000 lines of C code were required to perform these transformations.

6 Related Work

Design patterns [5] have been gaining wide acceptance as a tool for the con-
struction and documentation of software systems, but their use does not gener-
ally extend beyond that of documentation or guidelines for programmers. The
FRED [7] development environment, which extends this limited view of patterns
to instead aid the programmer in the specialization of patterns for a particular
purpose, thus shares our view that a design pattern is more than documentation
or guideline. On the other hand, the goals are radically different from our own.

Tools for applying domain-specific transformations to optimize code, such
as TAMPR [2] and Draco [10], enable authors of domain-specific languages to
introduce optimizations based on the semantics of a particular domain. How-
ever, these general systems do not provide a conceptual framework for gener-
ating transformations that are common across multiple domains and multiple
languages, that is, they do not take a pattern-based approach that describes
optimizations as specializations of well-known, language- and domain-neutral
optimization patterns. Constructing new, domain-specific languages that have
similar optimization opportunities to other domains therefore causes a large
amount, of repetition.

Tools that allow library-specific optimizations within general purpose lan-
guages, such as the Broadway [6] open compilation system and the CodeBoost [1]
source-to-source transformation system, enable users (library designers) to in-
troduce additional semantic information and optimization opportunities for or-
dinary user code. Like domain-specific transformation, however, these systems
give users little direction regarding optimizations that span multiple software 1i-
braries. Applying design patterns for optimization to any of these transformation
systems would yield the same benefits as in our own Simplicissimus optimizer.

Work in the construction of active libraries [20], such as Blitz++ [18] and
POOMA [11], has significantly narrowed the gap between library and compiler.
Such libraries take an active role in the compilation process, tuning the generated
code to specific tasks or specific architectures. Design patterns for optimization—
or, specifically, implementations supporting them—can serve as a powerful tool
for use by active libraries enabling optimizations that are impossible without
such support. The Sophus C++ library [3] integrates with the aforementioned
CodeBoost transformation system to apply domain-specific transformations to
C++ code that uses the Sophus library. The transformations there are similar to
those of the Temporary Removal adaptor.

7 Conclusion

We have surveyed the design of several object-oriented numerics libraries with
a strong focus on optimization techniques employed. From these designs we ab-
stracted the common structure and semantics to form the Replacement pattern
and two important subpatterns, the Assignment Replacement and the Tempo-
rary Removal adaptor. Additional patterns, such as the delayed element-wise
transformation used by expression templates in libraries such as Blitz++ [18]
and POOMA [11], are also known to exist but have not yet been studied.

Unlike many design patterns, the Replacement pattern and its subpatterns
present. optimization opportunities at a very high level of abstraction. Once
instances of these patterns are identified, a compiler optimizer can attempt to
generate better code based on strong, user-supplied assumptions on the semantic
behavior of abstract data types. We see these patterns as tools for advanced
users and library authors to direct the optimization of high-level constructs that
otherwise would be left unoptimized.

The Simplicissimus compiler optimizer implements the three patterns dis-
cussed in a compiler-independent manner. By using the strengths of the C++
language, Simplicissimus provides users with the ability to specify optimizations
for abstract data types without requiring recompilation or additional extension
of the compiler.

References

1. O. Bagge, M. Haveraaen, and E. Visser. CodeBoost: A framework for the transfor-
mation of C++ programs. Technical report, Universiteit Utrecht, The Netherlands,
October 2000.

2. J. Boyle, T. Harmer, and V. Winter. The TAMPR, program transformation system:
Design and applications. In E. Arge, A. Bruaset, and H. Langtangen, editors,
Modern Software Tools for Scientific Computing. Birkhauser, 1997.

3. T. Dinesh, M. Haveraaen, and J. Heering. An algebraic programming style for
numerical software and its optimisation. Technical Report SEN-R9844, CWI, De-
cember 1998.

4. FACT! - Multiparadigm programming with C++. http://www.kfa-juelich.de/
zam/FACT/start/index.html, 2001.

10.

11.
12.
13.

14.
15.
16.
17.
18.
19.

20.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Destgn Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

S. Z. Guyer and C. Li. An annotation language for optimizing software libraries.
In T. Ball, editor, 2nd Conference on Domain-Specific Languages. Usenix, 1999.
M. Hakala, J. Hautamiki, K. Koskimies, J. Paakki, A. Viljamaa, and J. Vilja-
maa. Generating application development environments for Java frameworks. In
J. Bosch, editor, Generative and Component-Based Software Engineering, volume
2186 of LNCS, pages 163-176. Springer, September 2001.

J. Jarvi and G. Powell. The Lambda library: Lambda abstraction in C++. Tech-
nical Report 378, Turku Centre for Computer Science, November 2000.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for Fortran usage. ACM Transactions on Mathematical Software,
5(3):308-323, Sept. 1979.

J. M. Neighbors. The Draco approach to constructing software from reusable com-
ponents. IEEE Transactions on Software Engineering, 10(5):564-574, September
1984.

POOMA. http://www.acl.lanl.gov/pooma/, 2001.

V. Shoup. NTL: A library for Number Theory, 2001. http://www.shoup.net/ntl/.
J. G. Siek. A modern framework for portable high performance numerical linear
algebra. Master’s thesis, Notre Dame, 1999.

J. G. Siek and A. Lumsdaine. The Matrix Template Library: A generic program-
ming approach to high performance numerical linear algebra. In International
Symposium on Computing in Object-Oriented Parallel Environments, 1998.
Simplicissimus. http://www.cs.rpi.edu/research/gpg/Simplicissimus, 2001.
The LiDIA Group. Lidia—a C++ library for computational number theory. http:
//wuw.informatik.tu-darmstadt.de/TI/LiDIA/.

T. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4), 1995.

T. Veldhuizen. Blitz++. http://www.oconumerics.org/blitz/, 2001.

T. L. Veldhuizen. Expression templates. C++ Report, 7(5):26-31, June 1995.
Reprinted in C++ Gems, ed. Stanley Lippman.

T. L. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles of compilers
and libraries. In Proceedings of the SIAM Workshop on Object Oriented Methods
for Inter-operable Scientific and Engineering Computing (00’98). SIAM Press,
1998.

An Interactive Environment for Supporting the
Paradigm Shift From Simulation to
Optimization*

Christian H. Bischof, H. Martin Biicker, Bruno Lang, and Arno Rasch

Institute for Scientific Computing
Aachen University of Technology, D-52056 Aachen, Germany

Abstract. Simulation is a powerful tool in science and engineering, and
it is nowadays also used for optimizing the design of products and ex-
periments rather than only for reproducing the behavior of physical or
other systems. In order to reduce the number of simulation runs, the
traditional “trial and error” approach for finding near-to-optimum de-
sign parameters should be replaced with efficient numerical optimization
algorithms. Done by hand, the coupling of simulation and optimization
software is tedious and error-prone. In this note we report on the cur-
rent version of a software environment that facilitates and speeds up this
task by doing much of the required work automatically. Our framework
includes support for automatic differentiation, which can provide the
derivatives required by many optimizers. We describe the process of inte-
grating the widely used computational fluid dynamics package FLUENT
and a MINPACK-1 least squares optimizer into our environment and
follow a sample session solving a data assimilation problem.

1 Introduction

Traditionally, simulation software has been used mainly for reproducing—as ex-
actly as possible—the behavior of physical or other systems, thus complementing
theory and classical experiment. While this kind of use certainly will remain im-
portant, there is increasing demand for embedding the simulation in a larger
optimization framework.

One prominent example is design optimization, where we seek parameters
x for the system such that some cost function f(x) is minimized. Replacing
experiments with simulation in the optimization process can drastically reduce
the number of prototypes to be built before the final product emerges, and thus
leads to considerable savings in money and time. Another optimization problem,
data assimilation, comes from modeling and from the simulation itself. Here we
try to adjust the values of certain model or simulation parameters such that the
computed values f(x) best match the data d obtained from actual experiments.

* This research is partially supported by the Deutsche Forschungsgemeinschaft (DFG)
within SFB540 “Model-based experimental analysis of kinetic phenomena in fluid
multi-phase reactive systems,” Aachen University of Technology, Germany.

Thus, the objective function to optimize is [|f(x) — d|| in the data assimilation
problem, whereas in the design optimization problem it is [|f(x)||. In both cases,
weighted norms may be used to emphasize selected components.

Up to now, such optimization problems often are “solved” by running the
simulation several times with varying parameter sets and selecting the set that
gave the best results. While easy to implement from a programming point of
view, this procedure is not very efficient with respect to the number of simulation
calls, and the selection of “appropriate” parameter sets may require experience.
Numerical optimization routines, by contrast, typically make better use of the
information and can also be used by non-experts. Unfortunately, optimization
software and simulation software often follow different conventions for passing
parameters, and therefore it is a tedious and error-prone task to combine these
two components. In particular, switching to another optimizer or another simu-
lation package requires rewriting the interfacing software, often from scratch.

This situation was addressed in [4], where we proposed a framework for
automatically combining large-scale simulation and optimization software via
CORBA technology. In the present note we report on an extension of the func-
tionality of this environment and demonstrate the use of the software with se-
lected case studies.

The structure of the note is as follows. Sophisticated optimizers make use of
derivative information in order to reduce the number of iterations. In Sect. 2 we
discuss several methods for computing these derivatives. In particular, the so-
called forward mode of automatic differentiation (AD) is reviewed. The structure
of our software environment is described in Sect. 3. Section 4 presents some case
studies showing the steps that are necessary to integrate new simulation and
optimization codes into our framework and to run the optimization, including
simple and efficient access to derivatives via AD. This section also includes results
from numerical experiments. Our findings are summarized in Sect. 5.

2 Providing Derivative Information

This section addresses the problem of providing derivative information for large-
scale simulations, as required by sophisticated optimizers. We will briefly discuss
the problems with three well-known methods for computing derivatives, namely
analytic, symbolic, and numerical differentiation, and review a less widely known
technique called automatic differentiation.

If the function is given by an explicit formula or defined by simple differential
or integral equations then often the derivatives of the function can also be de-
scribed in this way (analytic differentiation). Then the mathematical description
is turned into code by hand. In the context of simulation, complex effects such
as turbulence typically preclude this method.

Due to the sheer size of the simulation packages totaling hundreds of thou-
sands of lines and to the complexity of the codes with their numerous branches,
loops, and subroutine calls, tools for symbolic differentiation—aimed at auto-
matically producing code for evaluating the derivatives at arbitrary points x—

also fail even for highly simplified test cases where the derivatives might be be
obtained analytically.

If applicable, analytic and symbolic differentiation yield derivatives that are
accurate except for rounding errors. Numerical differentiotion with divided dif-
ferences (DD), by contrast, always incurs an approximation error, which grows
with the step size. Taking the first-order forward divided difference

0 f(.’El,...,.’Ej_l,.'Ej +h,a:j+1,...,a:n)—f(x)
—f(x)~ 1
%ﬁ@ 3 (D

as an example, one sees that this problem cannot be solved by using a tiny
step size h because then catastrophic cancellation in the numerator of Eqn. (1)
reduces the quality of the computed values. As a result, derivatives approximated
via DD are often only valid to one half of the available digits, even with an
optimal choice for h. The main advantage of the DD approach is that it is
independent from the complexity of the function f, which is used only in a
black-box fashion to be evaluated at certain points x.

The fourth technique, to be considered in the following, is able to provide
highly accurate derivatives even for very complex codes. The term automatic
differentiation (AD) comprises a set of techniques for automatically augmenting
a given computer program with statements for the computation of derivatives.
That is, given a computer program C that computes a function

£(x) = (A1), o(2), .-, (%)) € R™,

automatic differentiation generates another program C’ that, at any point of
interest x € R™, not only evaluates f but also its Jacobian

s fi(%) .. 5= f1(%)
= - € Rmxn

L) e 5 (%)

ot the same point x.

The AD technology is applicable whenever derivatives of functions given in
the form of a high-level programming language, such as Fortran, C, or C++,
are required. The reader is referred to the recent book by Griewank [13] and the
proceedings of AD workshops [1, 5, 14] for details on this technique. In automatic
differentiation the program is treated as a—potentially very long—sequence of
elementary statements such as binary addition or multiplication, for which the
derivatives are known. Then the chain rule of differential calculus is applied over
and over again, combining these step-wise derivatives to yield the derivatives
of the whole program. This mechanical process can be automated, and several
AD tools are available for transforming a given code C to the new differentiated
code C' [2,3,12,15]. In this way, AD requires little human effort and produces
derivatives that are accurate up to machine precision.

When accumulating the derivatives of elementary operations step by step,
the associativity of the chain rule offers several alternatives, all leading to the

same overall derivatives for the whole program, but at different cost with respect
to computation and storage. One well-known strategy for applying the chain rule
is the so-called forward mode of AD. If one is interested in obtaining derivatives
of f with respect to n scalar variables (called independent variables hereafter),
a gradient object u¥ € R™ is associated to every intermediate scalar variable u
involved in the evaluation of the function f. In the sequel, v is called function
part and its associated u¥ is referred to as gradient part. The pair ug = [u,u"]
is called a doublet. Note that the gradient part of a doublet stores the gradient
of the function part with respect to the independent variables.

For every operation of the original code C involving a scalar variable u, there
is a corresponding operation on the doublet ug = [u,u"] in the differentiated
code C'. For instance, a binary addition statement u = v+w in C'is transformed
in C' into

U=v+w
o =wY + vv;
that is, the separate addition of function and gradient part. A multiplication
statement u = v - w is transformed into

U=v-w
u =owY + wvv,

where the gradient part is defined in a product rule-like manner. Since any

programming language consists of only a small set of operations, the set of

corresponding operations on doublets is easily constructed.

Except for very simple cases, the function f cannot be evaluated within a
single routine. Instead, evaluating f typically involves a large subtree of the whole
program, the “top-level” routine of this tree invoking a multitude of lower-level
routines and finally providing the function value. For example the computation of
some characteristic number of a stationary flow may involve a nonlinear solver,
which in turn calls a preconditioned linear solver, and so on. In such a case
automatic differentiation must be applied to the whole subtree, often totaling
several hundreds of routines and tens or even hundreds of thousands lines of
code, in order to obtain the function’s derivatives.

In contrast to the forward mode, the so-called reverse (or backward) mode
of AD generates derivatives objects whose length is equal to the number of
dependent variables, m, and can be more efficient than the forward mode if
m < n.

Sophisticated forward mode AD tools are capable of generating code for the
computation of J¢(x) - S, where S is a so-called seed matriz of appropriate di-
mension. That is, besides computing the Jacobian matrix explicitly by setting
S to the n x n identity, the seed matrix offers the option to compute any linear
column combination of the Jacobian at a cost that is proportional to the num-
ber of columns of S. Thus, appropriately initializing S, called seeding, is often
critical in terms of performance, provided that the full Jacobian J is not needed

explicitly. Reverse mode AD tools typically allow the computation of any linear
row combinations ST - J(x) of the Jacobian.

3 The Structure of the Software Environment

To give a better understanding of the structure of our software environment
we first review the steps that have to be done in order to solve a typical data
assimilation problem. Here, £ denotes a subroutine evaluating the simulation
function, and opt is used to refer to some optimization routine. We further
assume that opt takes as input a user-supplied function u which is needed to
compute the objective function. For instance, u might represent the difference
vector f(x) — d or its norm.

— First, a driver for opt has to be implemented, which provides an initial guess
x° and potentially additional control parameters specifying stopping criteria,
constraints, etc.

— The function u has to be implemented such that £ is called and then the
return values f(x) are compared with the measurements d, and finally the
results are returned. Note that the calling sequence of u is usually prescribed
by the developers of the optimization software. So the user has to fit his
particular optimization problem into a given scheme.

— There is often a similar scheme for the routine du computing the derivative
of u. Therefore a mechanism for evaluating the derivatives of f is needed.

— To increase flexibility it is often desired to keep some of the input parameters
of £ at fixed values, i.e., only a subset of the parameters of £ should be
optimized. So there is need for a mechanism to specify fixed parameters p.

The computational scientist often considers various simulation packages and,
more importantly, different optimization codes in order to validate the robust-
ness of the numerical solution. Instead of implementing the above requirements
several times by hand, we suggest an automated way for easily combining differ-
ent software packages and experimenting with varying problem configurations.

One step in this direction is the NEOS project [7]. The NEOS environment al-
lows users to solve an optimization problem remotely on an optimization server,
which offers a rich variety of optimization algorithms. The user submits an ini-
tial guess, possibly some control parameters, and a subroutine for evaluating the
objective function to the NEOS server, where the problem is solved with the
selected optimizer. This approach is easy to use and highly flexible. However, it
is not applicable to our class of problems, where the evaluation of the objective
function involves a complete run of a typically very large simulation code. In
addition to sheer size, the simulation code might be tuned for a specific archi-
tecture, e.g., for a parallel or vector supercomputer, or it is possibly protected
by copyright laws and therefore cannot be submitted via the internet. There are
many other projects aimed at connecting existing software components in the
context of simulation (see, e.g., the contributions in [16]), but most of them do
not touch on optimization.

server (C++)
Simulation code (F77)

‘ Simulation interface (C++)

fcp‘/lk f(z.p)

CORBA
ﬁ_(/" User interface:
Wrapper (Python) < (Python shell
g + toolbox)
client & server O
“/J_k \/ d,p client
x u(z)
CORBA A
T
client L . Result 2o
(Python module) Optimizer’s interface (C++)

Optimizer (F77) < Do o —

Optimization

Fig. 1. Overall structure of the CORBA-based environment for rapid prototyping.

In [4] we proposed a software environment especially designed for automat-
ically combining optimization routines and large-scale simulation codes. Our
approach treats the evaluation of the function £, the execution of one iteration
of the optimizer opt, and the computation of the user-defined function u as basic
tasks and provides an infrastructure for controlling the interplay of these tasks.
To achieve maximum flexibility in supporting different platforms and languages,
our environment is based on the CORBA technology. The structure of the system
is depicted in Fig. 1.

The user specifies the input and output variables of the simulation code as
well as the variables needed to optimize the objective function. From this spec-
ification, C++ interfaces for the evaluation of the function f and its derivatives
are generated automatically. They are needed to set up a so-called “simulation
server”, which is able to drive the evaluation of the simulation function as well
as the specified gradient or Jacobian. All requests to the simulation server come
from a standard module called “wrapper” hereafter. The wrapper is responsible

for transferring data between the simulation and optimization components and
also for the computation of the user-defined function u. Also making use of the
specification mentioned above, the wrapper sends a request to the simulation
server for evaluating either f(x, p) or the derivative of f(x,p) w.r.t. x. Here, the
variables needed for optimization are denoted by x, whereas p represents addi-
tional fixed parameters of the simulation. The specification of the simulation’s
input parameters also includes the values for such fixed parameters.

The whole computation is driven by the optimization component which re-
peatedly calls the user-defined subroutine u (and, possibly, du) for evaluation of
the objective function (resp. its derivative). In our framework, these two routines
are just stubs that perform no computational work by their own but only call
a standardized C++ interface, which in turn makes use of CORBA to send an
evaluation request, together with an argument x, to the wrapper. The wrap-
per then forwards this request to the simulation server, complementing the free
simulation parameters x with the fixed values p.

The complete optimization process is invoked via a user’s interface, which
also makes the measurements d available to the wrapper. The user interface is
implemented via the Python shell and provides some auxiliary functions, e.g.,
for communication with the wrapper module and for specifying input and out-
put parameters of the simulation. This allows users to experiment with different
problem configurations either interactively or through scripts. The actual im-
plementation of our system uses omniORB3.0 [17] for C++ and Fnorb [6] for
Python.

4 Case Studies

In this section we describe the integration of particular software components
into our system, namely the widely used FLUENT computational fluid dynamics
(CFD) package [9], and an optimization routine from the MINPACK-1 library
[10]. Then we show the use of the environment by means of a test example taken
from the FLUENT tutorial guide [9].

4.1 Integration of the FLUENT Solver

In order to integrate any simulation package into our prototyping environment,
we must be able to control the simulation through one single routine, the so-
called “top-level routine”. This does not mean that the complete simulation code
must be contained in one routine but that the input and output values of the
simulation are accessible within that routine.

In the case of FLUENT we had to turn off the graphical user interface. The
remaining text-based version of FLUENT can be controlled via a so-called “log
file” providing a complete specification of the simulation problem. Furthermore,
we had to replace the main program by a top-level routine, which takes the
relevant input parameters, executes the commands given in the log file, and
returns the results.

In our test example based on the example Flow Through a Filter Car-
tridge from the FLUENT tutorial we want to adjust the model parameters
Cle, C2¢, Cy, Ok, ¢ Of the k-g turbulence model such that the pressure distribution
in the filter best matches some given experimental data. Therefore, the top-level
routine filter calculating the simulation function has the following structure:

subroutine filter(cl,c2,cmu,eprnd,dprnd,lpressure,pressure)
integer lpressure

double precision ci,c2,cmu,eprnd,dprnd

double precision pressure(lpressure)

c —-—- open log file: channel 5 (= stdin) is redirected to file.
¢ ——- Problem specification is given in FILTER_LOGFILE
open(unit=5,file="FILTER_LOGFILE’)

c ——— original Fluent code

¢ ——- close channel 5 (stdin)
close(5)
end

Here, the input variables c1, c2, cmu, eprnd, and dprnd correspond to the tur-
bulence parameters ciz, €2z, Cu, Ok, and .. Note that we further changed the
original FLUENT code such that it uses the values of these input variables in-
stead of the internal default values for the turbulence parameters.

The next step is to provide a specification of the input and output vari-
ables. For simplicity, all variables are assumed to be double precision — so the
specification just consists of array size information. Furthermore, the top-level
routine of the simulation and a set of variables to optimize, which is a subset of
the simulation’s input variables, must be defined. In our test example we want
to enable all input variables for optimization.

The specification is given via the user’s interface, and is needed to generate
the CORBA/C++ interface connecting the simulation routine to our system. It
will be also used later during the optimization process.

The generated CORBA/C++ routine takes a sequence of input variables
(possibly vectors) from the wrapper, allocates memory for the output vari-
ables, then calls the simulation’s top-level function with the input values, and
finally returns one or more solution vectors to the wrapper. An excerpt from
the CORBA/C++ interface generated for our particular test example is given
below:

// input: sequence of input vectors ’’x_in’’
// output: sequence of solution vectors ’’all_solutions?’
double c1,c2,cmu,eprnd,dprnd;
int ldpressure = 336;
double #*pressure = new double[ldpressure];
cl = x_in[0][0];

c2 = x_in[1]1[0];

cmu = x_in[2][0];

eprnd = x_in[3][0];

dprnd = x_in[4][0];

filter(&cl,&c2,&cmu,&eprnd,&dprnd ,&ldpressure,pressure) ;
// copy pressure to all_solutions[0]

delete pressure;
return all_solutions._retn();

If desired, the system additionally creates a control script which can be used
by the ADIFOR AD tool [2] to transform the simulation source code into new
code with additional statements for the computation of the derivatives of the
simulation’s outputs w.r.t. the input variables selected for optimization.

Based on the particular specification for our test example where the depen-
dent variable pressure of the top-level routine filter is to be diferentiated
w.r.t. five independent variables (AD_IVARS), the system generates a control
script for ADIFOR containing the following directives:

AD_TOP=filter

AD_PMAX=5
AD_TIVARS=c1,c2,cmu,eprnd,dprnd
AD_DVARS=pressure
AD_EXCEPTION_FLAVOR=performance
AD_PROG=

For a not-too-complicated code fully adhering to the Fortran 77 standard, one
would simply insert the name of a “composition file” (which just lists all source
files of the simulation) in the field AD_PROG, and run ADIFOR. However, as it
is usual with huge programs grown over many years, the FLUENT code with
its approximately 1.500.000 lines of mostly Fortran 77 required some additional
code massaging in order to obtain standard Fortran 77, before we could apply
ADIFOR to it. A detailed description of this process will be given elsewhere.
Note that this preparation of the code has to be done only once, even if many
different optimization problems are considered later on.

The calling sequence of the differentiated top-level routine generated by
ADIFOR is given below:

subroutine g_filter(g_p_,
+ cl,g_ci,1dg_ci, c2,g_c2,1dg_c2, cmu,g_cmu,ldg_cmu,
+ eprnd,g_eprnd,ldg_eprnd, dprnd,g_dprnd,ldg_dprnd,
+ lpressure,pressure,g_pressure,ldg_pressure)

Here, the seed matrix S, introduced in Sect. 2, consists of the input variables
g-cl, g c2, g cmu, g eprnd, and g-dprnd with corresponding leading dimensions
1dg _c1, 1dg _c2, 1dg_cmu, 1dg-eprnd, and g-dprnd. The derivative of the pres-
sure field is returned in g pressure, which is a two dimensional array of size
(1dg_pressure, lpressure)

10

It is easy to see how the calling sequence of this augmented routine is de-
termined by the original top-level routine: All parameters of filter reappear
in g filter, and each parameter p corresponding to an “independent” or “de-
pendent” variable (as listed in AD_IVARS and AD_DVARS in the ADIFOR script)
is immediately followed by two additional parameters g_p and 1dg p containing
the derivatives of p and the leading dimension of the new array, respectively.
Therefore, our system is able to generate the CORBA /C++ interface for this
routine, too.

The interface code for the differentiated routine also performs the proper
seeding of the independent variables according to the user’s specification. For
this reason, the CORBA /C++ interface routine for the differentiated code gets
not only the simulation’s input values from the wrapper but also the actual seed
matrix in a condensed representation. The seeding is then done automatically
within the interface routine. The other tasks of this routine are similar to the
one described above for the simulation—wrapper interface, except that now the
differentiated top-level routine is called, and the derivatives are returned instead
of the corresponding solution vectors. This “automatic seeding” feature has only
been added in the current version of our environment. It allows the user to
interactively reduce the set of parameters to optimize, even after AD code and
CORBA interfaces have been generated.

To further illustrate this issue, we consider two basic strategies for choosing
parameters for optimization.

Method 1: The user specifies only those parameters that she or he definitely
wants to optimize, and generates the differentiated program suitable for this
particular case. If, later on, it turns out that more (or other) parameters should
be considered for optimization then the AD process has to be carried out again,
and the CORBA interface for the new differentiated code must be generated as
well. Since both tasks are carried out in a completely mechanical fashion, the
only disadvantage of this approach is the processing time to be invested. In the
case of very large codes like FLUENT, automatic differentiation and compilation
may take several hours.

Method 2: The user specifies all input parameters that might possibly become
relevant for optimization, and generates AD code as well as CORBA interfaces
for this configuration. The number of parameters to optimize may now be re-
duced. Since the current set of of optimization parameters is always known to
the wrapper module, the seed matrix can be used to filter out the correspond-
ing partial derivatives. Thus, whenever the set of optimization parameters is
changed, the seed matrix is changed respectively. This approach does not need
any recompilation at all, i.e., the set of optimization parameters can be changed
interactively. On the other hand, this approach typically requires more memory
at run-time.

Of course, mixing of the two strategies is possible.

In order to build the complete simulation server shown in Fig. 1, the sim-
ulation function, the differentiated code, and the corresponding CORBA /C++

11

interfaces have to be linked with a small main program, which is independent
from the actual simulation.

4.2 Integration of a MINPACK-1 Optimization Routine

Typical optimization routines require subroutines for the evaluation of the ob-
jective function or its derivative. These subroutines must be provided by the
user. Thus, these two subroutines provide the means for coupling the optimizers
with the simulation software. In our environment, this is done via the wrapper;
see Fig. 1.

Go give an example, we discuss the process of integrating the least squares
optimization routine lmderl from the MINPACK-1 library into our environ-
ment. This package is publicly available, e.g., from http://www.netlib.org.
According to [10] the user-defined subroutine must have the following structure:

subroutine fcn (m,n,x,fvec,fjac,ldfjac,iflag)
integer n, m, ldfjac, iflag, 1i,]j

double precision x(n), fvec(m), fjac(ldfjac,n)
if (iflag .eq. 1) then

c ——- calculate the functions at x

c —-—- and return this vector in fvec
end if
if (iflag .eq. 2) then

c —— calculate the Jacobian at x

c -—- and return this matrix in fjac
end if
end

Usually the user implements the code for the required computations in this
routine. In our system, by contrast, the user only needs to put the following
subroutine calls at the appropriate places:

call calcfvec(n,x,m,fvec)
for the function, and
call calcjac(n,x,m,fjac)

for the Jacobian. These external routines perform no computational work, but
send a request to the wrapper for evaluating the objective function and the Jaco-
bian, respectively. The routines can be used whenever a function f : R* —s R™
or its Jacobian has to be computed. For convenience, we also provide special-
ized interface routines taylored to the evaluation of scalar-valued functions and
gradients.

12

The header of the main optimization routine is given below:

subroutine lmderi(fcn,m,n,x,fvec,fjac,ldfjac,tol,
+ info,ipvt,wa,lwa)

integer m,n,ldfjac,lwa,info

integer ipvt(n)

double precision tol

double precision x(n), fvec(m), fjac(m,n), wa(lwa)
external fcn

To make this routine available from within Python we employed the Pyfort
tool [8]. Since Pyfort cannot handle function names in a subroutine’s calling
sequence, we removed the first argument. After this modification, we utilized
Pyfort to create a shared library minpackmodule.so, which can be accessed
from Python. Note that the resulting optimization module is independent from
the actual problem configuration because the evaluation of the objective function
(resp. the Jacobian) has been separated from the optimization part. Therefore,
the steps described in this subsection have to be carried out only once, and
from this point on the generated Python module is usable for solving arbitrary
optimization problems within our environment.

4.3 A Sample Optimization Session

In the following we will show how our system can be used to solve a typical data
assimilation problem. For this particular test example, Flow Through o Filter
Cartridge, we consider a turbulent flow at a Reynolds number Re ~ 10% using
the k-¢ turbulence model.

We want to determine values for three of the turbulence parameters, ¢, C2.,
and ¢, such that the pressure distribution computed with the FLUENT CFD
solver best matches given experimental data at certain grid points. For the time
being, the remaining two parameters o}, = 1.0 and 0. = 1.3 are considered fixed.
But as we do not know if these two values are correct, they might be included
in later optimization problems.

In our example, the test data d have been generated artificially by running
the simulation with the parameter set (c;. = 1.44,¢5. = 1.92,¢, = 0.09,0; =
1.0, 0. = 1.3) and saving the results for the pressure distribution to file.

The following extract from a Python session shows how we set up the opti-
mization problem:

1. cl_eps = newInputVar(wrapper,"ci",1,[1.44])

2. c2_eps = newInputVar(wrapper,"c2",1,[1.92])

5. cmu = newInputVar(wrapper,"cmu",1,[0.09])
4 sigma_k = newInputVar(wrapper,"eprnd",1,[1.0])

5. sigma_eps = newInputVar(wrapper,"dprnd",1,[1.3])

. setInputVars(wrapper, [cl_eps,c2_eps,cmu,sigma_k,sigma_eps])
7. pressure = newOutputVar(wrapper,"pressure",336,1)

s. setOutputVars(wrapper, [pressure])

o. setOptVars(wrapper, [cl_eps,c2_eps,cmu,sigma_k,sigma_eps])

13

In lines 1-6 the input variables are specified. For each input variable we
indicate its name in the simulation code, the size (if it is an array variable),
and its default value(s) for the case that the variable is not optimized, i.e., it
is considered to be a "fixed” parameter. In our case, all parameters are scalars,
and therefore the size for each variable is set to 1. In lines 7 and 8 we specify
the output variable. The solution vector pressure is defined as an array of size
336, corresponding to the number of cells in the underlying grid. The last entry
is used to define the mapping between simulation output and external test data.
In line 9 we specify all the input variables that might be optimized later on.

At this point we can generate a control script for ADIFOR as well as the
CORBA interfaces for the filter routine, and apply the ADIFOR tool to ob-
tain the differentiated routine g_filter. Note that, due to our definition of the
optimization variables in line 9, g_filter will be able to compute derivatives
with respect to all five parameters or a subset of them, depending on the ac-
tual seeding. After providing the test data d to the wrapper and importing the
optimizer module we are ready to start the optimization.

Considering o}, and o, to be fixed, we are going to optimize ¢y, 2., and ¢,.
Hence, we redefine the set of optimization variables and provide an initial guess
for these 3 variables:

setOptVars (wrapper, [cl_eps,c2_eps,cmul)
x = array([1.1,1.2,0.1],Float64)

After setting further control parameters, which are not shown here for the sake
of brevity, we call the optimization routine 1lmder1 from the MINPACK module.
In addition, we print the result x and the final euclidean norm of the residuals.

import minpack
fvec,fjac,info,ipvt=minpack.lmderi(336,3,x,1dfjac,tol,wa,lw)
print x,minpack.enorm(336,fvec)

The optimization takes 6 function calls and 5 evaluations of the Jacobian and
produces the output

[1.44000001 1.91999998 0.09000001] 3.39489005512e-06

Here, the first 3 numbers are the final approximation for the variables ¢, coc,
and ¢, whereas the fourth number is the Euclidean norm of the residuals. Indeed,
the solution shows a good agreement with the parameter set that was used
to generate the test data. However, in general users may want to verify the
robustness of the solution, e.g., by trying a different optimization package. Thus
we let the same problem be solved again by another optimizer, namely the bound-
constrained least squares optimization routine dn2gb from the PORT [11] library,
which has been integrated in our system as well. We import the corresponding
Python module, and provide the initial guess as above. The array bounds will
be used to pass the constraints to the optimization routine. For sake of brevity
the initialization of the remaining variables is ommited here.

14

import port

x = array([1.1,1.2,0.1],Float6é4)

lower_bounds = [0.01]%*3

upper_bounds = [2.0]*3

bounds = array([lower_bounds,upper_bounds],Float64)
port.dn2gb(336,3,x,bounds,iv,1liv,1lv,v,ui,ur)

The solution found by this optimizer confirms the above result.

5 Conclusions

We have presented a software environment for facilitating the combination of
simulation and optimization software by enabling much of the interfacing work
to be done automatically. Our approach treats the evaluation of the simulation
function, one iteration of the optimizer, and the computation of the optimizer’s
objective function as basic tasks and provides an infrastructure for the interplay
of these tasks.

A considerable number of languages and tools play together in our software
environment. Object-oriented languages are used for managing the data and
control flows between the different components at the executable level, whereas
we rely on highly optimizable imperative languages, e.g., Fortran, for the com-
putationally intensive tasks.

One reason for selecting CORBA is that it greatly simplifies distributed exe-
cution. For example, in our experiments the simulation ran on a SUN Fire 6800
high-end compute server, whereas a standard PC was used for the optimizer
and the user interface. The C++ interfaces to the Fortran codes are added to
simplify the remote calls via CORBA.

The wrapper and the user interface are written in Python because of its
flexibility and ease of use.

Finally, the ADIFOR automatic differentiation tool is employed for automat-
ically augmenting the simulation code such that it computes derivative informa-
tion together with the function values.

In addition to the FLUENT simulation package and the least squares op-
timizers from the MINPACK-1 and PORT libraries which are mentioned in
this note, we have integrated another large simulation package, SEPRAN [19],
as well as optimizers for scalar-valued objective functions like, e.g., L-BFGS-B
[20] and UNCMIN [18], thus showing the versatility of our environment. Due
to its modular structure, components can easily be replaced with others pro-
viding comparable functionality. Thus, experimenting with different simulation
packages and /or different optimization algorithms is greatly simplified.

15

References

1.

2.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Berz, C. Bischof, G. Corliss, and A. Griewank. Computational Differentiation:
Techniques, Applications, and Tools. SIAM, Philadelphia, PA, 1996.

C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic dif-
ferentiation of Fortran 77 programs. IEEE Computational Science & Engineering,
3(3):18-32, 1996.

C. Bischof, L. Roh, and A. Mauer. ADIC — An extensible automatic differentiation
tool for ANSI-C. Software: Practice and Ezperience, 27(12):1427-1456, 1997.

C. H. Bischof, H. M. Biicker, B. Lang, A. Rasch, and J. W. Risch. A CORBA-
based environment for coupling large-scale simulation and optimization software.
In H. R. Arabnia, editor, Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications, PDPTA 2001, Las Vegas,
USA, June 25-28, 2001, volume 1, pages 68-72. CSREA Press, 2001.

G. Corliss, A. Griewank, C. Faure, and L. Hascoét, editors. Automatic Differenti-
ation 2000: From Simulation to Optimization. Springer, 2001. To appear.

CRC for Distributed Systems Technology, The University of Queensland, Australia.
The Python CORBA ORB, 1999. http://www.fnorb.org.

J. Czyzyk, M. P. Mesnier, and J. J. Moré. The network-enabled optimization
system (NEOS) server. Technical Report ANL/MCS-P615-1096, Argonne National
Laboratory, March 1997.

P. F. Dubois and T.-Y. Yang. Extending Python with Fortran. Computing in
Science & Engineering, 1(5):66-73, 1999.

Fluent Inc., Lebanon, NH. FLUENT Tutorial Guide, 1995.

. B. S. Garbow, K. E. Hillstrom, and J. J. Moré. User Guide for MINPACK-1.

Report ANL-80-74, Argonne National Laboratory, Argonne, 1980.

D. M. Gay. Usage summary for selected optimization routines. Computing Science
Technical Report 153, AT&T Bell Laboratories, Murray Hill, 1990.

R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Trans.
Math. Softw., 24(4):437-474, 1998.

A. Griewank. FEwaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia, PA, 2000.

A. Griewank and G. Corliss. Automatic Differentiation of Algorithms. SIAM,
Philadelphia, PA, 1991.

A, Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the automatic differ-
entiation of algorithms written in C/C++. ACM Trans. Math. Softw., 22(2):131-
167, 1996.

M. E. Henderson, C. R. Anderson, and S. L. Lyons, editors. Proceedings of the
1998 SIAM Workshop on Object Oriented Methods for Interoperable Scientific and
Engineering Computing, Philadelphia, PA, 1999. STAM.

S.-L. Lo, D. Riddoch, and D. Grisby. The omniORB Version 3.0 User’s
Guide. AT&T Bell Laboratories, Cambridge, May 2000. Available from
http://www.uk.research.att.com/omniORB.

R. B. Schnabel, J. E. Koontz, and B. E. Weiss. A modular system of algorithms
for unconstrained minimization. ACM Trans. Math. Softw., 11:419-440, 1985.

G. Segal. SEPRAN Users Manual. Ingenieursbureau Sepra, Leidschendam, NL,
1993.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B, Fortan
subroutines for large-scale bound constrained optimization. ACM Trans. Math.
Softw., 23, 1997.

Generic Programming for High Performance Scientific Applications

Lie-Quan Lee and Andrew Lumsdaine

{1llee,lums}@osl.iu.edu
Open Systems Laboratory
Computer Science Department
Indiana University
Bloomington, IN 47405

Abstract. We present case studies that apply generic programming to the development of high-performance paral-
lel codes for solving archetypal PDEs. We examine the overall structure of the example scientific codes and consider
their generic implementation. With a generic approach it is a straightforward matter to reuse software components
from different sources; implementations with components from Blitz++, A++/P++, MTL, and Fortran BLAS are
presented. We compare the generic implementation to equivalent implementations developed with alternative li-
braries and languages and discuss not only performance but software engineering issues as well.

1 Introduction

Generic programming is an emerging software development paradigm that has simultaneous emphases on
both reusability and efficiency. In our previous work, we have used generic programming methodologies to
develop libraries in key areas of scientific computing: basic numerical linear algebra [1, 2], sparse matrix
ordering [3], and iterative solvers [1,4]. These libraries, although implemented completely in native C++, ex-
hibit performance comparable to the fastest known alternatives (including vendor-tuned and automatically-
tuned libraries).

In this paper we move beyond individual generic libraries and present case studies that apply generic pro-
gramming to developing a parallel code for solving two archetypal PDEs. Several aspects of using generic
programming are examined, including code structure, interface specification, reusability, and, of course,
performance. We examine the overall structure of the example scientific codes and consider their generic
implementation. We also consider the generic interface specifications requirements for key subsystems (e.g.,
an iterative linear solver). Since reuse is one important purpose of a generic algorithm interface, we demon-
strate how reuse can be accomplished by mapping the interfaces of popular array libraries (Blitz++ [5],
A++/P++ [6]), the Matrix Template Library (MTL) [1, 2] and Fortran BLAS [7-9] for use with our generic
algorithms. Finally, we compare the generic implemntation to equivalent implementations developed with
alternative libraries and languages and discuss not only performance but software engineering metrics as
well. Also presented is a novel technique for automatically generating communication patterns for parallel
sparse matrix computations and for creating MPI-based communication structures to carry them out.

2 Problems and Algorithm

We perform experiments to solve two archetypal problems — the so-called Bratu problem and the driven
cavity flow problem.

The classic nonlinear elliptic PDE Bratu problem originates in solid fuel ignition. We consider a two
dimensional unit domain. The governing equation is given by

V32U - At =0

Here, A is a constant known as the Frank-Kamenetskii parameter in the problem context. It is chosen to be
6.0 in our testing cases. We take u = 0 at the boundary,

The second problem is thetwo dimensional thermally and dynamically driven cavity flow governed by
four coupled nonlinear equations involving unknowns of horizontal and vertical velocity (= and v), vorticity
w, and temperature T'. The equations are dimensionless such that the domain becomes a unit square and the
temperature varies from zero to unity [10].

V% — g—z =0

—V%0 + g—i =0

V%Jrag“t:) 8(5};)—617022:0
~V2T + Pr(a(;:) + 8(;;)) =0

Here, Gr and Pr are Grashof and Prandtl numbers, respectively.

By definition, vorticity is w = —g—Z + %. No-slip, rigid-wall Dirichlet conditions are used for « and v.
Dirichlet conditions are used for w, where along each constant coordinate boundary, the tangential derivative
is zero. Dirichlet conditions are used for 7" on the left and right walls, and insulation homogeneous Neumann
conditions are used for 7" on the top and botlom walls.

Both problems lead to nonlinear algebraic equations after central difference discretization. The Newton-
Krylov iterative method [11-13] is used to solve them. The outer Newton iteration approximates the solution
x of f(x) = 0 through a sequence of iterates x* = 2’1 + « - 6’ starting with an initial x°. The update §x?
is an approximate solution of Newton correction linear system

'

f(x)or =—f(z"1)

The above linear system is solved by a Krylov subspace iterative method, such as restarted GMRES [14].
The Jacobian f (x) is approximated by f (2" 1) or a matrix-free method is used for evaluating the quantity

f(x)y.

3 Related Work

The Portable, Extensible Toolkit for Scientific Computation (PETSc) [15] is a well-known library that
provides comprehensive functionality for solving scientific problems. PETSc includes basic sparse and
dense linear algebra operations, preconditioners, Krylov subspace methods, and nonlinear solvers. How-
ever, PETSc is not designed to be generic. For instance, user-defined data structures not provided in PETS¢
cannot be used in its Krylov subspace methods. Similarly, the Aztec [16] library also requires users to use
its own matrix and vector data structures.

One the other hand, Trilinos [17] and the Equation Solver Interface (ESI) [18] use object-oriented tech-
niques in C++ to allow extension through inheritance. Genericity is achieved by defining an abstract inter-
face via base classes with virtual functions specifying the requirements. Generic functions in this context
are written in terms of base classes; function calls are dispatched at run-time based on the concrete types of
objects.

Providing an abstract interface via base classes does provide the separation of implementation and inter-
face that is an important part of generic programming. However, this approach has several drawbacks which
do not exist in C++ template-based approach.! First, virtual functions introduce run-time overhead due to

" To be precise, the object-oriented approach relies on subtype polymorphism whereas the template-based generic programming
approach relies on parametric polymorphism.

virtual function table lookup. For example, in ESI, to get matrix row and column sizes, a virtual function,
getGlobalSizes (Ordinal& rows, Ordinalé& rows),isinvoked. This incurs a virtual function
lookup as well as the function call overhead itself. With a template-based approach, the code to get matrix
row or cloumn sizes is easily inlined and will not incur any overhead. Second, as just alluded to, using virtual
functions may interfere with compile-time optimization because it is impossible to inline virtual functions
in general. Third, it is difficult to express type requirements through base classes. Finally, using member
functions in base classes to express requirements may cause the requirements to be more heavyweight than
necessary. In particular, the virtual function will have a return type that will induce an interface requirement,
even if the return type does not need to be explicitly specified (indeed, it is often the case that one would
want to leave this unspecified). In generic programming, valid expressions rather than member functions are
used to express requirements.

4 Interfaces

We base the iterative solver portion of this case study on routines from the Iterative Template Library
(ITL) [1]. It is important to note that the ITL is itself generic and is intended for reuse. In particular, the
ITL is intended to be used with libraries other than the Matrix Template Library (MTL).

The following is a function template for the conjugate gradient algorithm [19]. The names of the param-
eterized types correspond to different concepts® and convey specific requirements. Any type conforming to
the requirements listed in a corresponding concept can be used with the algorithm.

template <typename LinearOperator, typename CGVectorX,
typename CGVectorB, typename HermitianPreconditioner,
typename Iteration>
int
cg({const LinearOperator& A, CGVectorX& x, const CGVectorB& b,
const HermitianPreconditioneré& M, Iteration& iter) {
//concept checking here

typedef itl::itl_traits<CGVectorX> Traits;
typedef typename Traits::internal_vector TmpVec;
typename Traits::value_type rho, rho 1;

TmpVec p(size(x)), g(size(x)), r(size(x)), z(size(x));

itl::mult (A, itl::scaled(x, —-1.0), b, r);

while (! 1ter.finished(r)) {
itl::solve(M, r, z);
rho = itl::dot_conj(r, z);

1f (i1ter.first ())
itl::copy(z, p);
else
itl::add(z, itl::scaled(p, rho / rho_1l), p);
itl::mult(d, p, Q);
typename Traits::value_type alpha = rho / itl::dot_conj(p, q);
itl::add(x, itl::scaled(p, alpha), x);
itl::add(r, itl::scaled(qg, -alpha), r);
rho_1 = rho;
++iter;
}
return iter.error_code();

}

© In generic programming, a concept is a set of valid expressions, associated types, and semantics used to represent an equivalence
class of types in an interface specification.

Table 1 lists the concepts in the above conjugate gradient algorithm and summarizes their valid expres-
sions.

[Valid Expressions Description |
LinearOperator

mult (A, %, V) Linear transformation w « Ax
CGVector

scaled(x, alpha) Lazy evaluation of vector scaling
add(x, y, z) Vector addition 2 = 2 + ¥

copy (X, V) To copy xtoy

size (x) The size of x

dot_conj(x, vy) Conjugate dot 7 - y

itl traits<v>::value_type The element value type of V'
HermitianPreconditioner

solve (M, vy, Xx) To solve Mx =y

lteration

iter.first () To test whether it is the first iteration
iter.finish(r) To test convergence

++iter To increase iteration counter
iter.error_code () To return error code

Table 1. Summary of the concepts used in the conjugate gradient algorithm. A is an object whose type models LinearOperator
concepl. x, ¥, z and r are objects whose types model CGVector concepl. alpha is a scalar.

It is important to note that the C++ language does not provide a mechanism for the algorithm writer
to explicitly state to which concept the user-supplied template argument should conform. The concept-
checking technique described in [20] is used to provide compile-time checks for template parameters and
verify the concept requirements.

The ITL provides algorithm and data structure interoperability. With a very thin adapter layer, the ITL
can use data structures from any library that provides the necessary functionality (as required by the specified
concepts). The interface layer is used only to adapt syntax. As an example, we present a thin adapter layer
to allow a Blitz++ array to model the CGVector using the technique of external adaptation [21]. External
adaption wraps a new interface around a data structure without copying data or placing the data inside the
adaptor objects. The ITL is carefully designed to accommodate this type of adaptation.

First we define a structure for lazy evaluation of vector scaling. It wraps a vector and a scalar inside and
provides access methods (vec () and alpha ()) to them.

template <class Vec, class T>
struct Scaled {
Scaled(const Vec& v, const T& alpha) : _alpha(alpha), _v(v) { }
T alpha() const { return _alpha; }
const Vec& vec () const { return _v; 1}
protected:
T _alpha;
const Vec& _v;

}:

Next, the function template of lazy evaluation flavor of vector scaling for Blitz++ array, copy (),
dot_coni (), size (), and add () operations are in the defined. Each function template is one line of
code.

template <class prec, int dim, class T>

inline Scaled<Array<prec, dim>, T>

scaled(const Array<prec, dim>& v, const T& alpha)
{ return Scaled<Array<prec, dim>, T> (v, alpha); }

template <class Vec>
inline void copy(const Vec& a, Vec& b)
{ std::copy(a.begin(), a.end(), b.begin()); }

template <class VecA, class VecB>
typename VecA::T_numtype
dot_conj(const VecA& a, const VecB& b)
{ return sum(a * conj(b)); }

template <typename T, int dim>
inline Array<T, dim>::T_index
size (const Array<T, dim>& x)

{ return =z.shape(); }

template <class Vec, class T>
inline void add(const Vec& v, const Scaled<Vec,T>& sv, Vec& vd)
{ vd = sv.alpha() * sv.vec() + v; }

A partial specialization of it1l traits is defined to allow Blitz++ array to provide the required
value_type in the concept CGVector.

template <class prec, int dim>

struct itl_traits< Array<prec, dim> > {
typedef prec value_type;

}i

To use Blitz++ arrays in all the ITL solvers, a few additional wrapper functions such as variants of
addition are needed. Data structures from the A++ library can be used in the ITL with a similar thin adapter
layer.

We note that the LinearOperator in Table 1 is not limited to traditional matrices; matrix-free operators
can meet the requirements of LinearOperator. The following defines a matrix-free operator that models the
LinearOperator concept. The code is parameterized (generic) and can be used with arbitrary vector classes,
such as those in MTL or Blitz++.

template <class Vector, class NonlinearFunction>
class matrix_free_ operator {
public:
typedef typename itl_traits<Vector>::value_type value_type;
typedef typename itl traits<Vector>::size type size type;
matrix_free_operator (NonlinearFunction f,
const Vector& x, const Vectors z)
fO(£), x0(size(x)), zO0(size(z)), tmpO(size(x)) {
itl::copy(x, x0);
itl::copy(z, z0);
sigma = l.e-6 * itl::two_norm(x) + l.e-8;
}
template<class VectorX, class VectorY>
void
apply (const VectorX& x, VectorY¥Y& y) const {
// tmp0 <— x0 + sigma*x

itl::add(x0, itl::scaled(x, sigma), tmp0);
// vy <= £ (tmp0)
£0 (tmp0, y);
/]y <=y — £(x0)
itl::add(y, itl::scaled(z0, —-1.0), v);
itl::scale(y, 1.0/sigma);
}
private:
NonlinearFunction £0;
Vector x0;
Vector z0;
mutable Vector tmp0;
double sigma;
};

template <class Vector, class NonlinearFunction,
class VectorX, class VectorY>»
inline vold
mult (const matrix_free_operator<Vector, NonlinearFunction>& A,
const VectorX& x, VectorY& vy)
{ A.apply(x, y); }

The following is a code excerpt that uses Blitz++ to solve the Bratu problem. In this case, it is quite
natural to use a two dimensional Blitz++ array to represent unknowns and function values on the two di-
mensional descretized grid points. The Blitz++ stencil operator is defined to compute function values and
incorporated into the matrix-free method (which is used instead of an explicit Jacobian).

//define blitz stencil for the bratu problem
BZ_DECLARE_STENCIL2 (Bratu_stencil, U, F)

F = —Laplacian2D(U) - exp(U) * lamhxhy;
BZ_END_STENCIL

struct apply_op { // Wrap up applyStencil
void operator () (Array<double, 2>& U, Array<double, 2>& F) const
{ applyStencil (Bratu_stencil (), U, F); }

}i

int main(int argc, char *argv[]) ({
// local variables here
Array<double, 2> U(shape (nx, ny)), F(shape(nx, ny)), DX(shape(nx, ny));
// Initial guess for U

identity_preconditioner p;

apply_op £; // wrapper of applyStencil

£(U, F); // compute nonlinear function £
modified gram_ schmidt< Array<double, 2> > orth(restart, size(U));

// Start Newton solver

for (k = 0; k < kmax; ++k) {
matrix_free_operator<Array<double, 2>, apply_op> A(f, U, F);
basic_iteration<double> iter(F, iter_max, ksp_rtol, ksp_atol);

DX = 0.0;
// Solve J DX = F with matrix—-free GMRES
gmres (A, DX, F, p, restart, iter, orth);

U —= DX;

£(U, F);
//check convergence here

}
VAN

S Parallelization

Parallelization can be easily introduced by using an adapter layer to provide parallelized version of iterative
methods. No changes to the iterative solver algorithms themselves are required. We briefly describe our
approach. Without loss of generality, in our illustration we use a a one dimensional row-wise partition of the
matrices and vectors. We also use the Message Passing Interface (MPI) [22, 23] for communication.

To accomplish a sparse parallel matrix-vector multiply w < Az, we need to communicate data of vector
x between processors so that each processor can carry out its local part of the computation. However, since
A is sparse not all remote elements in x need to be communicated. We only need to communicate those few
elements in x that will be accessed in the multiplication. In general, this will significantly reduce the amount
of data that must be communicated from one processor to another as well as the number of processors that
must communicate at all. The access pattern into the vector x is determined by the non-zero structure of the
sparse matrix A and will not change if the matrix structure does not change.

The exact access pattern can be obtained by traversing all local nonzero elements in the matrix and col-
lecting column indices. Interestingly, this traversal has precisely the same form as the matrix-vector product
we wish to parallelize. The access patterns are thus computed by re-using a generic matrix-vector multi-
ply with the sparse matrix to be analyzed along with a special pattern_finder class for the “vectors.”
When invoked with the matrix-vector algorithm, the pattern-finder class records the indexing information
necessary to compute the communication access pattern.

//recv_displacements 1s an array to record indices
pattern_finder pf(recv_displacements);

mtl::mult (A, pf, pf);

The implementation of pattern_finder is straightforward.

class pattern_finder {

public:
// typedefs here
inline pattern_finder (int* p_) : pattern(p_) {}
inline int operator[] (int 1) const {
pattern[i] = 1; //set to be one for elements accessed

return x;

}
//
protected:
int x;
mutable int* pattern;

}i

From the access pattern, the size and displacement of elements is needed from each MPI process in
order to compute the local linear transformation and can be easily determined. The next step is to create
communication structures using MPI datatypes and persistent communication requests.

1. Send each process the size of elements needed
2. Receive the sizes of elements to be sent from other processes

Send each process the displacement of elements needed

Receive the displacements of elements to be sent from other processes
Create MPI datatypes for send and receive

Initialize persistent communication

oUW

Access patlern analysis and communication structure creation is performed once for a matrix, outside
of the Krylov iteration. A straightforward implementation of the parallel linear transformation itself (the
matrix-vector product) looks like the following where we reuse the serial version.

template <typename Matrix, typename VecX, typename VecY>
void mult (const parallel matrix<Matrix>& A,
const VecX& x, VecY& vy) |
// copy % to be ready for persistent send
std: :copy (x.begin(), x.end(), wx.begin()+pos*rank);

// start communication
Request::Startall (total num send recv, request_array);
mtl::mult (A.diagonal_block (), x, y);

// finish communication
Request::Waitall (total_num_send_recv, request_array);

//at this point all necessary entries in wx are there
mtl: :mult (A.off_diagonal_block (), wx, Vv);

One optimization to this approach would be to process multiplication operations as the remote data
arrive rather than waiting for all of them.

There is an interesting abstraction conflict presented by this interface. On the one hand, we wish to be
able to provide a general interface that allows multiplication between A and any z. On the other hand, we
also would like to establish persistent communication requests that require persistent knowledge of which
data they are going to be communicating. The simple solution (used here) is to copy the data from x to
persistent communication buffers. Alternatively, a memorization process could be used to create and reuse
persistent requests on demand.

All parallel vector operations will be the same for serial versions except for dot product and conjugate dot
product. Parallel (conjugate) dot product is implemented by a serial (conjugate) dot product plus a reduction
with summation.

As we know, using preconditioners in Krylov subspace ilerative solvers will help convergence dra-
matically and we want our parallel interface to include parallel preconditioners. Block-wise versions of
preconditioners are simple yet effective for most applications. Matrix reordering methods such as reverse
Cuthill-McKee method [24,25] or Self-Avoiding Walk [26] will add more weight for using block-wise
preconditioners since they often reorder sparse matrices to have less bandwidth. To implement block-wise
preconditioners, we reuse the serial versions with a minor extension. For example, Block Incomplete LU is
the same as serial version of ILU with one different argument on construction.

6 Experiments and Results

The experiments for the results shown here were performed on a Sun UltraSPARC cluster connected by
100MB-baseT switched Ethernet. Each cluster node was a dual processor 400MHz UltraSPARC machine
with 512MB RAM. We arranged the experiments to run one MPI process per cluster node. LAM/MPI ver-
sion 6.3.2 [27] was used as the MPI implementation. PETSc [28] release 2.0.28, compiled by Sun WorkShop

6 update 1 with “make BOPT=0", is used in the comparison. Parallel ITL is compiled by KCC-3.4g with
the following optimization flags:

+K3 -0 —fast —fsimple ——abstract_pointer \

——backend —-fast —-backend —-x04 —-backend —xdepend \

——backend —xtarget=ultra2 ——backend —-xarch=v8plusa \
——backend —xrestrict=\%all ——inline_keyword space_time=15000.0

Fig. 1 and Fig. 2 show the execution time for solving the Bratu problem on a 256 x 256, 512 x 512, and
1024 x 1024 grid using Parallel ITL and PETSc with and without preconditioners. Both packages achieve
virtually the same performance. Fig. 3 and Fig. 4 plot the parallel speed-up with various grid sizes. PETSc
was invoked as follows:

mpirun N ex5 —-mx Xgrid —my Ygrid -Nx 1 -Ny Number_of_Node \
—snes_monitor —ksp_type gmres —-pc_type PC —ksp_max_it 300 \
—ksp_gmres_restart 60 —ksp_gmres_modifiedgramschmidt \
—snes_max_1it 60 —ksp_rtol 0.5 —ksp_atol 0.005 —-snes_rtol 0.005

where Xgrid and Ygrid are number of grids in X or y direction, and PC is either “none” or “bjacobi”.

1024x1024 grid ; Egls_c

ot 3
512x512 grid

Execution Time (second)

10"k 256x256 grid

Number of Nodes

Fig. 1. Performance comparison of Parallel ITL and PETSc. The two-dimensional Bratu nonlinear PDE is solved using Parallel ITL
and PESTSc without preconditioner.

For the second set of results, we use a matrix-free method using GMRES with modified Gram-Schmidt
orthogonalization for the driven cavity problem. No preconditioner is used in this case. The results are
shown in Fig. 5, where we plot the execution time for three different problem sizes as a function of number
of processors. Again, performance of the generic approach is identical to that of PETSc. The parallel speed-
up of each case is shown in Fig. 6.

One of the most important principles in software engineering is that of separation of concerns [29]. This
principle states that a given problem involves different kinds of concerns, which should be identified and
separated to cope with complexity and to achieve the required engineering quality factors such as adapt-
ability, maintainability, extendability and reusability. Generic programming provides a clean way to reduce
coupling between components while it provides a formal mechanism (concepts) to address interfaces be-
tween them. In our case studies generic programming enabled the decoupling of iterative solvers from basic
linear algebra operations in ITL. We can use any data structures in those libraries providing the necessary
functionality in our iterative solvers.

—— PITL
1024x1024 grid —©- Petsc

10°F —

512x512 grid

10 7

256x256 grid

Execution Time (second)

Number of Nodes

Fig. 2. Performance comparison of Parallel ITL and PETSc. The two-dimensional Bratu nonlinear PDE is solved using parallel ITL
and PESTSc with block ILU preconditioner.

The decoupling of iterative solvers and parallelization by a thin non-trivial interface was also enabled
by the generic programming paradigm used in the software development. Not only is high performance as
exhibited in the above results, but debugging and testing are simpler. For example, each components such
as GMRES and the parallel matrix-vector multiplication can be tested independently.

Acknowledgments

The authors are grateful to David E. Keyes for graciously providing references for the thermally driven
cavity problem and for his valuable comments. We also acknowledge helpful discussions with Jeremy Siek
and Todd Veldhuizen. This work was supported by NSF grant ACI-9982205.

P T T T T T T
—— PITL, 256x256 grid
— PITL 512x512 grid
—— PITL 1024x1024 grid
141 | —o- Petsc, 256x256 grid 1
—5- Petsc, 512x512 grid
—— Petsc 1024x1024 grid
— Ideal
12 1
101 1
o
E;
1
2
b4
& 8F]
6]
41 |
ol]
2 4 6 8 10 12 14 16

Number of Nodes

Fig. 3. Parallel speed-up for unpreconditioned Bratu.

16 T T T T T T T
—+ PITL, 256x256 grid
—<— PITL 512x512 grid
14 | —— PITL 1024x1024 grid -
—©- Petsc, 256x256 grid
—&- Petsc, 512x512 grid
—— Petsc 1024x1024 grid
12 | — ideal 4
10f &
o
5
z
& 7
A =3
4l 1
ol 1
e
2 4 6 8 10 12 14 16
Number of Nodes

Fig. 4. Parallel speed-up for preconditioned Bratu.

10
512x512 grid

5

2

5

8

8 |

2

o) b

E 102} 256x256 grid]

<

S

E

3

8

2

w

hl D

128x128 grid

Number of Nodes

Fig. 5. Performance of the two-dimensional driven cavity problem solved by parallel ITL and PETSc.

T T T T T T
—+ PITL 128x128 grid
—— PITL, 256x256 grid il
16 | = PITL 512x512 grid
—6— Petsc 128x128 grid
—5- Petsc, 256x256 grid
—— Petsc, 512x512 grid
141 [— Ideal 1
12f 1
o
5
B 10f 1
@
a2
@
sl]
6L]
4l §
.
4 6 8 10 12 14 16

Number of Nodes

Fig. 6. Parallel speed-up for the driven cavity problem.

References

10.

11.

12.

14.
15.
16.
17.
18.
19.
20.

21.
22.

24,

25.

26.

27.

28.

29.

Siek, J., Lumsdaine, A., Lee, L.Q.: Generic programming for high performance numerical linear algebra. In: Proceedings of
the SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and Engineering Computing (00°98), SIAM
Press (1998)

Lumsdaine, A., Siek, J., Lee, L.Q.: The matrix template library home page. (http://ww.osl.iu.edu/research/mtl)
Lee, L.Q., Siek, J.G., Lumsdaine, A.: Generic graph algorithms for sparse matrix ordering. In: ISCOPE’99. Lecture Notes in
Computer Science, Springer-Verlag (1999)

Lumsdaine, A, Lee, L.Q., Siek, J.: The iterative template library home page.
(http://ww.osl.iu.edu/research/itl)

Veldhuizen, T.: Blitz++ home page. (http://oconumerics.org/blitz)

Quinlan, D.: A++/P++ Manual. (Lawrence Livermore National Laboratory)

Dongarra, J., Croz, J.D., Hammarling, S., Hanson, R.: Algorithm 656: An extended set of basic linear algebra subprograms:
Model implementations and test programs. ACM Transactions on Mathematical Software 14 (1988) 18-32

Dongarra, J., Croz, 1.D., Duff, I., Hammarling, S.: A set of level 3 basic linear algebra subprograms. ACM Transactions on
Mathematical Software 16 (1990) 1-17

Lawson, C., Hanson, R., Kincaid, D., Krogh, F.: Basic linear algebra subprograms for fortran usage. ACM Transactions on
Mathematical Software § (1979) 308-323

Bennett, B.A.V., Smooke, M.D.: Local rectangular refinement with application to nonreacting and reacting fluid flow problems.
Journal of Computational Physics 151 (1999) 684727

Cai, X.C., Gropp, W.D., Keyes, D.E., Tidriri, M.D.: Newton-Krylov-Schwarz methods in CFD. In Hebeker, F., Rannacher, R.,
eds.: The International workshop on Numerical Methods for the Navier-Stokes Equations. (1994)

Gropp, W.D., Keyes, D.E., Mclnnes, L.C., Tidriri, M.D.: Globalized Newton-Krylov-Schwarz algorithms and software for
parallel implicit CFD. International Journal of High Performance Computing Appolications 14 (2000) 102—-136

Hayder, ML.E., lerotheou, C., Keyes, D.E.: Three parallel programming paradigms: Comparisons on an archetypal PDE com-
putation. Parallel and Distributed Computing Practices (2000) 35-53

Saad, Y., Schultz, M.: GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM
J. Sci. Statist. Comput. 7 (1986) 856-869

Gropp, W.D., Smith, B.: PETSc: Portable extensible tools for scientific computation. Technical report, Argonne National
Laboratory, Argonne, IL. (1994)

Tuminaro, R.S., Heroux, M., Hutchinson, S.A., Shadid, J.N.: Official Aztec User’s Guide: Version 2.1. (1999)

The Trilinos Team: (The Trilinos project) http://www.cs.sandia.gov/~mheroux/Trilinos/doc/Trilinos.himl.

The ESI technical forum: (Equation Solver Interface (ESI) standards multi-lab working group) http://z.ca.sandia.gov/esi.
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49 (1952)
409-436

Siek, J., Lumsdaine, A.: Concept checking: Binding parametric polymorphism in C++. In: First Workshop on C++ Template
Programming, Erfurt, Germany. (2000)

Boost: (Boost Graph Library) http://www.boost .org/libs/graph/doc/index.html.

Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI The Complete Reference. MIT Press, Cambridge,
MA (1996)

. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., , Snir, M.: MPI — The Complete Reference:

Volume 2, the MPI-2 Extensions. MIT Press (1998)

Cuthill, E.H., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proc. 24" National Conference of the
ACM, ACM Press (1969) 157-172

Liu, W., Sherman, A.: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithnms for
sparse matrices. STAM J. Numerical Analysis (1976) 198-213

Heber, G., Biswas, R., Gao, G.: Self-avoiding walks over adaptive unstructured grids. In: Parallel and Distributed Processing.
Number 1586 in LNCS, Spriger-Verlag (1999) 968-977

The LAM Team: Getting Started with LAM/MPL. University of Notre Dame, Department of Computer Science,
http://www.lam-mpi.org/. (1998)

Balay, S., Gropp, W.D., Mclnnes, L..C., Smith, B.F.: Efficient management of parallelism in object-oriented numerical software
libraries. In Arge, E., Bruaset, A.M., Langtangen, H.P., eds.: Modern Software Tools in Scientific Computing. Birkhauser
(1997)

Dijkstra, EZW.: A Discipline of Programming. Prentice Hall (1976)

