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tThe determination of physi
al properties of 
avor singlet obje
ts like the �0 me-son by 
omputer simulation requires the 
omputation of fun
tionals of the inversefermioni
 matrix M�1. So far, only sto
hasti
 methods 
ould 
ope with the enor-mous size of M . In this paper, we introdu
e an alternative approa
h whi
h is basedon the 
omputation of a subset of low-lying eigenmodes of the fermioni
 matrix. Thehigh quality of this `trun
ated eigenmode approximation' (TEA) is demonstrated by
omparison with the pion 
orrelator, a 
avor o
tet quantity, whi
h is readily 
om-putable through a linear system of equations. We show that TEA 
an su

essfullyapproximate the 
avor singlet �0 
orrelator. We �nd that the systemati
 error of themethod is tolerable. As the determination of the 
hosen subset of 300 eigenmodesrequires about 3.5 T
ops-hours CPU-time per 
anoni
al ensemble and at least 15GBytes of memory, the power of high-end super
omputers like the CRAY T3E isindispensable.Key words: QCD; meson mass 
al
ulations1 Introdu
tionA major goal of non-perturbative latti
e quantum 
hromodynami
s (LQCD)is the determination of hadroni
 mass states whi
h are 
hara
terized by non-valen
e 
ontributions, su
h as 
avor singlet mesons. Their 
orrelation fun
-tions, C�0(t1 � t2) , 
ontain so-
alled `dis
onne
ted diagrams', i.e. 
orrelatorsbetween 
losed virtual fermion loops. The reliable determination of these dis-
onne
ted diagrams has been a long- standing issue ever sin
e the early daysof latti
e gauge theory. It 
an be redu
ed to the numeri
al problem of how toa
hieve information about fun
tionals of the inverse fermioni
 matrix M�1.Preprint submitted to Elsevier S
ien
e 16 Mar
h 2001



The �rst attempts in this dire
tion have been started only a few years ago,using the so-
alled sto
hasti
 estimator method (SE) [1℄ to 
ompute the tra
eof M�1. This approa
h requires to solve the linear system Mx = � on somehundred sour
e ve
tors �, with � being Z2 or Gaussian noise ve
tors. Mean-while, substantial progress 
ould be a
hieved for the determination of the �0 byappli
ation of re�ned smearing methods [2℄, where for the �rst time a propersignal-to-noise-ratio 
ould be established. However, SE introdu
es sto
hasti
noise, in addition to the sto
hasti
s already inherited from the Monte Carlopro
ess.In the following, we des
ribe the determination of the �0 mass based on the
omputation of a set of low-lying eigenmodes of Q = 
5M , the hermitianform of M . We use the impli
itly restarted Arnoldi method, a generalizationof the standard Lan
zos pro
edure. A 
ru
ial ingredient is the Chebysheva

eleration te
hnique to a
hieve a transformation of the spe
trum to a formsuitable for the Arnoldi eigenvalue determination. The low-lying modes given,it is possible to estimate the entire matrix Q�1 and those matrix fun
tionalsor fun
tions of Q and M whi
h are sensitive to long-range physi
s.In se
tion 1, we introdu
e the meson 
orrelators and in se
tion 2, we shortlyreview their 
omputation by 
onventional means. Se
tion 3 is devoted to TEAand the organization of the 
omputation on the CRAY T3E by use of theparallel Arnoldi pa
kage (PARPACK). In se
tion 4, we assess the viabilityof TEA by 
omparing the 
orrelator of the � meson as 
omputed from TEAwith the result from the 
onventional approa
h. As the � is a 
avor o
tetquantity it 
an easily be 
omputed through the solution of a linear system ofequations by iterative Krylov subspa
e algorithms [3℄. Finally, we apply TEAto the 
omputation of the �0 meson 
orrelator and 
ompare with results fromSE 
omputations.2 Meson CorrelatorsIn LQCD, hadroni
 masses are extra
ted from the large-time behavior of 
or-relation fun
tions. The 
orrelator of the 
avor o
tet � meson is de�ned asC�(t � t1 � t2) = *Xn;mTrhQ�1(n; t1;m; t2)Q�1(m; t2;n; t1)i+U ; (1)while the 
avor singlet �0 meson 
orrelator is 
omposed of two terms, onebeing 
onne
ted and equivalent to the pion 
orrelator, the se
ond being thedis
onne
ted 
ontribution from the 
orrelation of virtual quark loops:C�0(t) = C�(t)� 2*Xn;mTrhQ�1(n; t1;n; t1)iTrhQ�1(m; t2;m; t2)i+U : (2)h: : :iU indi
ates the average over a 
anoni
al ensemble of gauge �eld 
on�g-urations. Q is the hermitian Wilson-Dira
 matrix [3℄, i.e. Q = 
5M ; n and2



m denote spatial latti
e sites, t1 and t2 determine the time separation t. The
olor and Dira
 indi
es are suppressed. For large times t, the respe
tive 
or-relation fun
tions be
ome proportional to exp(�m0t), where m0 is the massof the parti
le des
ribed by the 
orrelation fun
tion. Sin
e our latti
e hasanti-periodi
 boundary 
onditions in time dire
tion, the 
orrelation fun
tionsa
tually 
onsist of a sum over two 
ontributions, exp(�m0t) and exp(+m0t),i.e. they will exhibit a 
osh-like behaviour (C � 
osh(m0t)).3 Conventional Computation of CorrelatorsIn the 
onventional 
omputation of the �-
orrelator (1) the sour
e point isheld �xed (e.g. at index tupel (1; 1) � (~1; 1)), where the �rst index symbolizesthe spatial ve
tor (1; 1; 1) and the se
ond one denotes the time 
omponent:C�(t1) = *Xn TrhQ�1(n; t1; 1; 1)Q�1(1; 1;n; t1)i+U : (3)Using 
5M
5 =M y, we obtain:C�(t1) = *Xn TrhM�1(n; t1; 1; 1)M�1y(1; 1;n; t1)i+U : (4)Thus it suÆ
es to determine 12 
olumns (3�4 for the 
olor and Dira
 indi
es)of M�1 in order to 
ompute (4). The 
olumns 
(n; t) of M�1 are obtained bysolving the linear systemM(n; t1;m; t2)
(m; t2) = Æ(1; 1;n; t1); (5)where Æ is the Krone
ker delta fun
tion. Of 
ourse, the statisti
s 
ould beimproved by averaging over many or even all sour
e points. However thiswould be prohibitively expensive as the e�ort in
reases with the number ofsour
es.For C�0 , however, the se
ond term,Xn;mTrhQ�1(n; t1;n; t1)iTrhQ�1(m; t2;m; t2)i; (6)depends on the diagonal elements ofQ�1 whi
h 
annot be determined from onesour
e point alone. Instead of going through all sites the method of 
hoi
e isthe sto
hasti
 estimator te
hnique (SE). One 
reates series of 
omplex numbers(
i)j su
h that they 
onverge to the diagonal elements Q�1(i; i). The series are
onstru
ted through noise ve
tors �k,(
i)j = jXk=1 �k(i)Q�1�k(i)=j (7)Q�1�k is determined by solving the 
orresponding linear system Qx = �. Inorder to a
hieve a satisfying approximation, 400 noise ve
tors �k are required[2℄. Therefore the 
avor singlet 
al
ulations are about 30 times more expensivethan the o
tet ones. 3



4 TEAWe start from the following equation:Q�1(n; t1;m; t2) =Xi 1�i j i(n; t1)ih i(m; t2)jh ij ii ; (8)where �i and  i are the eigenvalues and the eigenve
tors of Q respe
tively.Note that Q is hermitian inde�nite 1 . We approximate the sum on the righthand side by restri
tion to the 300 lowest-lying eigenvalues and their 
orre-sponding eigenve
tors. Due to the fa
tor 1=�i one 
an hope that the low-lyingeigenmodes will dominate the sum 2 . We emphasize that we have an approxi-mation for the entire matrix Q�1(i; j). Therefore, we 
an retrieve the diagonalelements of the dis
onne
ted diagrams as well as the � 
orrelator on all sour
epoints.To 
ompute the eigenvalues and their 
orresponding eigenve
tors we employthe Impli
itly Restarted Arnoldi Method (IRAM). The huge size of Q requiresparallel super
omputers. We work on two CRAY T3E systems with 512 nodesea
h, lo
ated at Fors
hungszentrum J�uli
h, Germany and at NERSC, Berkeley,USA. A 
omfortable parallel implementation of IRAM is provided by thePARPACK pa
kage [5℄. In order to over
ome the problem of slow 
onvergen
efor the low-lying eigenvalues we apply the Chebyshev polynomial a

elerationte
hnique, where the eigenvalue spe
trum is transformed su
h that the 300smallest eigenvalues be
ome mu
h larger than the rest of the spe
trum, asituation favorable for eigenvalue 
al
ulations by IRAM.We work on a 163�32 latti
e i.e. 16 latti
e sites in spa
e and 32 latti
e sites intime dire
tion. Taking into a

ount the Dira
 and 
olor indi
es, we see that theDira
 matrix a
ts on a 12�163�32 = 1:572:864 dimensional ve
tor spa
e. Thisexplains why we 
annot invert the entire Dira
 matrix, sin
e this would needabout 40 TByte memory spa
e, whereas the determination of 300 low-lyingeigenve
tors leads to about 15 GByte memory spa
e only. Our 
omputationsare based on 
anoni
al ensembles of 200 �eld 
on�gurations with nf = 2
avors of dynami
al sea quarks, generated at 4 di�erent quark masses, in theframework of the SESAM proje
t [2℄. Fast and automated a

ess to an ar
hivespa
e of approximately 6 TBytes is required to store all eigenve
tors from theSESAM ensembles. Thus, 
omputations of this kind are not feasible withoutthe fa
ilities available at super
omputer 
enters. It takes about 3.5 T
ops-hours to solve for 300 low-lying modes on ea
h ensemble. In the eigenmode1 The hermitian matrix Q leads to an orthogonal eigenbase. If we 
ompute theeigenmodes from the non-normal matrix M instead, the resulting eigenbase is non-orthogonal. In our investigations, we found no 
onvergen
e of the low modes fromthe non-orthogonal eigenbase.2 In the result se
tion, we will 
ome ba
k to the question of 
an
ellation e�e
ts dueto positive and negative eigenvalues. 4



approa
h the CPU-time is de
reasing with lighter quark masses, as in that 
asethe eigenvalues be
ome smaller and one 
an expe
t that they will dominatethe sum earlier. This is a substantial advantage of TEA 
ompared to theSE approa
h, where smaller eigenvalues lead to a slower 
onvergen
e of thelinear system solvers. With 400 sto
hasti
 estimates it takes about 1.5 T
ops-hours to treat an ensemble of 200 gauge 
on�gurations. However, in futuresimulations (i.e. for lighter quark masses) TEA will soon be
ome superior toSE.5 ResultsThe 
orrelator C� 
an serve as simple test for the quality of TEA. Fig. 1 
om-pares C� as determined by eq. (5) with the result from TEA. The low modesare expe
ted to des
ribe long range physi
s. A

ordingly, TEA underestimatesthe true C� for small time separations (t < 8). On the other hand, the largetime behavior is represented quite well. Sin
e the � 
orrelator 
an be deter-mined extremely a

urately by the 
onventional method, a tiny trun
atione�e
t is still visible in the large time range of the propagator. This deviationde
reases for smaller quark masses, as well as for a larger number of eigen-modes. Nevertheless, the deviation for large t still are surprisingly small: Letus sum (1) over t1 and t2,Xt1;t2 C�(t1 � t2) =Xi 1�2i : (9)Here all 
ontributions are positive and no 
an
ellation o

urs as in the 
asefor C�0 .
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Fig. 1. Comparison of C� from TEA and from the 
onventional 
omputation.The situation is even more favorable for the dis
onne
ted part of �0. Let usagain 
onsider the sum over t1 and t2:Xn;t1;m;t2 TrhQ�1(n; t1;n; t1)iTrhQ�1(m; t2;m; t2)i =  Xi 1�i!2 : (10)5



Obviously, the positive and negative eigenvalues 
an 
an
el ea
h other here.We �nd that 
onvergen
e is a
hieved from about 150 eigenvalues on! TEA andSE agree well within the error bars that are due to the gauge �eld 
u
tuations.
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Fig. 2. Comparison of the dis
onne
ted 
orrelator from SE and TEA. The largeerrors in both 
ases are solely due to gauge �eld noise.In 
on
lusion our results show that TEA is 
omparable to SE for the 
ompu-tation dis
onne
ted diagrams [4℄. The 
osts are similar to SE 
omputations atpresent. Going to realisti
 light masses, TEA will be
ome superior to SE sin
elow modes tend to dominate more and more.A
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