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Abstract

The determination of physical properties of flavor singlet objects like the 7’ me-
son by computer simulation requires the computation of functionals of the inverse
fermionic matrix M ~'. So far, only stochastic methods could cope with the enor-
mous size of M. In this paper, we introduce an alternative approach which is based
on the computation of a subset of low-lying eigenmodes of the fermionic matrix. The
high quality of this ‘truncated eigenmode approximation’ (TEA) is demonstrated by
comparison with the pion correlator, a flavor octet quantity, which is readily com-
putable through a linear system of equations. We show that TEA can successfully
approximate the flavor singlet ' correlator. We find that the systematic error of the
method is tolerable. As the determination of the chosen subset of 300 eigenmodes
requires about 3.5 Tflops-hours CPU-time per canonical ensemble and at least 15
GBytes of memory, the power of high-end supercomputers like the CRAY T3E is
indispensable.
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1 Introduction

A major goal of non-perturbative lattice quantum chromodynamics (LQCD)
is the determination of hadronic mass states which are characterized by non-
valence contributions, such as flavor singlet mesons. Their correlation func-
tions, Cyy (t; — t3) , contain so-called ‘disconnected diagrams’, i.e. correlators
between closed virtual fermion loops. The reliable determination of these dis-
connected diagrams has been a long- standing issue ever since the early days
of lattice gauge theory. It can be reduced to the numerical problem of how to
achieve information about functionals of the inverse fermionic matrix M~!.
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The first attempts in this direction have been started only a few years ago,
using the so-called stochastic estimator method (SE) [1] to compute the trace
of M~!. This approach requires to solve the linear system Mz = £ on some
hundred source vectors &, with £ being Z, or Gaussian noise vectors. Mean-
while, substantial progress could be achieved for the determination of the n' by
application of refined smearing methods [2], where for the first time a proper
signal-to-noise-ratio could be established. However, SE introduces stochastic
noise, in addition to the stochastics already inherited from the Monte Carlo
process.

In the following, we describe the determination of the 1’ mass based on the
computation of a set of low-lying eigenmodes of () = v5M, the hermitian
form of M. We use the implicitly restarted Arnoldi method, a generalization
of the standard Lanczos procedure. A crucial ingredient is the Chebyshev
acceleration technique to achieve a transformation of the spectrum to a form
suitable for the Arnoldi eigenvalue determination. The low-lying modes given,
it is possible to estimate the entire matrix Q="' and those matrix functionals
or functions of () and M which are sensitive to long-range physics.

In section 1, we introduce the meson correlators and in section 2, we shortly
review their computation by conventional means. Section 3 is devoted to TEA
and the organization of the computation on the CRAY T3E by use of the
parallel Arnoldi package (PARPACK). In section 4, we assess the viability
of TEA by comparing the correlator of the 7 meson as computed from TEA
with the result from the conventional approach. As the 7 is a flavor octet
quantity it can easily be computed through the solution of a linear system of
equations by iterative Krylov subspace algorithms [3]. Finally, we apply TEA
to the computation of the n" meson correlator and compare with results from
SE computations.

2 Meson Correlators

In LQCD, hadronic masses are extracted from the large-time behavior of cor-
relation functions. The correlator of the flavor octet m meson is defined as

Colt =t — 1) <Z Te[Q~" (n,t1;m, tg)Q—l(m,tQ;n,tl)]> , (1)

U

while the flavor singlet n" meson correlator is composed of two terms, one
being connected and equivalent to the pion correlator, the second being the
disconnected contribution from the correlation of virtual quark loops:

Cy(t) =C —2<2Tr[ ntl,ntl)]Tr[Q1(m,t2;m,t2)]> . (2

U

(...);; indicates the average over a canonical ensemble of gauge field config-
urations. @ is the hermitian Wilson-Dirac matrix [3], i.e. @ = vsM; n and



m denote spatial lattice sites, t; and ¢ determine the time separation ¢. The
color and Dirac indices are suppressed. For large times ¢, the respective cor-
relation functions become proportional to exp(—mgt), where mg is the mass
of the particle described by the correlation function. Since our lattice has
anti-periodic boundary conditions in time direction, the correlation functions
actually consist of a sum over two contributions, exp(—myt) and exp(-+myt),
i.e. they will exhibit a cosh-like behaviour (C' ~ cosh(mgt)).

3 Conventional Computation of Correlators

In the conventional computation of the m-correlator (1) the source point is
held fixed (e.g. at index tupel (1,1) = (1, 1)), where the first index symbolizes
the spatial vector (1,1,1) and the second one denotes the time component:

<2Tr[ (n,t1: 1, 1)Q—1(1,1;n,t1)]> . (3)

U
Using vsM~s = MT, we obtain:

<2Tr[ Yn, b1, 1)M”(1,1;n,t1)]> . (4)

U
Thus it suffices to determine 12 columns (3 x 4 for the color and Dirac indices)
of M~" in order to compute (4). The columns ¢(n,t) of M~" are obtained by
solving the linear system

M(n, ti;m, ta)c(m, ta) = 6(1, 1;n, t); (5)

where 9 is the Kronecker delta function. Of course, the statistics could be
improved by averaging over many or even all source points. However this
would be prohibitively expensive as the effort increases with the number of
sources.

For C,y, however, the second term,
ZTI"{ (n,ti;n, tl)]Tr[Q_l(m, t?;matQ)]a (6)

depends on the diagonal elements of Q="' which cannot be determined from one
source point alone. Instead of going through all sites the method of choice is
the stochastic estimator technique (SE). One creates series of complex numbers
(¢;); such that they converge to the diagonal elements Q' (7, 7). The series are
constructed through noise vectors ny,

Zﬁk )Q ™ k(i) /g (7)

Q 'n, is determined by solving the corresponding linear system Qz = 7. In
order to achieve a satisfying approximation, 400 noise vectors 7, are required
[2]. Therefore the flavor singlet calculations are about 30 times more expensive
than the octet ones.



4 TEA

We start from the following equation:

-1 . _ 1 |w2(nat1)><wz(mat2)|
@) =T
where \; and v; are the eigenvalues and the eigenvectors of () respectively.
Note that @ is hermitian indefinite!. We approximate the sum on the right
hand side by restriction to the 300 lowest-lying eigenvalues and their corre-
sponding eigenvectors. Due to the factor 1/A; one can hope that the low-lying
eigenmodes will dominate the sum?. We emphasize that we have an approxi-
mation for the entire matrix Q '(z, 7). Therefore, we can retrieve the diagonal
elements of the disconnected diagrams as well as the 7 correlator on all source
points.

(8)

To compute the eigenvalues and their corresponding eigenvectors we employ
the Implicitly Restarted Arnoldi Method (IRAM). The huge size of ) requires
parallel supercomputers. We work on two CRAY T3E systems with 512 nodes
each, located at Forschungszentrum Jiilich, Germany and at NERSC, Berkeley,
USA. A comfortable parallel implementation of IRAM is provided by the
PARPACK package [5]. In order to overcome the problem of slow convergence
for the low-lying eigenvalues we apply the Chebyshev polynomial acceleration
technique, where the eigenvalue spectrum is transformed such that the 300
smallest eigenvalues become much larger than the rest of the spectrum, a
situation favorable for eigenvalue calculations by TRAM.

We work on a 163 x 32 lattice i.e. 16 lattice sites in space and 32 lattice sites in
time direction. Taking into account the Dirac and color indices, we see that the
Dirac matrix acts on a 12x 162 x 32 = 1.572.864 dimensional vector space. This
explains why we cannot invert the entire Dirac matrix, since this would need
about 40 TByte memory space, whereas the determination of 300 low-lying
eigenvectors leads to about 15 GByte memory space only. Our computations
are based on canonical ensembles of 200 field configurations with ny = 2
flavors of dynamical sea quarks, generated at 4 different quark masses, in the
framework of the SESAM project [2]. Fast and automated access to an archive
space of approximately 6 TBytes is required to store all eigenvectors from the
SESAM ensembles. Thus, computations of this kind are not feasible without
the facilities available at supercomputer centers. It takes about 3.5 Tflops-
hours to solve for 300 low-lying modes on each ensemble. In the eigenmode

I The hermitian matrix Q leads to an orthogonal eigenbase. If we compute the
eigenmodes from the non-normal matrix M instead, the resulting eigenbase is non-
orthogonal. In our investigations, we found no convergence of the low modes from
the non-orthogonal eigenbase.

2 In the result section, we will come back to the question of cancellation effects due
to positive and negative eigenvalues.



approach the CPU-time is decreasing with lighter quark masses, as in that case
the eigenvalues become smaller and one can expect that they will dominate
the sum earlier. This is a substantial advantage of TEA compared to the
SE approach, where smaller eigenvalues lead to a slower convergence of the
linear system solvers. With 400 stochastic estimates it takes about 1.5 Tflops-
hours to treat an ensemble of 200 gauge configurations. However, in future
simulations (i.e. for lighter quark masses) TEA will soon become superior to
SE.

5 Results

The correlator C; can serve as simple test for the quality of TEA. Fig. 1 com-
pares C as determined by eq. (5) with the result from TEA. The low modes
are expected to describe long range physics. Accordingly, TEA underestimates
the true C for small time separations (¢ < 8). On the other hand, the large
time behavior is represented quite well. Since the 7 correlator can be deter-
mined extremely accurately by the conventional method, a tiny truncation
effect is still visible in the large time range of the propagator. This deviation
decreases for smaller quark masses, as well as for a larger number of eigen-
modes. Nevertheless, the deviation for large ¢ still are surprisingly small: Let
us sum (1) over ¢; and s,

> Caltr 1) = Y 35 )

t1,t2 7

Here all contributions are positive and no cancellation occurs as in the case

for C,y.
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Fig. 1. Comparison of C from TEA and from the conventional computation.

The situation is even more favorable for the disconnected part of n'. Let us
again consider the sum over ¢; and t5:

S Te[Q 7 (na 1) Te[Q7 (my tay m, )| = (2%) . (10)

n,t1,m,te



Obviously, the positive and negative eigenvalues can cancel each other here.
We find that convergence is achieved from about 150 eigenvalues on! TEA and
SE agree well within the error bars that are due to the gauge field fluctuations.
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Fig. 2. Comparison of the disconnected correlator from SE and TEA. The large
errors in both cases are solely due to gauge field noise.

In conclusion our results show that TEA is comparable to SE for the compu-
tation disconnected diagrams [4]. The costs are similar to SE computations at
present. Going to realistic light masses, TEA will become superior to SE since
low modes tend to dominate more and more.
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