FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fir Angewandte Mathematik
D-52425 Julich, Tel. (02461) 61-6402

Interner Bericht

An Expression Template aware Lambda
Function

Jorg Striegnitz, Stephen A. Smith*

FZJ-ZAM-1B-2001-01

Dezember 2000
(letzte Anderung: 23.01.2001)

(*) Advanced Computing Laboratory Los Alamos National Laboratory New Mexico, USA
Preprint: Proceedings of the 2000 Workshop on C++ Template Programming, 10.10.2000, Erfurt Germany

An Expression Template aware Lambda

Function
Jorg Striegnitz Stephen A. Smith
Research Centre Jilich Advanced Computing Laboratory
Central Institute for Applied Mathematics Los Alamos National Laboratory
Germany New Mexico, USA
J.Sriegnitz@fz-juelich.de sa_smith@acl.lanl.gov

Abstract. Templatelibraries suchasthe STL containseveralgenericalgorithmsthat
expectfunctions as argumentsand therebycausea frequentuse of function objects.
User-definedunction objectsare awkwardbecausehey mustbe declaredasa classin
namespacscopebeforethey may be used.In this paperwe describea lambda function
for C++, which allows usersto definefunction objectson the fly, without writing class
declarationsWe showthat, by using expressiortemplatesthe lambdafunction canbe
implemented without hurting the runtime performanceof a program. Expression
templatescan also help to overcomethe performancepenaltiesthat may arise when
using expressionsover user-definedtypes. Thus, we basedour approachon PETE
which is a frameworkthat simplifiesthe additionof expressioriemplatefunctionalityto
user-definectlasses.

1. Introduction

The StandardTemplateLibrary (STL) [C++] containsmany function objectsthat mimic Higher
Order Functions (HOFs). Thesearefunctionsthattakefunctionargumentsand/orreturnfunction:
(e.g.for_each, transform orfind_i f). Operationgpassedo HOFsareoftenvery shortin code
and primarily usedin a local context.Neverthelessthey haveto be definedin namespacscope
possiblyyielding numeroussmall functionsor function objectsrespectively The point of use anc
the point of definition may get more and more dispersed,making code harderto read anc
understand.

This problemevenbecomesvorse,asit is impossibleto passfunctiontemplateso STL's HOFs.In
order to mimic rank-2 polymorphism(passingpolymorphic function argumentsto polymorphic
functions),eitherfunction overloadingor the definition of a classwith anoper at or () templateis
required (like e.g.in [FC++][SMO00]). Especiallythe first approachwill increasenamespac
pollution, while the latter also dependson a classrepresentativethus, the existenceof an object
which hasto be createdmanually.

A bettersolutionwould be to define functionson the fly. This featureis commonin functiona
programminglanguageswhich offer a specialsyntaxcalled! anbda to defineandusefunctionsin
onego.

Our C++ framework FACT! (Functional Additions to C++ through Templatesand Classe:
[FACT]) offers a similar functionality througha function called | anbda, which could be usedto
createfunction objectson the fly and therebyhelpsto keepthe point of use and the point of
definition closetogether As with its purefunctionalcounterpartfunctionsobtainedby lambdaare

free of side effects and therefore may be used in parallel environments as well.

In this article we discuss the implementation of our lambda functions and show how to add
expression template functionality to user-defined classes. After giving a short introduction into the
lambda functions, we will show how to build lambda expressions by using the Portable Expression
Template Engine (PETE). We will then concentrate on how evaluation is done and conclude with a
discussion of performance and possible future work.

2. The Lambda Function

The lambda function takes a list of variables (called the lambda list), an expression that may
contain any of this list’s variables (called the lambda expression) and returns a function which
usualy has the same number of arguments as there are elements in the lambda list. Consider the
following example:

| anbda(x,y, x + vy)

x and y form the lambda list, x + y is the lambda expression. Since the lambda list has two
members, a binary function is returned.

Applying a function returned by | anbda to some arguments is done as follows: first, arguments
passed to the function get associated with the variables of the lambda list - this is done from left to
right. Second, all occurrences of lambda variables in the lambda expression get substituted by their
associated values. Finally, the expression gets evaluated and the result is returned. For instance,
applying | anbda(x,y, x + y) to3 and4 resultsin:

1. x isboundto 3 andy isbound to 4
2. substitutionyields3 + 4
3. evaluation leadsto 7

Thus, | anbda(x,y, x + y) representsafunction that calculates the sum of its arguments.

Functions returned by | anbda are polymorphic, thus, x and y may be bound to values of typei nt ,
float , conpl ex, string, or any other type that is compatible with operat or+. As long as an
appropriate oper at or + exists, x and y even may be bound to values of different type.

Lambda expressions may contain calls to other functions, e.g.:

| anbda(a, b,c, sqrt(sqr(a) + sqr(c) + sqgr(b)))
| anbda(a, b, sin(a) / cos(b))

Additionally, lambda variables may be bound to functions and lambda may return a function that
returns a function as well:

| anbda(f, x,y, f(x,y)) /1 f is a placeholder for a function
| anbda(x, |anbda(y, x +y))

Moreover, functions returned by lambda are presented in a curried form, which makes them capable
of taking their arguments one at atime and thereby offers the opportunity of partial application.

I anbda(x, pow(x)) // partially applying pow - return unary function that
/1 returns unary function

At least four things are needed to devel op the lambda function:

® functions of varying signature (e.g. |anbda(x1, expression) , |anbda(x1,x2
expressi on) , €c.),

® mechanismsto build and store alambdallist,

® mechanisms to store and manipulate the expression; along with

® methods to do the evaluation

Multiple variants of lambda functions are needed, each one taking a different number of lambda
variables - this can be solved through function overloading. Building and storing the lambda list can
be avoided. Provided that we can rediscover the ordering information of the lambda list, it is
sufficient to store lambda variables directly in the expression. Thus, the most important thing that
remainsisto build, store, manipulate, and evaluate expression trees.

With respect to performance, expression templates [Vh95] are a way handle lambda expressions.
Expression templates are nested template structures, used to represent the parse tree of an
expression. They are built during compile time through overloaded arithmetic operators, which -
instead of immediately applying an operation - return objects that incrementally build up the parse
tree. The parse tree is represented in two fashions. as a type tree (the expression template tree) and
as atree of objects (the expression object - which indeed is an instance of the expression template
tree). Template meta programs [Vh95-2] [ECO0] allow one to traverse such expression template
trees during compile time and in conjunction with inlining techniques the expression object can be
used to produce efficient code.

Using the expression template technique, lambda variables become part of the the expression
template tree. Since the expression template tree emphasizes types, different lambda variables need
to be of different type, thereby enabling template meta programs to do the substitution during
compile time. In order to support functions of arbitrary dimension, an unlimited number of typesto
represent lambda variables is needed:

tenplate <int n>
struct ARG {};

ARG is a suitable representation, because it can be used to form numeric_linmits<int >::max()
different types, which we assume to be an acceptable limit. For convenience reasons, FACT! offers
alarge number of predefined lambda variables, al of them are defined in the scope of nanespace
LAMVBDA. Thus, the user usually does not need to pay attention to the real type of alambda variable,
but just writes something like usi ng LAMBDA: : x to make the lambda variable x visible in the
current scope.

In the next section we will show how to form expression templates out of expressions containing
instances of ARG by using PETE.

3. Building Lambda Expressionswith PETE

3.1. How PETE works

The Portable Expression Template Engine (PETE) [Ha99, PETE] provides tools to smplify the
addition of expression template functionality to a set of classes. PETE uses external polymorphism
[CL98], so expression templates may be implemented for existing classes, such as the Standard
Template Library vector class. The PETE library is fairly lightweight, containing fewer than 3000

lines of code. As the example in this section illustrates, integration of PETE with a user-defined
class requires a very small amount of code, typicaly provided through specializations of some
PETE classes. PETE is used to implement expression objectsin FACT!, but users of FACT! do not
require any knowledge of PETE.

PETE supports 45 built-in operators to build expression objects out of expressions. Besides al C++
mathematical operators and a collection of common mathematical functions like sin() , it aso
provides a where(a, b, c) function since the conditional expression a ? b : ¢ cannot be
overloaded.

To integrate user-defined classes, variants of these operators have to be created, each one being
capable to act on any combination of user-defined classes and PETE-specific classes. Fortunately,
this has not to be done by the user, but PETE provides a tool (written in C++) caled
MakeQper at or s that reads a file with a simple description of the user’s class and generates header
files containing the hundreds of operator functions that are necessary. Once these operators are
available, only three tasks are left to implement expression template functionality for the users
classes:

® define how the objects are stored in the expression tree
® add assignment operators that take PETE expressions
® define how datais accessed during evaluation

To illustrate how PETE works, we will consider the following class:

class Vec3 {
Vec3(double i=0.0) { d[O]=i; d[1]=i; d[2]=i; }
Vec3(doubl e a, doubl e b,double ¢) { d[0]=a; d[1]=b; d[2]=c; }
doubl e &operator[](int i) { return d[i]; }
doubl e operator[](int i) const { return d[i]; }
private:
doubl e d[3];

PETE’s operators need to know what to stick in the leaves of the expression tree. To offer this
information, the user hasto supply a specialization of the Cr eat eLeaf struct:

tenpl ate <>
struct CreatelLeaf< Vec3 > {
t ypedef Reference<Vec3> Leaf t;
static inline Leaf _t apply(const Vec3& a) {
return Leaf t(a);

}
b

The typedef Leaf _t isthe type of the object stored in the expression template tree. To save space
and avoid unnecessary calls to copy constructors PETE provides a Ref er ence object that stores a
reference to the original object in the expression tree rather than a copy. Besides defining the type
of the leaf, the speciaization of Creat eLeaf aso provides an appl y method that builds the object
in the expression tree (in this case Ref er ence<Vec3>) from the object in the expression (in this case
Vec3). When there is no speciaization of Cr eat eLeaf , PETE wraps the object in the template class
Scal ar .

In PETE an expression object has type Expressi on<T>. To traverse the expression tree, PETE
offersthe function f or Each, which has the following general form:

f or Each(Expressi on, Leaf Tag, Combi neTag);

This function traverses the nodes of the Expression object, applies an operation selected by
Leaf Tag a the leaves, and combines the results from non-leaf nodes children according to
Combi neTag. Thisis implemented by a meta program so the tree traversal is done at compile time.
The return value of the f or Each function is provided by the class template For Each, so that the
type produced can be used as input to other template meta programs.

There are two default combinator tags in PETE: OpConbi ne and TreeConbi ne . OpConbi ne
combines results from the leaf nodes according to the operators stored at the non-leaf nodes, so that
f or Each returns a value computed for the expression. Tr eeConbi ne is used to combine the results
from the leaf nodes back into an expression object, so that forEach returns a transformed version of
the expression.

For user-defined classes, evaluation can take many forms. Some typical examples are calls to
operator[] asinali],oroperator() asina(i,j), butevauation could require calls to arbitary
functions. To tell PETE how to perform a given form of evaluation, users specialize a class called
Leaf Funct or , which is templated on the user-defined class and a functor tag. One of the predefined
functor tags is the class Eval Leaf 1, which stores a single integer index, accessible through the
method val 1() . Such a functor tag primary serves as a selector while the real application is done
by a specialization of Leaf Funct or:

tenpl ate <>
struct Leaf Functor<Vec3, Eval Leaf 1> {
typedef int Type t;
static inline Type_t apply(const Vec3& a,const Eval Leaf1& f) {
return a[f.val1()];
}

b

By defining the evaluation through specialization of an external functor, PETE is not restricted to
evaluating classes that support a specific interface (such as operat or[] in this case). Users with
classes that require different evaluation mechanisms do not need to rewrite the entire expression
template machinery, but just need to provide this one class specidization. In this example, the
Leaf Funct or acts on leafs of type vec3 and performs the operation selected by Eval Leaf1. It
provides the function appl y which takes aleaf (of type Vec3) aswell as an instance of the functor
tag and returns the component of the vector that is identified by the index that is stored in the
functor tag.

Componentwise evaluation of vector expressions is now possible by applying forEach to an
expression object. With PETE, this usually is done within the assignment operator of the user’s
class:

tenpl ate <typenanme E>
Vec3 operator=(const Expressi on<E>& expression) {

d[0] = forEach(expression, Eval Leaf 1(0), OpConbi ne());
d[1] = forEach(expression, Eval Leaf1(1), OpConbine());
d[2] = forEach(expression, Eval Leaf1(2), OpConbine());

It also makes sense to supply a constructor from an Expressi on object which offers the same
functionality. To avoid implicit conversionsit should be declared expl i ci t .

Evaluating expressions with PETE’'s forEach function allows for more generic operations than
simply computing the value of an expression. For example, in expressions involving arrays, one

could pull out domain information from the arrays and check for conformance. By selecting
different leaf functors and combiners, very general transformations can be performed on
expressions. This genera capability will be used to perform substitutions in lambda expressions.

3.2. The Lambda Function

Using PETE, building lambda expressions is quite simple, since PETE'S MakeQper at or tool
automatically produces code for al operators that are necessary to build expression objects out of
expressions that contain instances of ARG<i > (we call such expression objects generic expression
objects). To tell PETE how to handle values of type ARG<i >, several specializations of the
Cr eat eLeaf structure are needed (one for each type of lambda variable).

The lambda function has to take some lambda variables as well as an expression object and return a
polymorphic function implementing the generic expression. Using C++ such a polymorphic
function can be implemented by a function object whose function call operator (operator()) isa
template. The number of arguments this operator has to take depends on the number of lambda
variables that have been passed to the lambda function. Thus, for every dimension a function
returned by lambda may have, a specia class is needed. For binary functions it has the following
form:

tenpl ate <typenane E>
struct | FUNC2 {
| FUNC2(const E& e) : e_n(e) {}
| FUNC2(const | FUNC2& rhs) : e _mrhs.e.m {}
const E& expression() const {
return e_m

tenpl ate <typenane Al,typenane A2>
result t operator()(Al al, A2 a2) const {

}

private:
E e m
b

This class stores a generic expression object of type E and provides atemplate for a binary function
call operator. How to determine the return typer esul t _t will be discussed in alater section.

The lambda function just has to create an appropriate instance of such a class. Here are examples
for lambda functions to produce binary / ternary functions:

tenplate <int mint n,typenane E>
| FUNC2<E> | anbda(const ARG<nmP»& a, const ARGn>& b, const E& e) {
return | FUNC2<E>(e);

}

template <int mint n,int o,typename E>
| FUNC3<E> | anbda(const ARG<nP>& a, const ARG<n>& b, const ARG<0>& c, const E& e) {
return | FUNC3<E>(e);

}

Notice, that the ARG arguments are ignored and only used to select a specific variant of lambda. The
indices of the lambda variables (namely m,n and o) may be of arbitrary value. They do not
necessarily need to reflect the order in which they have been passed to the lambda function. As
mentioned earlier, this ordering information is essential in order to do substitution. Therefore, the
indices of all lambda variables inside the expression object get normalized to represent the correct

ordering (not shown in the above code). This normalization is a compile time process, handled by
some sophisticated template meta programs which are quite similar to those being used during
substitution (see section 4.1.).

To support functions of arbitrary dimensions an endless number of specidizations of the
Creat eLeaf classaswell asan endless amount of | FUNCX classes and overloaded | anbda functions
will be needed. To cover as many sSituations as possible and to keep the user away from the
underlying details, we developed a code generating tool that is supplied with the largest function
dimension to support, and produces a C++ header file that contains al the necessary definitions.
Including support for currying of C++ functions, function composition and afew other features, this
header file consists of approximately 4000 lines of code, if functions up to order five are supported.

4. Applying the Result of a Lambda Function

4.1. Substitution

An expression is represented in two different fashions: as an expression template tree (emphasizing
types) and as an expression object (emphasizing values). Substitution has to be done for both and
thus, for a lambda expression that contains N lambda variables, N type/value tuples are needed for
substitution. These tuples are given by the parameters of | FUNC's parenthesis operator and due to
normalization, association of variables in the tuple with the corresponding ARG<i > values of the
expression object is clear. For example to evaluate | anbda(x,y, x + y)(f,c), we need to
substitute two argumentsf and c of arbitrary types for ARG<1> and ARG<2> in the expression object.

Now, substitution simply can be done by template meta programs, but for every argument we intend
to substitute, the full expression tree needs to be traversed. To save compilation time, it is
reasonable to store al type/value tuplesin an array, use the integer index that is carried by lambda
variables as an index into it and traverse the expression tree just once. Such an array has to be
accessible during compile- and runtime. Compile time mechanisms are based on types and thus, for
every dimension an array may have, a different type is needed. Fortunately, the greatest possible
dimension of the array is known, because the user has passed it to the generator tool. Using a type
mNI L to indicate that a specific position of an array is not in use, a single structure is sufficient to
implement the array:

tenpl ate <typenane Al=nNIL, ..., AN=mNIL>
struct SI GNATURE {

typedef Al ARGL t;

typedef AN ARGN t:

SI GNATURE() {}
SI GNATURE(AL al) : al nm(al) {}

S| GNATURE(AL al, . . ., AN aN) : al m(al),..., aN_m(aN) {}
const ARGL t& operator[](const ARG<1>&) const { return al _nm }
const ARGN t & operator[] (const ARG<N>&) const { return aN_m }

private:
ARGL_t al_m

A.R.GN_t aN_m
1

tenpl ate <typenane SIGint n> struct ARG TYPE { };
tenpl ate <typenane SI G struct ARG TYPE<SI G 1> {
typedef typenane SIG :ARGL t Type_ t;
tenpl ate <typename SIG> struct ARG TYPE<SI G N> {
typedef typenane SIG : ARGN t Type_ t;

Through oper at or[] the SI GNATURE structure offers access to the values. The ARG _TYPE structure
allows access to the argument types. It has not been declared as a member of SI GNATURE, because
specializing a member template without specializing the enclosing template is not allowed with
C++. By introducing the functor tag Subst it ut e (that holds an instance of a SI GNATURE struct -
accessible through the member si gnat ur e), substitution can be done by PETE’s f or Each function.
Whenever avalue of type ARGis reached, it is replaced by the suitable value of the signature:

/1 SIGis assunmed to be of type SIGNATURE<>, n is an index
/1 that comes froman ARG<> value that's stored at the leaf we are currently
/1 visiting.
templ ate <typenanme SIGint n>
struct Leaf Functor< ARG<n>, Substitute<SIG > {
typedef typenane ARG TYPE<SI G n>::Type_ t Leaf t;
static inline Leaf _t apply(const ARG<n>& a, const Substitute<SIG& s) {
return s.signature[a];

}
b

Any other types remain untouched.

Substitution indeed can be done during compile time: appl y is a static inline function that does not
change its arguments. Thus, acall to it can be optimized away.

4.2. Evaluation

After substitution the generic expression usually becomes an expression for which we can compute
a result. Depending on the type of this result, different evaluation strategies have to be chosen. For
the case that it is a user-defined class that supports the expression template functionality, we have to
allow for the possibility of some existing sophisticated evaluation strategies that only the user’s
classis aware of. Thus, evaluation should remain the user’s class' responsibility. For all other cases
we can do evaluation on our own.

It is not only the result type that has to be taken into accout. The program context plays an
important role, because an expression either needs to be evaluated, or has to become part of another
expression:

usi ng LAMBDA: : X;
usi ng LAVBDA: :y;

Vec3 a, b, c, d;
cout << | anbda(x,y,

X +y)(a, b); /1 eval uation
cout << lanbda(x,y, x + y)(a,b)

- ¢ +d; // becone part of new expression

Of course | anbda(x,y, x + y)(a,b) - ¢ + dshouldyieldthesamecodeasa + b - ¢ + d
does. Immediately evaluating | anbda(x,y, x + y)(a,b) -thus, returning a Vec3 object - is not a
good idea at this point, because some benefits of the expression template technique may get lost.
Notice, that if directly evaluating the lambda term, the two examples will lead to different
expression objects. In the first case (1 anbda(x,y, x + y)(a,b) - ¢ + d), thelambdaterm is

evaluated first and the result of adding a and b aswell asc and d will become part of the expression
object. Inthe second case (a + b - ¢ + d) al four vec3 variables will occur in the expression
object. Thus, possibe optimization steps cannot include the a + b part of the expression. A better
solutionisto makel anbda(x,y, x + y)(a,b) partof anew expression template tree.

The easiest way to make this possible is to wrap the result obtained by applying a function returned
by lambda into PETE's Expression class template. The wrapped class template (called
FACT_PETE_ROOT) stores a SI GNATURE object (according to the types/values that have been passed
to | FUNC's function call operator) and the generic expression object that originally has been passed
tol anbda.

As dready mentioned above, the return type of an expression has influence on the evaluation
strategy. To determine it, we first perform substitution and then traverse the expression template
tree with PETE’s meta program For Each. The result type is computed bottom up: at each node a
template meta program computes the return type according to the type of the node's childrens and
the type of operation stored at the the node. This operation already has been discussed in the
PETE's section and is selected by the OpConbi ne tag. To do compuatation at the leafs, FACT!
provides the Get Leaf Type tag along with the following specialization of the Leaf Funct or struct:

t empl at e<t ypename T>
struct Leaf Functor <T, Get Leaf Type> {
typedef T Leaf t;
static inline Leaf t apply(const Leaf t& |,const GetlLeaf Type& t) {
return |;
}

1
Computing the result type Resul t Type for an expression E finally looks like this:
t ypedef For Each<E, Get Leaf Type, OQpConbi ne>: : Type_t ReturnType;

Once the return type is known, we have to check whether it is a class that offers expression template
functionality. As mentioned in earlier, this functionality depends on the existence of a specialization
of CreateLeaf . If no such specialization exists, PETE wraps values into the Scal ar template
before storing them in the expression tree. Thus, we just have to check whether
Creat eLeaf <Ret ur nType>: : Leaf _t iS equal t0 Scal ar <Ret urnType>. If not, we safely can
assume Ret ur nType to be aware of expression templates.

For the case that Ret ur nType offers expression template functionality we suppose it to provide a
constructor template that constructs a user object from an Expressi on<> object and return an
appropriate temporary (see CLE2E below). Otherwise, we use PETE’S f or Each function to traverse
the expression tree and perform computations according to the operators stored at the nodes. At the
leafs we use the leaf-functor tag Eval Leaf 1 to access the values.

The following code section shows the complete code for the meta program Ret FLA which selects
the correct evaluation strategy for an expression type:

struct mMIRUE {};
struct nFALSE {};

tenpl ate < typenane COND, typenane THEN, t ypenane ELSE>
struct mF { typedef THEN Type_t; };

tenpl ate < typenane THEN, t ypenane ELSE >

struct m F<nFALSE, THEN, ELSE> { typedef ELSE Type t; }

tenmpl ate < typenane T1,typenane T2 >

struct nEQUAL { typedef nFALSE Type_ t; };
tenplate < typenane T >

struct NMEQUAL<T, T> { typedef mMTRUE Type_t; };

tenpl ate < typenane E,typenane R >
struct CLE2N {
static inline R apply(const E& e)
return forEach(e, Eval Leaf 1(0), OpConbi ne());

}
b

templ ate < typenane E,typename R >
struct CLE2E {
static inline R apply(const E& e) {
return R(e.expression());

}
}s

tenpl ate <typenane E, typenane R>
struct Ret FLA {
typedef typenane nml F< typenane nmEQUAL<t ypenane Createleaf <R>:: Leaf t,
Scal ar <R>
> Type_t,
CLE2N<E, R>,
CLE2E<E, R>
> Type_t Type_t;
1

Evaluating an expression e of type E now simply meansto call
Ret FLA<E, Ret ur nType>: : appl y(e); .

The remaining question is where to initiate the evaluation process. Usually, evaluation is triggered
through a call to an assignment operator, which only can be overloaded through the definition of a
class member function. Overloading the assignment operator for built-in types is not supported by
C++. Also, a similar operation is needed to allow assignment from a built-in type that is obtained
through the application of a function that was returned by lambda, like for instance in int i =
l ambda(x,y, x + y)(2,3).

A possible solution is to equip Expressi on<FACT_PETE_ROOT> with a conversion operator that
allows objects of thistype to be converted into the Resul t Type that isrelated to the expression:

tenpl ate <typenane E, typename S>
struct Expression< FACT_PETE_ROOI<E, S> > {

'.fypedef For Each<E, Get Leaf Type, OpConbi ne>: : Type_t Resul t Type;

operator ReturnType() const ({
return Ret FLA< E, Resul t Type>: : appl y(*this);
}

b
Finally, we can give the return type of | FUNC2’ s function call operator:

tenpl ate < typenane Al,typenane A2>
Expressi on< FACT_PETE_ROOT< E, SIGNATURE<A1l, A2> > > operator()(Al al, A2 a2) {

}
4.3. Partial Application

Partial application means to bind the first k parameters of an nary function to some specific values
by yielding an n-k dimensional function. Thus, instead of replacing al lambda variables, partial
application replaces just the first k variables. To implement partial application we must add some
more function call operators to the | FUNC classes. Consider for example | FUNC5 , then four
additional parenthesis operators are needed. One that takes a single argument and returns an object
of type | FUNC4:

tenpl ate <typenane A>

| FUNCA<t ypenane For Each<E, Substi t ut e<SI GNATURE<A> >, Tr eeConbi ne>: : Type_t >
operator() (A a) {
return forEach(e, Substitute<SI GNATURE<A> >(S| GNATURE<A>(a)), TreeConbi ne()

}

another one that takes two values and returns an object of type | FUNC3, and so on.

Obvioudly, partially applying the result of a lambda function still yields a generic function. It is
important to notice that type checking does not happen until full application occurs. Unfortunately,
this behavior may cause hard to read error messages (e.g. if a suitable operator does not exist).

5. Using C++ Functionswithin a Lambda Expression

Using a C++ function inside a lambda expression - as we have shown above - is not possible,
because applying a function usually forces a C++ compiler to produce code to execute that function.
As with the overloaded mathematical operators, C++ functions should appear in the expression
object rather than being executed. Furthermore, it is desirable to enable the user to pass lambda
variables to a C++ function, which usualy won't fit a C++ function’s signature. Thus, a different
representation for C++ functionsis needed.

We aready mentioned in [St0O0] that our curry function helps to shift the representation of a
function into a form that we have control of. Utilizing this, it is not difficult to allow C++ functions
to be used inside a lambda expression, if the user applies the curry function beforehand. In short,
the curry function is somewhat similar to STL’s ptr_fun function: it takes a pointer to a C++
function and returns a functional object.

Since it is necessary to store functions and their arguments inside the expression tree, a new
structure template called NODE X (X is a placeholder for the dimension of the function) was
developed. NODE X is a more general counterpart to PETE'S UnaryNode , Bi naryNode and
Ter nar yNode structure templates. It offers a comparable functionality (storing an operation as well
as some arguments, providing several access members), but also offers a conversion operator that
allows a NODEX object to be converted into the type that would results from applying the stored
operation to the stored operands.

Depending on the dimension the user has passed to the generator tool, X different NODEX structures
are needed. Any of these may occur as argument to any of PETE's mathematical operators -
yielding thousands of overloaded operators. To avoid this, the function call operator of the functor
returned by curry, returns a value of type NODEX that has been wrapped into the structure template
FUNCTI ON - thus, it returns a value of type FUNCTI ON<NODEX>. The FUNCTI ON structure acts as a
proxy class. it offers a conversion operator that is identical to the one of the wrapped NODEX class
thereby, making it possible to write for instance cout << curry(sin)(3.0).

Finally, PETE'sS MakeOperat or tool can be used to produce operators for the class template
FUNCTI ONand it is possible to do

#define sqr curry(sqr)
#define sqgrt curry(sqrt)
| anbda(a, b,c, sqrt(sqr(a) + sqr(c) + sqr(b)))

and use function objects in lambda expression.

Since we have shown in [StO0] that cur ry comes at no extra cost, we used a preprocessor directive
to avoid typing curry(sqr) orcurry(sqrt) al thetime.

As long as the C++ function that is used within a lambda expression is free of side effects, the
lambda expression will be aswell. While it isimpossible to recognize whether a function changes a
global variable, side effects caused by arguments that get passed by value could be avoided by
allowing curry to be applied to appropriate functions only.

6. Lambda Variables as Placeholdersfor Functions

In order to enable lambda variables to be placeholders for functions, several function call operators
need to be added to the ARG structure. These operators return an instance of NODEX where the
operation is represented by a lambda variable (to alow this node to be used in an expression, they
get wrapped into the FUNCTI ON template as well). Now, the previously shown lambda expression
could be rewritten like this:

#define sqgr curry(sqr)
#define sqgrt curry(sqrt)
| anbda(f,a, b,c, sqrt(f(a) + f(c) + f(b)))(sqr)

Note that there is a partial application - f is a placeholder for aunary function and is bound to sqr -
theresult is aternary function.

7. Performance

To estimate the performance of our lambda function, we used the expression template aware Vec3
class that has been described in section 3.1. We measured the time to add four instances of Vec3 by
using these methods:

® |oop: we manually coded a loop that iterates through the vector components and performs the
addition,

® expression templates: wesimply wrotee = a + b + ¢ + d, werea - e areall of type vec3
and let PETE do necessary optimizations,

® |ambdafunction: weused | anmbda(w, x,y,z, w+ x +y + z)(a, b, c,d).

All those expression were evaluated fifty million times on a SunUltra 10 with a 333MHz
UltraSparclli processor. We used Kuck and Associates KCC version 4.0 with either SUN’s C 5.0
or Gnu's C 2.95.2 as possible backend C compiler. Furthermore, we investigated GNU’s C++
compiler 2.95.2.

Lambda Expressions

40,00 -
- _
= 30,00
=
[X}
@
< 20,00
E
= 10,00
=
0,00
KCCAUN C KCCIGCO G++
@loop 0,30 0,30 A A9
W expression template 0,30 030 18,37
Olambda expression 0,30 030 36 44

As you canseefrom the aboveimage,thereindeedis no performancepenaltyif usingour lambd:
functionwith KCC. Applying a lambdafunctionto built-in typeswe obtainedsimilar results:using
KCC therewasno differencein runtimebetweerapplyinga lambdafunctionand"directly” adding
somebuilt-in types.

8. Related Work

The lambdalibrary [LL] alsoallows oneto definegenericfunction objectson the fly. Despitethe
name,this library doesnot focuson functional programmingstyle. Rather this library emphasize
imperative programming and allows multiple assignments,while loops, and several othe
imperativeconstructswithin an expressiorthat definesa function object. The lambdalibrary has
supportfor the generationof nullary, unary, binary, and ternary function objects. Support for
functionsof arbitraryarity is not plannedby the authorsasthe lambdalibrary primarily is meantto
be usedwith STL algorithms,and none of those even acceptternary functions [Jaakko Jarvi
personal communication].In comparisonto FACT! , the lambda library does not handle
user-definedclassesthat offer expressiontemplatefunctionality. Thus, using such classeswith
lambdageneratedunction objectsmay possiblyresultin a lossof runtimeperformanceHowever
the lambdalibrary providesa simple way to define evenvery complexfunction objectsthrougt
expressions.

9. Conclusion and Future Work

We have shown that the lambda function offers a convenientand efficient way to keep the
definition and applicationof functionsclosetogether.Sincethereare no side effectswith lambd:
functions,they arevery usefulin parallelenvironmentsandthus,we are consideringusingthemto
build stencil objectsfor POOMA [POOMA] . Stencil objectsare usedto define data-paralle
operationson arrayswherethe computationnvolvesneighboringarrayvalues.For example user:
couldwrite thefollowing function:

doubl e deriv2(Array &, int i) {
return x(i + 1) - 2 * x(i) + x(i-1);

}

Laterin their codetheycanwrite data-parallestatementsf theforma = stencil (deriv2) (b) to
applythecomputatiora(i) =b(i +1) - 2*b(i) +b(i - 1) for all valuesof i . Notethatthe definition of
the function andits useneedto occur at separatelacesin the code.We could achievethe sam
result with a more compact notation using lambda functions (for example a =
stenci | (I ambda(x, x(1)-2*x(0)+x(-1)))(b)). With thelambdafunctiondescription,jt woulc
be easyto manipulatestencils, for exampleto composethem, or to form multi-dimensione
productsof one-dimensionaitencils.

In afuture projectwe will try to extendour lambdaapproachn orderto becomea Turing complet:
sub-languagdor C++. This projectwould makeC++ an interestingtargetplatform for developer
of compilersfor functional programminglanguagesas one could integratethe functional anc
object oriented programming paradigm. We also plan to investigate whether template met
programswill allow usto useour lambdatechniqueto build a realcompiler(e.g.useit to product
SSEor MMX codeon anlintel CPU).Moreover,extendingthe lambdalanguagesuchthata lambd:
expressiormay containfunction definitions (e.qg. let/letrecexpressiongike in ML) may yield the
possibility to do contextsensitiveoptimizationshroughtemplatemetaprograms.

Refer ences

[C++] International Standard, Programming Languages - C++, ISO/IEC: 14882, 1998

Scott Haney, James Crotinger, Steve Karmesin, and Stephen BT, the
Portable Expression Templates Engine, Dr. Dobbs Journal, October 1999

[PETE] PETE home pagdtttp://www.acl.lanl.gov/pete

Chris Cleeland, Douglas C. Schmidt and Timothy H. Harrigoternal
Polymorphism Proccedings of the 3rd Pattern Languages of Programmng Confée

[Vho5] Todd VeldhuizerExpression Template€++ Report, June 1995
[Vh95-2] Todd VeldhuizerlJsing C++ Template Meta Progran@++ Report, May 1995

Ulrich W. Eisenecker, Krzysztof Czarneckenerative Programmingddison
Wesley, 2000

[SMOO0] Brian McNamara, Yannis Smaragdaktainctional Programming in C++
[FC++] FC++ home pagéttp://www.cc.gatech.edu/~yannis/fc++"

[POOMA] POOMA home pagéttp://www.acl.lanl.gov/pooma

[LL] Jaakko Jarvi, Gary PowellThe Lambda Librarpttp://lambda.cs.utu.fi

Jorg StriegnitzMaking C++ Ready for Algorithmic Skeletons, Internal Report
IBO8-2000, Research Center Jiilich

[FACT] FACT! home pagehttp://www.fz-juelich.de/zam/FACT

[Ha99]

[CL OS]

[ECO0]

[Stoo]

