000043837 001__ 43837
000043837 005__ 20180210133433.0
000043837 0247_ $$2DOI$$a10.1364/AO.42.001726
000043837 0247_ $$2WOS$$aWOS:000181708400019
000043837 037__ $$aPreJuSER-43837
000043837 041__ $$aeng
000043837 082__ $$a530
000043837 084__ $$2WoS$$aOptics
000043837 1001_ $$0P:(DE-HGF)0$$aZheng, X.$$b0
000043837 245__ $$aFemtosecond Response of a Free-standing LT-GaAs Photoconductive Switch
000043837 260__ $$aWashington, DC$$bOptical Soc. of America$$c2003
000043837 300__ $$a1726 - 1731
000043837 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000043837 3367_ $$2DataCite$$aOutput Types/Journal article
000043837 3367_ $$00$$2EndNote$$aJournal Article
000043837 3367_ $$2BibTeX$$aARTICLE
000043837 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000043837 3367_ $$2DRIVER$$aarticle
000043837 440_0 $$09361$$aApplied Optics$$v42$$x0003-6935
000043837 500__ $$aRecord converted from VDB: 12.11.2012
000043837 520__ $$aWe present a novel, free-standing low-temperature GaAs (LT-GaAs) photoconductive switch and demonstrate its femtosecond performance. A 1-mum-thick layer of a single-crystal LT-GaAs was patterned into 5-10-mum-wide and 15-30-mum-long bars, separated from their GaAs substrate and, subsequently, placed across gold coplanar transmission lines deposited on a Si substrate, forming a photoconductive switch. The switch was excited with 110-fs-wide optical pulses, and its photoresponse was measured with an electro-optic sampling system. Using 810-nm optical radiation, we recorded an electrical transient as short as 360 fs (1.25 THz, 3-dB bandwidth) and established that the photo-carrier lifetime in our LT-GaAs was 150 fs. Our free-standing devices exhibited quantum efficiency of the order of similar to7%, and their photoresponse amplitude was a linear function of the applied voltage bias, as well as a linear function of the excitation power, below a well-defined saturation threshold. (C) 2003 Optical Society of America.
000043837 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000043837 588__ $$aDataset connected to Web of Science
000043837 650_7 $$2WoSType$$aJ
000043837 7001_ $$0P:(DE-HGF)0$$aXu, Y.$$b1
000043837 7001_ $$0P:(DE-HGF)0$$aSobolewski, R.$$b2
000043837 7001_ $$0P:(DE-Juel1)VDB5644$$aAdam, R.$$b3$$uFZJ
000043837 7001_ $$0P:(DE-HGF)0$$aMikulics, V. V.$$b4
000043837 7001_ $$0P:(DE-HGF)0$$aSiegel, M.$$b5
000043837 7001_ $$0P:(DE-Juel1)VDB5426$$aKordos, P.$$b6$$uFZJ
000043837 773__ $$0PERI:(DE-600)1474462-4$$a10.1364/AO.42.001726$$gVol. 42, p. 1726 - 1731$$p1726 - 1731$$q42<1726 - 1731$$tApplied optics$$v42$$x0003-6935$$y2003
000043837 909CO $$ooai:juser.fz-juelich.de:43837$$pVDB
000043837 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000043837 9141_ $$y2003
000043837 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000043837 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000043837 970__ $$aVDB:(DE-Juel1)61628
000043837 980__ $$aVDB
000043837 980__ $$aConvertedRecord
000043837 980__ $$ajournal
000043837 980__ $$aI:(DE-Juel1)PGI-3-20110106
000043837 980__ $$aUNRESTRICTED
000043837 981__ $$aI:(DE-Juel1)PGI-3-20110106