001     43846
005     20180210133905.0
024 7 _ |2 DOI
|a 10.1016/j.tsf.2004.06.118
024 7 _ |2 WOS
|a WOS:000223988000042
037 _ _ |a PreJuSER-43846
041 _ _ |a eng
082 _ _ |a 070
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Voigtländer, B.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB5601
245 _ _ |a Fabrication of Si/Ge nanowiring structures by MBE
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2004
300 _ _ |a 185 - 189
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Thin Solid Films
|x 0040-6090
|0 5762
|v 464-465
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We show that two-dimensional Si/Ge nanostructures can be imaged with chemical sensitivity on the nanometer scale using a scanning tunneling microscope (STM). Using an atomic layer of Bi terminating the surface, we can distinguish between Si and Ge. The apparent height measured by the STM is similar to 0.09 nm higher at areas consisting of Ge than on areas consisting of Si. This distinction between Si and Ge enabled us to fabricate and characterize two-dimensional Si/Ge nanostructures in a controlled way. Si/Ge nanostructures consisting of alternating Si and Ge rings having a width of 5-10 nm were grown around a 2D Si core island on a Si(111) substrate. The thickness of the Si and Ge rings is only one atomic layer (0.3 nm). Intermixing of Ge and Si is observed if the growth conditions are not chosen properly. The optimized growth conditions were obtained by lowering the temperature and decreasing the growth rate to prevent intermixing and nucleation of secondary islands. The present fabrication method is expected to be applied for nanostructured devices. (C) 2004 Elsevier B.V. All rights reserved.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a nanostructures
653 2 0 |2 Author
|a self-organization
653 2 0 |2 Author
|a silicon
653 2 0 |2 Author
|a germanium
653 2 0 |2 Author
|a bismuth
653 2 0 |2 Author
|a molecular beam epitaxy
653 2 0 |2 Author
|a scanning tunneling microscope
700 1 _ |a Kawamura, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB22268
773 _ _ |a 10.1016/j.tsf.2004.06.118
|g Vol. 464-465, p. 185 - 189
|p 185 - 189
|q 464-465<185 - 189
|0 PERI:(DE-600)1482896-0
|t Thin solid films
|v 464-465
|y 2004
|x 0040-6090
856 7 _ |u http://dx.doi.org/10.1016/j.tsf.2004.06.118
909 C O |o oai:juser.fz-juelich.de:43846
|p VDB
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
970 _ _ |a VDB:(DE-Juel1)61650
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21