000044108 001__ 44108
000044108 005__ 20180210142929.0
000044108 0247_ $$2DOI$$a10.1007/s00340-004-1670-8
000044108 0247_ $$2WOS$$aWOS:000225524900019
000044108 0247_ $$2ISSN$$a1432-0649
000044108 037__ $$aPreJuSER-44108
000044108 041__ $$aeng
000044108 082__ $$a530
000044108 084__ $$2WoS$$aOptics
000044108 084__ $$2WoS$$aPhysics, Applied
000044108 1001_ $$0P:(DE-HGF)0$$aHoffmann, A.$$b0
000044108 245__ $$aInstantaneous three-dimensional visualization of concentration distributions in turbulent flows with cross-plane laser-induced fluorescence imaging
000044108 260__ $$aBerlin$$bSpringer$$c2005
000044108 300__ $$a125 - 131
000044108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000044108 3367_ $$2DataCite$$aOutput Types/Journal article
000044108 3367_ $$00$$2EndNote$$aJournal Article
000044108 3367_ $$2BibTeX$$aARTICLE
000044108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000044108 3367_ $$2DRIVER$$aarticle
000044108 440_0 $$08181$$aApplied Physics B$$v80$$x0946-2171$$y1
000044108 500__ $$aRecord converted from VDB: 12.11.2012
000044108 520__ $$aA laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.
000044108 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000044108 588__ $$aDataset connected to Web of Science
000044108 650_7 $$2WoSType$$aJ
000044108 7001_ $$0P:(DE-HGF)0$$aZimmermann, F.$$b1
000044108 7001_ $$0P:(DE-Juel1)129394$$aScharr, H.$$b2$$uFZJ
000044108 7001_ $$0P:(DE-HGF)0$$aKrömker, S.$$b3
000044108 7001_ $$0P:(DE-HGF)0$$aSchulz, C.$$b4
000044108 773__ $$0PERI:(DE-600)1458437-2$$a10.1007/s00340-004-1670-8$$gVol. 80, p. 125 - 131$$p125 - 131$$q80<125 - 131$$tApplied physics / B$$v80$$x0946-2171$$y2005
000044108 8567_ $$uhttp://dx.doi.org/10.1007/s00340-004-1670-8
000044108 909CO $$ooai:juser.fz-juelich.de:44108$$pVDB
000044108 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000044108 9141_ $$y2005
000044108 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000044108 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000044108 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000044108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000044108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000044108 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000044108 970__ $$aVDB:(DE-Juel1)62648
000044108 980__ $$aVDB
000044108 980__ $$aConvertedRecord
000044108 980__ $$ajournal
000044108 980__ $$aI:(DE-Juel1)IBG-2-20101118
000044108 980__ $$aUNRESTRICTED
000044108 981__ $$aI:(DE-Juel1)IBG-2-20101118
000044108 981__ $$aI:(DE-Juel1)ICG-3-20090406