001     44169
005     20190625111258.0
024 7 _ |2 pmid
|a pmid:16049764
024 7 _ |2 DOI
|a 10.1007/s11120-005-5092-1
024 7 _ |2 WOS
|a WOS:000230845200019
024 7 _ |a altmetric:21813248
|2 altmetric
037 _ _ |a PreJuSER-44169
041 _ _ |a eng
082 _ _ |a 580
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Kolber, Z.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Measuring photosynthetic parameters at a distance: Laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2005
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Photosynthesis Research
|x 0166-8595
|0 14201
|y 1
|v 84
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We have developed a laser induced fluorescence transient (LIFT) technique and instrumentation to remotely measure photosynthetic properties in terrestrial vegetation at a distance of up to 50 m. The LIFT method uses a 665 nm laser to project a collimated, 100 mm diameter excitation beam onto leaves of the targeted plant. Fluorescence emission at 690 nm is collected by a 250 mm reflective telescope and processed in real time to calculate the efficiency of photosynthetic light utilization, quantum efficiency of PS II, and the kinetics of photosynthetic electron transport. Operating with peak excitation power of 125 W m-2, and duty cycle of 10-50%, the instrument conforms to laser safety regulations. The LIFT instrument is controlled via an Internet connection, allowing it to operate from remote locations or platforms. Here we describe the theoretical basis of the LIFT methodology, and demonstrate its applications in remote measurements of photosynthetic properties in the canopy of cottonwood and oak trees, and in the rosette of Arabidopsis mutants.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Fluorescence
650 _ 2 |2 MeSH
|a Lasers
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Photochemistry
650 _ 2 |2 MeSH
|a Photosynthesis: physiology
650 _ 2 |2 MeSH
|a Plant Leaves: metabolism
650 _ 2 |2 MeSH
|a Populus: metabolism
650 _ 2 |2 MeSH
|a Quercus: metabolism
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a fluorescence
653 2 0 |2 Author
|a photosynthesis
653 2 0 |2 Author
|a remote sensing
700 1 _ |a Klimov, D.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Ananayev, P. I.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Rascher, U.
|b 3
|u FZJ
|0 P:(DE-Juel1)129388
700 1 _ |a Berry, J.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Osmond, B.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1007/s11120-005-5092-1
|g Vol. 84
|q 84
|0 PERI:(DE-600)1475688-2
|t Photosynthesis research
|v 84
|y 2005
|x 0166-8595
856 7 _ |u http://dx.doi.org/10.1007/s11120-005-5092-1
909 C O |o oai:juser.fz-juelich.de:44169
|p VDB
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-III
|l Phytosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB49
|x 0
970 _ _ |a VDB:(DE-Juel1)63066
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICG-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21