000044313 001__ 44313
000044313 005__ 20180210133347.0
000044313 0247_ $$2WOS$$aWOS:000227469300020
000044313 037__ $$aPreJuSER-44313
000044313 041__ $$aeng
000044313 082__ $$a550
000044313 084__ $$2WoS$$aEnvironmental Sciences
000044313 084__ $$2WoS$$aSoil Science
000044313 084__ $$2WoS$$aWater Resources
000044313 1001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b0$$uFZJ
000044313 245__ $$aA Set of Analytical Benchmarks to Test Numerical Models of Flow and Transport in Soils
000044313 260__ $$aMadison, Wis.$$bSSSA$$c2005
000044313 300__ $$a206 - 221
000044313 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000044313 3367_ $$2DataCite$$aOutput Types/Journal article
000044313 3367_ $$00$$2EndNote$$aJournal Article
000044313 3367_ $$2BibTeX$$aARTICLE
000044313 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000044313 3367_ $$2DRIVER$$aarticle
000044313 440_0 $$010301$$aVadose Zone Journal$$v4$$x1539-1663$$y1
000044313 500__ $$aRecord converted from VDB: 12.11.2012
000044313 520__ $$aAccurate model predictions of water flow and solute transport in unsaturated soils require a correct representation of relevant mechanisms in a mathematical model, as well as correct solutions of the mathematical equations. Because of the complexity of boundary conditions and the nonlinearity of the processes considered, general solutions of the mathematical equations rely on numerical approximations. We evaluate a number of numerical models (WAVE, HYDRUS_1D, SWAP, MARTHE, and MACRO) that use different numerical methods to solve the flow and transport equations. Our purpose is to give an overview of analytical solutions that can be found for simple initial and boundary conditions and to define benchmark scenarios to check the accuracy of numerical solutions. Included are analytical solutions for coupled transport equations that describe flow and transport in dual-velocity media. The relevance of deviations observed in the analytical benchmarks for more realistic boundary conditions is illustrated an intercode comparison for natural boundary conditions. For the water flow scenarios, the largest deviations between numerical models and analytical solutions were observed for the case of soil limited evaporation. The intercode differences could be attributed to the implementation of the evaporation boundary condition: the spatial discretization and the internode averaging of the hydraulic conductivity in the surface grid layer. For solute transport, accurate modeling of solute dispersion poses the most problems. Nonlinear and nonequilibrium sorption and coupled transport in pore domains with different advection velocities are in general accurately simulated.
000044313 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000044313 588__ $$aDataset connected to Web of Science
000044313 650_7 $$2WoSType$$aJ
000044313 7001_ $$0P:(DE-Juel1)VDB724$$aKasteel, R.$$b1$$uFZJ
000044313 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b2$$uFZJ
000044313 7001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b3$$uFZJ
000044313 7001_ $$0P:(DE-HGF)0$$aThiery, D.$$b4
000044313 7001_ $$0P:(DE-HGF)0$$aVanclooster, M.$$b5
000044313 7001_ $$0P:(DE-HGF)0$$aMouvet, C.$$b6
000044313 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b7$$uFZJ
000044313 773__ $$0PERI:(DE-600)2088189-7$$gVol. 4, p. 206 - 221$$p206 - 221$$q4<206 - 221$$tVadose zone journal$$v4$$x1539-1663$$y2005
000044313 909CO $$ooai:juser.fz-juelich.de:44313$$pVDB
000044313 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000044313 9141_ $$y2005
000044313 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000044313 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0
000044313 970__ $$aVDB:(DE-Juel1)64027
000044313 980__ $$aVDB
000044313 980__ $$aConvertedRecord
000044313 980__ $$ajournal
000044313 980__ $$aI:(DE-Juel1)IBG-3-20101118
000044313 980__ $$aUNRESTRICTED
000044313 981__ $$aI:(DE-Juel1)IBG-3-20101118