001     44313
005     20180210133347.0
024 7 _ |2 WOS
|a WOS:000227469300020
037 _ _ |a PreJuSER-44313
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Soil Science
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Vanderborght, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)129548
245 _ _ |a A Set of Analytical Benchmarks to Test Numerical Models of Flow and Transport in Soils
260 _ _ |a Madison, Wis.
|b SSSA
|c 2005
300 _ _ |a 206 - 221
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Vadose Zone Journal
|x 1539-1663
|0 10301
|y 1
|v 4
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Accurate model predictions of water flow and solute transport in unsaturated soils require a correct representation of relevant mechanisms in a mathematical model, as well as correct solutions of the mathematical equations. Because of the complexity of boundary conditions and the nonlinearity of the processes considered, general solutions of the mathematical equations rely on numerical approximations. We evaluate a number of numerical models (WAVE, HYDRUS_1D, SWAP, MARTHE, and MACRO) that use different numerical methods to solve the flow and transport equations. Our purpose is to give an overview of analytical solutions that can be found for simple initial and boundary conditions and to define benchmark scenarios to check the accuracy of numerical solutions. Included are analytical solutions for coupled transport equations that describe flow and transport in dual-velocity media. The relevance of deviations observed in the analytical benchmarks for more realistic boundary conditions is illustrated an intercode comparison for natural boundary conditions. For the water flow scenarios, the largest deviations between numerical models and analytical solutions were observed for the case of soil limited evaporation. The intercode differences could be attributed to the implementation of the evaporation boundary condition: the spatial discretization and the internode averaging of the hydraulic conductivity in the surface grid layer. For solute transport, accurate modeling of solute dispersion poses the most problems. Nonlinear and nonequilibrium sorption and coupled transport in pore domains with different advection velocities are in general accurately simulated.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Kasteel, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB724
700 1 _ |a Herbst, M.
|b 2
|u FZJ
|0 P:(DE-Juel1)129469
700 1 _ |a Javaux, M.
|b 3
|u FZJ
|0 P:(DE-Juel1)129477
700 1 _ |a Thiery, D.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Vanclooster, M.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Mouvet, C.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Vereecken, H.
|b 7
|u FZJ
|0 P:(DE-Juel1)129549
773 _ _ |g Vol. 4, p. 206 - 221
|p 206 - 221
|q 4<206 - 221
|0 PERI:(DE-600)2088189-7
|t Vadose zone journal
|v 4
|y 2005
|x 1539-1663
909 C O |o oai:juser.fz-juelich.de:44313
|p VDB
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-IV
|l Agrosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB50
|x 0
970 _ _ |a VDB:(DE-Juel1)64027
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21