000044502 001__ 44502
000044502 005__ 20240610120241.0
000044502 017__ $$aThis version is available at the following Publisher URL: http://pre.aps.org
000044502 0247_ $$2DOI$$a10.1103/PhysRevE.72.031904
000044502 0247_ $$2WOS$$aWOS:000232227500083
000044502 0247_ $$2Handle$$a2128/1513
000044502 037__ $$aPreJuSER-44502
000044502 041__ $$aeng
000044502 082__ $$a530
000044502 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000044502 084__ $$2WoS$$aPhysics, Mathematical
000044502 1001_ $$0P:(DE-Juel1)130514$$aAuth, T.$$b0$$uFZJ
000044502 245__ $$aFluctuation Spectrum of Membranes with Anchored Linear and Star Polymers
000044502 260__ $$aCollege Park, Md.$$bAPS$$c2005
000044502 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2005-09-13
000044502 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2005-09-01
000044502 300__ $$a031904
000044502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000044502 3367_ $$2DataCite$$aOutput Types/Journal article
000044502 3367_ $$00$$2EndNote$$aJournal Article
000044502 3367_ $$2BibTeX$$aARTICLE
000044502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000044502 3367_ $$2DRIVER$$aarticle
000044502 440_0 $$04924$$aPhysical Review E$$v72$$x1539-3755
000044502 500__ $$aRecord converted from VDB: 12.11.2012
000044502 520__ $$aThe effect of linear homopolymers, diblock copolymers, and star polymers anchored to a membrane on the membrane's fluctuation spectrum is investigated for low grafting densities. Due to the nonlocality of the polymer-membrane interaction, the effective bending rigidity kappa(eff)(q) of the composite membrane is found to depend strongly on the wave vector q of the membrane undulations. Analytical calculations for ideal linear chains and simulations for ideal and self-avoiding linear chains as well as for star polymers are presented. The analytical calculations are based on the Green's function approach of Bickel and Marques [Eur. Phys. J. E 9, 349 (2002)]; for the simulations the Monte Carlo method is used. The functional form of kappa(eff)(q) differs for end-grafted chains and diblock copolymers. In general, the polymer effect is most pronounced for undulations on length scales larger than or comparable to the polymer size, and decreases rapidly for smaller undulation wavelengths. Anchored linear chains always increase kappa; anchored star polymers may increase as well as decrease kappa, depending on whether they are anchored symmetrically or asymmetrically to the membrane.
000044502 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000044502 542__ $$2Crossref$$i2005-09-13$$uhttp://link.aps.org/licenses/aps-default-license
000044502 588__ $$aDataset connected to Web of Science
000044502 650_7 $$2WoSType$$aJ
000044502 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ
000044502 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.72.031904$$bAmerican Physical Society (APS)$$d2005-09-13$$n3$$p031904$$tPhysical Review E$$v72$$x1539-3755$$y2005
000044502 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.72.031904$$gVol. 72, p. 031904$$n3$$p031904$$q72<031904$$tPhysical review / E$$v72$$x1539-3755$$y2005
000044502 8567_ $$uhttp://hdl.handle.net/2128/1513$$uhttp://dx.doi.org/10.1103/PhysRevE.72.031904
000044502 8564_ $$uhttps://juser.fz-juelich.de/record/44502/files/64906.pdf$$yOpenAccess
000044502 8564_ $$uhttps://juser.fz-juelich.de/record/44502/files/64906.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000044502 8564_ $$uhttps://juser.fz-juelich.de/record/44502/files/64906.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000044502 8564_ $$uhttps://juser.fz-juelich.de/record/44502/files/64906.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000044502 909CO $$ooai:juser.fz-juelich.de:44502$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000044502 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000044502 9141_ $$y2005
000044502 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000044502 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000044502 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0
000044502 970__ $$aVDB:(DE-Juel1)64906
000044502 9801_ $$aFullTexts
000044502 980__ $$aVDB
000044502 980__ $$aJUWEL
000044502 980__ $$aConvertedRecord
000044502 980__ $$ajournal
000044502 980__ $$aI:(DE-Juel1)ICS-2-20110106
000044502 980__ $$aUNRESTRICTED
000044502 980__ $$aFullTexts
000044502 981__ $$aI:(DE-Juel1)IBI-5-20200312
000044502 981__ $$aI:(DE-Juel1)IAS-2-20090406
000044502 981__ $$aI:(DE-Juel1)ICS-2-20110106
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la9900876
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.271.5251.969
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.199416851
000044502 999C5 $$1A. Zilker$$2Crossref$$9-- missing cx lookup --$$a10.1051/jphys:0198700480120213900$$p2139 -$$tJ. Phys. (France)$$v48$$y1987
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.7973655
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.228101
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.79.2379
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.102
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1377881
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.109
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i1996-00258-6
000044502 999C5 $$1S. T. Milner$$2Crossref$$9-- missing cx lookup --$$a10.1051/jphys:0198800490110195100$$p1951 -$$tJ. Phys. (France)$$v49$$y1988
000044502 999C5 $$1S. Alexander$$2Crossref$$9-- missing cx lookup --$$a10.1051/jphys:01977003808098300$$p983 -$$tJ. Phys. (France)$$v38$$y1977
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/30/4/002
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2000-00167-2
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s101890170047
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.62.1124
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s101890170140
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-5193(70)80032-7
000044502 999C5 $$1W. Helfrich$$2Crossref$$9-- missing cx lookup --$$a10.1515/znc-1973-11-1209$$p693 -$$tZ. Naturforsch. C$$v28$$y1973
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0006-3495(74)85959-X
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.68.051801
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.54.1134
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/jp2:1996142
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epje/i2001-10113-8
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2001-00574-3
000044502 999C5 $$1F. David$$2Crossref$$oF. David Statistical Mechanics of Membranes and Surfaces 1989$$tStatistical Mechanics of Membranes and Surfaces$$y1989
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/30/20/010
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/9/1/011
000044502 999C5 $$1E. Eisenriegler$$2Crossref$$9-- missing cx lookup --$$a10.1142/1354$$y1993
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i1996-00120-y
000044502 999C5 $$1S. Leibler$$2Crossref$$9-- missing cx lookup --$$a10.1051/jphys:01986004703050700$$p507 -$$tJ. Phys. (France)$$v47$$y1986
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(94)90233-X
000044502 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(96)00065-3
000044502 999C5 $$1M. Frigo$$2Crossref$$oM. Frigo Proceedings of the International Conference on 1998 IEEE Acoustics Speech and Signal Processing 1998$$tProceedings of the International Conference on 1998 IEEE Acoustics Speech and Signal Processing$$y1998
000044502 999C5 $$2Crossref$$oHandbook of Mathematical Functions 1972$$tHandbook of Mathematical Functions$$y1972
000044502 999C5 $$1G. Barton$$2Crossref$$oG. Barton Elements of Green’s Functions and Propagation 1989$$tElements of Green’s Functions and Propagation$$y1989
000044502 999C5 $$1I. S. Gradstein$$2Crossref$$oI. S. Gradstein Tables of Series, Products and Integrals 1981$$tTables of Series, Products and Integrals$$y1981