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Diffusion Monte Carlo ~DMC! calculations of the intermolecular vibrational ground states of
CO~He!n clusters withn51 – 12, for COv50 are reported. The intermolecular degrees of freedom
of the clusters are treated in full dimensionality and a pairwise additive potential surface is used in
which the He–CO interaction is described by a recently developed scheme which combines density
functional theory~DFT! with the long-range dispersion contributions obtained from a perturbative
theory. The calculations yield intermolecular ground-state energies, He density distributions, radial
and angular density probability distributions. Optimal structures bySIMPLEX minimization have
been calculated to estimate zero-point energy~ZPE! and quantum effects. ©2000 American
Institute of Physics.@S0021-9606~00!50105-6#
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I. INTRODUCTION

Quantum clusters of helium present an opportunity
study both liquid clusters and highly quantum finite-size s
tems showing some very interesting peculiarities wh
make them unique in several respects. First, due to the
weak interactions between helium atoms, these clusters
by far the most weakly bound. In fact, it is only very recen
that the existence of the H2 molecule, with its single bound
state, was confirmed by both mass spectrometry1 and a novel
diffraction method.2 Second, the larger clusters provide
unique opportunity for studying the behavior of finite qua
tum systems. Third, the issue of superfluidity in finite clu
ters of helium is also of great interest. As a result, there
been considerable theoretical3–6 and experimental7–11 effort
given to such clusters, which are known to remain liquid a
are predicted to show superfluidity behavior atT<1.9 K.5,6

A potentially powerful method for detecting superfluidity
these systems10,11 involves spectroscopic studies of atoms
molecules that act as dopant of the clusters.8,12–16 When
combined with the relevant theoretical work,17–19 it is now
clear that molecular probes can be used fruitfully to expl
the local microscopic environment within the cluster.

Furthermore, van der Waals~vdW! heteroclusters
M (Rg)n , consisting ofn rare-gas atoms Rg bound to a mo
eculeM, have emerged in recent years among the most
portant finite-size prototype systems for studying solut
solvent interactions on a microscopic level.16,20–24 M (Rg)n
clusters are small enough to allow application of hig
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resolution laser spectroscopic techniques and supersonic
lecular beams, usually reserved for isolated small molecu
to fundamental aspects of solvation in condensed matter
gradually increasing the number of rare-gas atoms in the
erocluster, one has the unique opportunity to measure~as
well as to simulate! the size dependence of structural, spe
troscopic, and dynamical properties as they change from
behavior of small molecules to that characteristic of bu
phases. Electronic and infrared~IR! spectroscopy of mol-
ecules in size-selected rare-gas clusters have revealed
microsolvation leads to spectral shift of the absorption
emission bands, and to changes in the bandwidths and b
shapes, all of which show strong and nonmonotonic dep
dence on the solvent cluster size.16,20,21,23

Theoretical analysis of probe species in helium clust
is still relatively sparse. Approximate calculations of the ve
small clusters X~He!n , N<10 have been made,25,26 and re-
cently variational and Green’s function Monte Carlo me
ods have been applied to the Cl2(He)2 and Cl2(He)3
species.27 Analysis of the high-resolution spectroscopy
such small clusters, e.g., Cl2~He!n shows that even thes
very small species cannot be described by standard, ri
rotor-based expansions, despite the presence of a stro
binding molecule which might be expected to increase
localization of the helium atoms.

The first theoretical study of a molecule attached to
helium cluster employed variational Monte Carlo compu
tions on H2~He!n .28 In this case, the interaction of the for
eign species with He is very much like that of helium inte
acting with itself. The H2–He potential is nearly isotropic
and possesses a well depth only 2 K lower than that of the
He–He potential. Successive studies were devoted to
il:
9 © 2000 American Institute of Physics
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analysis of SF6~He!n
29 and HF~He!n

30 clusters using the dif-
fusion Monte Carlo~DMC! method to calculate ground-sta
energetics, structural properties, and the solvent-indu
spectral shift of the vibrations of the dopant molecule.

The focus of this paper is to accurately characterize
the first time the vibrational ground states of vario
CO~He!n clusters, withn from 1 to 12, employing the diffu-
sion Monte Carlo method. In our treatment, no approxim
tion is made on the quantum dynamics of all internal degr
of freedom of these vdW clusters. We determine what
essentially the numerically exact ground-state energies
CO~He!n for potentials which are superpositions of CO–H
and He–He interactions. In addition, the ground state w
functions of these clusters are analyzed in terms of proba
ity distributions of the internal coordinates, all of which in
dicate highly delocalized motion of the surrounding H
atoms.

In Sec. II we describe a recently developed treatm
which combines density functional theory~DFT!31 with the
long-range dispersion interaction, obtained from perturba
theory, for the calculation of the full potential energy surfa
~PES! of CO–He system. In Sec. III we briefly explain th
computational method employed to provide an accurate
lution of the many-body Schro¨dinger equation, while we dis
cuss the results of our calculations in Sec. IV.

II. THE CO–HE INTERACTION POTENTIAL

Because of its fundamental role in theoretical and
perimental studies of the thermal balance in dense interst
molecular clouds, the CO–He interaction has been the s
ject of manyab initio calculations. We will therefore try to
briefly summarize below the results from such calculatio
and then we will discuss our present DFT1dispersion
approach.

A. An outline of previous results

The earliest attempt was an evaluation of the rigid-ro
surface with the CO internuclear distance kept at its exp
mental value and with free-electron-gas methods emplo
to take correlation forces into account.32

Later ab initio calculations33 considered an extende
configuration interaction~CI! expansion, which however did
not include the possible consequences of basis set sup
sition error~BSSE!, and provided an entirely different PES
Further modifications on the CI interaction were sugges
by a series of calculations, classical and quantum, of
transport properties.34,35 An entirely different, empirical po-
tential surface was then proposed, involving a new se
parameters obtained from the fully resolved infrared spe
of the vdW complex.36 Finally, by using a model exchange
correlation treatment~XC! in the calculation and by guiding
its optimization with infrared spectra, a more general emp
cal potential was recently suggested.37

Severalab initio calculations have also been complet
in recent years. The rigid-rotor PES, in fact, has been co
puted using fourth-order Møeller–Plesset~MP! perturbation
theory,38 while a similar approach was employed in anoth
recent publication39 where the MP fourth-order treatmen
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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was carried out and the rotovibrational energy levels of
complex were evaluated with the collocation method. Bo
the above calculations have included the effects of the BS
correction. A further comparison with the same infrar
spectra has been carried out again more recently sta
from a theoretical calculation which used symmetry-adap
perturbation theory~SAPT!.40

B. The DFT calculations

The use of density functionals theory31 for the treatment
of either hydrogen-bonded or van der Waals systems
been much less widespread than the study of thermochem
data or molecular equilibrium geometries.41 On the other
hand, because of the computational difficulties present in
evaluation of such weak forces, the path to some relia
DFT method which can be employed to test dynamic obse
ables for such systems seems a very tempting one to fol

It therefore becomes interesting to explore the appli
bility of any DFT method to the broad range of configur
tions sampled by the intermolecular interactions in order
extend the possible use ofab initio methods to increasingly
more complicated multielectron partners. One knows, in fa
that the inclusion of the all-important electron correlati
effects occurs rather directly within DFT methods while
happens only slowly within CI expansions, where necess
truncations can often jeopardize the whole reliability of t
final results.

One can begin by writing the familiar expression for t
total energy42,43

Etot5E@r#5(
i

e i2
1

2E r~r !r~r 8!

ur2r 8u
dr dr 81Exc@r#

2E Vxcr~r !dr , ~1!

where

(
i

N

e i5Ts@r#1E Veff~r !r~r !dr , ~2!

and

Veff~r !5V~r !1E r~r 8!

ur2r 8u
dr 81Vxc~r !, ~3!

whereV(r ) is the potential energy between nuclei and ele
trons andVxc(r ) is the exchange-correlation potential e
ergy. The above result is exact provided we know the kine
energy functional form in Eq.~2! and theExc functional form
in Eq. ~1!.42 It is toward the solution of this specific aspe
that many computational and theoretical efforts have b
directed in recent years.41,42,44Here,Ts is the sum of single-
particle kinetic energy operators andExc is the nonclassica
exchange and correlation energy contributions coming fr
the chosen form of the functional of the total electronic de
sity r(r ) in the ground electronic state of the system.

Among the many possible forms of theExc contribution
discussed at length by the relevant DFT literature,41–44 the
adiabatic connection methods~ACM!45–49 have recently be-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2241J. Chem. Phys., Vol. 112, No. 5, 1 February 2000 CO–He complexes
come popular for calculating molecular electronic properti
The starting point of these approaches is the adiabatic
nection formula50,51

Exc5E
0

1

Uxc
l dl, ~4!

where l is an interelectronic coupling-strength parame
that ‘‘switches on’’ the Coulomb repulsion between ele
trons andUxc

l is the potential energy of exchange correlati
at an intermediate coupling strengthl.

This formula ‘‘connects’’ the noninteracting Kohn
Sham reference system (l50) to the fully interacting sys-
tem (l51) through a continuum of partially interacting sy
tems (0<l<1), all of which have the same densityr ~i.e.,
the density of the real system!. It has been shown in the
literature45 that the simplest approximation to Eq.~4! can be
expressed by a two-point formula

Exc.
1
2Exc

l501 1
2Exc

l51. ~5!

An application of Eq. ~5! is the so-called half–hal
approximation45

Exc.
1
2Ex1 1

2Exc
LSDA , ~6!

where theExc
LSDA contribution is calculated following the lo

cal spin density approximation~LSDA! in which the ex-
change part is given by the formula proposed by Slater52 and
the correlation part is derived from the formula described
Vosko, Wilk, and Nusair,53 while theEx contribution is the
pure exchange energy of the Kohn–Sham~KS! orbitals from
a single determinant.45

The full calculation of the anisotropic interaction wa
therefore carried out by fixing, at first, ther CO distance at
2.1323a0 ~equilibrium bond distance! and by evaluating dif-
ferent orientations betweenu50° and u5180°. To intro-
duce the vibrational dependence of CO, the same type
calculation has been repeated for six other values ofr CO in
order to include the first five diatomic vibrational states.
all the calculations of the present work theu50° orientation
corresponds to the collinear He–C–Ostructure.

The quality of the Gaussian basis set expansion
ployed was of the quadruple-zeta~cc-pVQZ! level,54 where
the original and contracted sets of functions were, resp
tively: (7s,3p,2d,1f ) and @4s,3p,2d,1f # on the He atom,
(12s,6p,3d,2f ,1g) and@5s,4p,3d,2f ,1g# on the C atom, and
(12s,6p,3d,2f ,1g) and @5s,4p,3d,2f ,1g# on the oxygen
atom.

One important aspect of the full evaluation of the wea
vdW type of PES involves the inclusion of long-range~LR!
dispersion contributions

VDISP~r ,R,u!52
C6~r ,u!

R6
2

C7~r ,u!

R7
2

C8~r ,u!

R8
, ~7!

where the coefficients and theiru-dependence, as well as th
dependence onr CO, have often been discussed in th
literature.55

There are many ways in which the LR dispersion tail c
be smoothly joined onto the short-range DFT interacti
However, because of the difference in anisotropy of the t
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
.
n-

r
-

y

of

-

c-

,

n
.
o

types of interaction, the resulting PES will be mostly a
fected in the well region. Since the present potential is
panded into Legendre polynomials

V~r ,R,u!5(
l

Vl~r ,R!Pl~cosu!, ~8!

one could assume that the DFT short-range region alre
contains, for each of the coefficients, the correct coulom
exchange, and correlation energy contributions as gi
within the prescription of Eq.~1!. Hence, one can subtrac
the first two contributions from the half–half~HH! calcula-
tions for each of the multipolar coefficients of Eq.~8!56 by
carrying out additional separate HF calculations with t
same basis set discussed before and which is being empl
to obtain the KS orbitals within the self-consistent fie
~SCF! part of the full HH interaction. One can therefor
write

Vl
DFT~r ,R!5Vl

HH~r ,R!.Vl
HF~r ,R!1Vl

corr~r ,R!, ~9!

from which

Vl
HH~r ,R!2Vl

HF~r ,R!.Vl
corr~r ,R!. ~10!

If one further presumes that at least the behavior of sh
range correlation forces is given realistically by the DF
calculations, then one could modify the perturbative disp
sion terms of Eq.~7! by using the values from Eq.~10! to
scale them as they come closer in from the long-range
gion. One should also remember here that, as is known
long-range dispersion contributions are included in a D
model at large distances.42 Hence, the long-range~LR! con-
tributions could be rewritten using Eqs.~7! and ~10! as

Vl
LR~r ,R!5Vl

DISP~r ,R!1DlVl
corr~r ,R!. ~11!

Each final multipolar coefficient can therefore be obtained
matching the two regions at the points where, for each L
endre component, the logarithmic derivatives of the disp
sion and correlation branches are equal, a requirement
produces theDl scaling factors which correct theVl

DISP ra-
dial dependence around the well region and makes the
tential continuous in that region, in analogy to what w
attempted earlier by Parker and Pack56 in other vdW systems

Vl~r ,R!5H Vl
DFT~r ,R! for R,Rl

Vl
HF~r ,R!1Vl

LR~r ,R! for R.Rl

. ~12!

Having defined in the above way the dispersion contrib
tions, we obtained a modified DFT surfaces for the He–C
system which we shall call the half–half with scaled disp
sion ~HHSD!. The results from such calculations have a
ready been discussed in detail considering the equilibr
bond distance for the CO molecule (r 52.1323a0) either for
the He–CO57 or Ar–CO58 systems. Here, we report in Fig.
the comparison, at fixed orientations, between the HH
potential and the best two potentials known in literature:
semiempirical XC of Ref. 37 and theab initio SAPT of Ref.
40. The plots refer to the rigid-rotor surface with the C–
distance fixed to the experimental equilibrium value
2.1323a0. In the upper panels we show the repulsive reg
and in the lower panels the well region. It is possible to s
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. Comparison of the repulsive
regions~top! and of the well regions
~bottom! for different orientations of
the present DFT potential~HHSD!
with respect to the last semiempirica
surface~XC of Ref. 37! and the last
computedab initio PES~SAPT of Ref.
40!.
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that the HHSD potential follows closely the best availab
potential functions in the short-range region, although it s
shows a slightly less anisotropic behavior that produces
turn a more pronounced minimum for theu50° orientation.
On the whole, however it gives us a very realistic repres
tation of the best available PES for the present system.

The potential has been described by 13 multipolar co
ficients and their properties have been discussed in deta
our previous work.57 The actual radial coefficients are ava
able upon request to the corresponding author of the pre
work.

III. THE STOCHASTIC MODEL

The diffusion Monte Carlo~DMC! method59 has been
extensively discussed in a number of papers.60–63 We there-
fore refer the reader to that literature for a fuller discussi
while this section merely summarizes the main features
the method, our particular implementation, and some spe
extensions developed for the present application.

The key idea of the DMC method is the isomorphis
between the time-dependent many-body Schro¨dinger equa-
tion and a multidimensional reaction-diffusion equation w
anisotropic diffusion coefficients. Introduction of imagina
time t5 i t /\, shifting of the absolute energy scale by
quantity Eref , and identification of the inverse mass term
with diffusion coefficientsD j and of the shifted potentia
@V(r )2Eref# with position-dependent rate termsk(r ) leads
to the following equations which show this analogy:

i\
]C~r ,t !

]t
52(

j

\2

2mj
¹ j

2C~r ,t !1@V~r !2Eref#C~r ,t !,

~13!

]C~r ,t!

]t
52(

j

\2

2mj
¹ j

2C~r ,t!1@V~r !2Eref#C~r ,t!,

~14!
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]C~r ,t !

]t
52(

j
D j¹ j

2C~r ,t !1k~r !C~r ,t !. ~15!

Knowledge of the structure of the wave function can
fruitfully exploited for increased accuracy by introducing
guiding functionCT that is meant to approximate the tru
wave function. A common ansatz for atomic clusters a
bulk systems64 expressesCT as a product over a set of one
dimensional functionsF defined over all pairs of particles

CT~R,p!5)
i , j

F i j ~Ri j ;p!, ~16!

where Ri j is the distance between particlesi and j, and p
denotes the set of adjustable parameters controlling the
wave function. Following Ref. 39, we writeCT as a product
over pairwise radial functionF connecting the rare-gas a
oms and a product over two-dimensional functionsx de-
scribing the anisotropic CO–He contribution:

CT~R;p!5 )
i PHe

x i~Ri ,u i ;p!3 )
i , j PHe

F i j ~Ri j ;p!. ~17!

TheRi j are the distances between rare-gas atomsi andj, and
Ri , u i are the Jacobi coordinates describing the distance
tween rare-gas atomi and the center of mass of CO and th
angle between theRi vector and the CO bond vector. Th
form of CT satisfies the proper exchange symmetry for4He.
There is no explicit dependence ofCT on the CO distance
since our current treatment assumes adiabatic separa
between the molecular vibration and the intermolecular
brations in agreement with previous treatments of small
der Waals complexes.65

To avoid unnecessary lengthening of the present pa
we will discuss elsewhere the vibrational dependence of
interaction and the shift of the CO vibrational frequency
duced by the surrounding clusters of helium atoms.66 Previ-
ous experience with pure29 and mixed30 helium clusters
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2243J. Chem. Phys., Vol. 112, No. 5, 1 February 2000 CO–He complexes
showed that Jastrow functions are a good choice forF and
were also employed in the present work. In particular,
used the isotropic part of the best trial wave function o
tained from a previous variational Monte Carlo~VMC! cal-
culation. For the part concerning the interaction CO–He
used a constant function instead.

The introduction ofCT results in additional drift terms
in the diffusion equation which direct the random walke
into regions where the trial wave function is large. At t
same time, the rate terms are now controlled by the lo
energy defined as

Elocal~r !5CT
21~r !ĤCT~r !5CT

21~r !T̂CT~r !1V~r !,
~18!

which is a smoother function of the coordinates than
potential and reduces the variance of the energy estimat

]~CCT!

]t
5F(

j

1

2mj
¹ j

2~CCT!2
1

mj
¹ j~CCT¹ ln CT!G

2@CT
21TCT1V~r !2Eref#~CCT!. ~19!

A random walk technique is used to calculate the stea
state solution of the diffusion equation corresponding to
given quantum problem. A large ensemble of random wa
ers is propagated with time stepsDt starting from some
arbitrary initial distribution. The propagation fromt to t
1Dt consists of random Gaussian displacements of the C
tesian coordinates and systematic moves under the influ
of the quantum drift forceF(r )5CT¹ ln CT and an update
of a weight carried by each random walker. Additionally w
use a Metropolis type acceptance check for each attem
move62 such that for arbitrary time steps the number dens
of walkers is given byCT

2 , while their weights are a stochas
tic sample of the local value ofC/CT . This has been shown
to result in large reductions of the time-step error of DM
calculations. Our implementation uses a global check a
trial moves have been made for all particles. The short t
approximation to the Green’s function appropriate for E
~19! is

G~r→r 8;Dt!5

)
j

F S mj

2pDt D 3/2

3expH 2
mj

2Dt S r j2r 8j2
Dt

2mj
Fj~r ! D 2J G

3expH 2DteffS Elocal~r !1Elocal~r 8!

2
2ErefD J . ~20!

The modified time stepDteff appears in the growth term o
Eq. ~20! because not all moves attempted according toG(r
→r 8;Dt) are accepted in the Metropolis step. Propos
moves fromr to r 8 are carried out with probability

P~r→r 8!5min$1,A~r→r 8!%, ~21!

A~r→r 8!5
uCT~r 8!u2G~r 8→r !

uCT~r !u2G~r→r 8!
. ~22!
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The asymmetric transfer functionG(r→r 8;Dt) has to be
explicitly taken into account in this acceptance decisio
Therefore, the effective time stepDteff is defined through the
ratio of accepted displacements and attempted displacem
according to

Dteff5Dt
^Dr2&acc

^Dr2&att

. ~23!

As mentioned before, our specific implementation assign
variable weight to each random walker. As a consequenc
the exponential weight update, the sum of weightsW(t)
5( iwi(t) grows or decays according to the mismatch b
tweenEref and the average local energy.

Walkers whose relative weightwrel5wi /W(t) falls be-
low a preselected valuewmin are eliminated randomly from
the ensemble with probabilityp2512wrel or retained and
assigned the average weightW(t)/nwalk with probability
p15wrel . Walkers whose relative weight grows beyond
maximum valuewmax are split intonw5 int(wrel1u) walkers
of weightwi /nw , whereu is a uniform random number. Th
values ofwmin and wmax are chosen such that the avera
number of walkers remains approximately constant dur
the run, while the instantaneous ensemble fluctuates. T
mechanisms ensure that the walkers remain concentrate
relevant regions of configuration space without introduc
artificial sources or sinks and can be easily generalized
situation with correlated walks on several surfaces.

After equilibration of the initial random walker distribu
tion, the ensemble average ofElocal, which will be referred
to asEmean in this paper, is identical with the ground-sta
energy irrespective ofCT and is only subject to statistica
fluctuations. The ground-state energy can also be comp
from the rate at which the total weight of the ensemble gro
or decays ast elapses. This estimator is called the grow
energy

Egrowth5Eref2
] ln W~t!

]t
, ~24!

and, depending on the system being considered, is know
times to have a smaller time-step dependence thanEmean.

63

Both energy estimators were always extremely close to e
other in our simulations, the difference never exceeding h
the standard deviation of energies. We therefore report o
our values forEmeanasE0 values.

In order to take into account the slow decay of the we
He–He interaction terms as the distances increased, we
employed extended temporal runs that ensure the cor
sampling of the full PES by the random walkers.

A. Calculation of expectation values

Arbitrary property expectation values^Â& are computed
by replacing integrals by sums over samples

^Â&5
*C* ~x!ÂC~x!dx

* uC~x!u2dx
, ~25!

'
1

N (
i 51

N

C21~x!ÂC~x!, ~26!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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wherex’s indicate some general coordinates and the cor
uCu2 quantity is obtained from the estimated, trialCT values
by using the technique of descendant weighting.64 Only ex-
pectation values of local operators are directly access
with the DMC scheme. In this case, the integration redu
to an average over operator valuesA(x)

^Â&'
( i

NwiA~xi !

( i
Nwi

. ~27!

This technique is in particular applicable to the position
correlation functions which are very useful in visualizing t
structure of the clusters. The radial distribution of rare-g
atoms relative to the center of mass of the whole cluste
computed as

Prad~R!5
1

n (
i

n K d~Ri2R!

R2 L
walk

. ~28!

The radial distribution function can be easily converted
the spherically averaged radial rare-gas density distribu
r(R)

r~R!5
n

4p
Prad~R!. ~29!

In a similar way, we compute two-dimensional hist
grams in cylinder coordinates to analyze the density dis
butionr(r ,z) of helium atoms around the CO molecule. T
CO bond is chosen at thez axis and the perpendicular dis
tance of helium atoms to this axis defines the polar radiur.
The origin coincides with the center of mass~CM! of CO
and the carbon atom is on the positivez axis. The density
distribution is computed as

r~r ,z!5
n

2p (
i

K d~r i2r !

r
d~zi2z!L

walk

, ~30!

n52pE
0

`E
2`

`

r~r ,z!r dr dz. ~31!

This quantity is accumulated on a grid which is equidist
in z and r 2 which eliminates the need to take square ro
during the data collection.

B. The global potential energy function

All calculations were done with a purely pairwise add
tive potential energy surface based on the DFTab initio part
for the He–CO interaction and the empirical HFD-B pote
tial for He.67 For the He–CO interaction, we used the ad
batic expression

Vv50
HeCO~R,u!5^VHeCO~R,u,r CO!&v505V00~R,u!, ~32!

where the indexv50 indicates averaging over the C
ground-state wave function obtained by solving the Sch¨-
dinger equation for the diatomic potential of Ref. 68. With
this approximation, the adiabatic potential of the CO~He!n

cluster is now expressed as
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Vtotal5(
i 51

n

Vv50
HeCO~Ri ,u i !1(

i , j

n

VHeHe~Ri j !, ~33!

whereRi j are distances between rare-gas atomsi and j, and
Ri , u i are Jacobi coordinates describing the distance
tween rare-gas atomi and the center of mass of CO and th
angle between ther i vector and the CO bond vector. Al
though many-body forces are included in each term of
first sum on the right-hand side of~33!, no three-body or
higher-order forces are added to it or to the second sum
the right-hand side of Eq.~33!. We shall comment further on
this point when discussing the results from the present wo

In Fig. 2 we show the adiabatic potential energy co
tours in (R,u) coordinates, where one clearly sees that o
calculations confirm the presence of only one minimu
close to the linear configurationC–O–He and theexistence
of a weak angular anisotropy as discussed in Ref. 57.

IV. DISCUSSION OF RESULTS

In this section we will discuss in detail the ground-sta
energetics and structural properties of the CO~He!n clusters,
while the discussion of the other important aspect of t
study concerning the vibrational frequency shift caused
the cluster environment on the ‘‘solute’’ CO molecule w
be reported in a following publication. We will also discu
there a comparison with the results obtained from
CO~Ar!n clusters69 analysis with DMC methods.

A. Binding and evaporation energies

The adiabatic ground-state energies for CO~He!n when
the CO molecule is in its vibrational statev50, calculated
from the DMC approach described in Sec. III, are shown
the left panel of Fig. 3 for clusters of different sizes. O
clearly sees that the slope of the line is practically a cons
when the number of helium atoms is increased. This f
becomes more evident when one looks at the single eva
ration energy; that is, the energy necessary to evaporate
He atom from the cluster. This quantity, which is a meas
of the relative stability of clusters of different sizes, is show
in the right panel of the same figure. As mentioned before
is possible to note that there is no particular evidence
‘‘magic number,’’ i.e., the clusters of different sizes all ha

FIG. 2. Energy levels of the potential energy surface for the adiabaticV00

potential discussed in the main text. The energy levels are in units of cm21.
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FIG. 3. Computed binding energies~left panel! and
single-atom evaporation energies~right panel! from the
DMC calculations, as a function of atom number in th
CO~He!n clusters.
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practically the same relative stability. This result is co
pletely different from that obtained for the CO~Ar!n clusters,
in which it was possible to observe more complicat
energetics,69 and can be clearly related here to the very ch
acteristic behavior of the helium atoms when thought of
‘‘solvent’’ atoms29,30 as in the present process.

In Fig. 4 we report instead the 3D plot of the He dens
for some CO~He!n clusters, represented in cylindrical coo
dinates where thez axis corresponds to the C–O axis wi
the oxygen located at negative values andr corresponds to
the radius of the cylinder. From these density distributio
one sees very clearly the floppiness of such clusters w
correspond to diffuse distributions of the rare-gas ato
around the CO molecule which have larger probability
being located in the regions where the interaction is stron
This is most evident in the CO~He! cluster, where our calcu
lations show a diffuse distribution of the He atom associa
to all the orientations around the bond axis of the diatomic
reaches its maximum value in correspondence to the gl
minimum of the adiabatic potential surface, that is close
the linear configurationC–O–He. It isobviously more diffi-
cult to correspondingly locate the minimum of the multid
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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mensional surface for the largest CO~He!n clusters, but it is
clear from the plots of the global density that the distrib
tions of the rare-gas atoms become more uniform around
CO with the increasing of the cluster size, hence providin
solvation shell for the diatomic impurity. This solvation ca
be further understood by comparing the relative strength
He–He and He–CO interactions. These interactions,
though very weak, are in fact different from each other.
particular, the attractive part between He atoms is wea
than that for the He–CO portion, and therefore the rare-
atoms in the clusters are distributed as shown by the ca
lations in order to optimize their interactions with the d
atomic molecule. Considering the different strengths of
pair interactions, it then becomes possible to explain the c
stant values for the evaporation energies: for these sm
clusters, in fact, the helium atoms are practically indist
guishable either by spatial position or by their energy. T
obtained value of;7 cm21 roughly corresponds, therefore
to the binding energy of a single helium atom to the CO–
system, hence showing that for these small clusters the
of additional, surrounding He atoms is marginal.
-

n

FIG. 4. 3D density distributions of He
atoms around the CO molecule ob
tained from DMC calculations for
clusters of different size. Distances i
Å and densities in Å23.
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FIG. 5. Radial and angular densit
distributions for the CO~He!n clusters.
Upper panels: for then51 case; lower
panels: for then52 case. The panels
represent, from left to right: radial dis
tributions from the molecule center o
mass; angular distributions for one A
atom’s Jacobi angle; angular distribu
tions for two He atoms with respect to
the molecular center of mass; angula
distributions for three He atoms with
respect to the middle atom of eac
trimer.
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B. Radial and angular correlation values

In order to obtain more information about the structu
of the present clusters, we have also analyzed the radial
the angular density distribution probability of the He atom
In Figs. 5–10 we report in their first columns the radial de
sity distribution and in the second the angular density dis
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
nd
.
-
i-

bution in which theu angle corresponds to the angle betwe
the bond axis and the vector from the center of mass of C
The third and fourth columns further show the angular d
tribution probability in which thea angle is the angle be
tween the center of mass of CO and two helium atoms
the g angle is the angle between three He atoms.
FIG. 6. Same as in Fig. 5 but forn
53 ~upper panels! and n54 ~lower
panels!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 7. Same as in Fig. 5 but forn
55 ~upper panels! and n56 ~lower
panels!.
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Looking at the first column, one clearly sees that t
largest peak of the radial density is centered at about 4.0
which corresponds to the region of the minimum for t
He–CO interaction. It is also possible to note that, contr
to what happens in the case of CO~Ar!n clusters,69 there is no
appearance of outer peaks at larger distances: this is a fu
confirmation that all the helium atoms in these small clust
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
e
Å,

y

her
s

belong to the same solvation shell and are practically ind
tinguishable from each other. This suggestion is confirm
by the angular distributions: in the second column it is p
sible to see a very diffuse distribution of rare-gas ato
around the CO impurity, with an increasing probability
find He atoms at the oxygen side of diatomic~stronger at-
traction He–CO! as the cluster size is increased, while bo
FIG. 8. Same as in Fig. 5 but forn
57 ~upper panels! and n58 ~lower
panels!.
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FIG. 9. Same as in Fig. 5 but forn
59 ~upper panels! and n510 ~lower
panels!.
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the probability distributions for thea and g angles show
very broadly spread out contours, contrary to what was
served for the CO~Ar!n clusters,69 where we saw several na
row peaks which increased in number when the size of c
ter was increased. The presence of peaks in the ang
distributions is simply a consequence of the location of
attractive minima of the Rg–Rg interactions, where the
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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pulsive walls prevent putting any two atoms closer than th
Rmin values. These results point to a very pronounced so
tion effect of He atoms on the CO as a ‘‘solute’’ and furth
suggest that quantum effects are very important in the v
clusters where several minima exist and in which directio
bonding cannot be described in terms of the usual ‘‘balls a
sticks’’ picture.
FIG. 10. Same as in Fig. 5 but forn
511 ~upper panels! andn512 ~lower
panels!.
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C. Optimal structures and quantum effects

In order to further investigate the quantum effects in
CO~He!n clusters, we carried outSIMPLEX optimizations70 to
find the ‘‘classical’’ optimal structures for such aggregat
In Fig. 11 we report the results of our calculations in terms
conventional bonding pictures with spheres describing
localized atoms. It is important to note at this point that
actually found several different structures for the same va
of n which had total energies values below those of
ground-state energy obtained from the DMC calculations
rather common property for rare-gas clusters.71 Such effects
originate from the highly delocalized nature of the solve
bound states in the case of helium atoms. It is instructive
compare theSIMPLEX structures, shown in Fig. 11, and th
DMC results from before. One clearly sees some anal
there between classical and quantum geometries in the s
that theSIMPLEX calculations also provide clusters in whic
the helium atoms are located at the oxygen side, but o
ously this picture does not manage to be realistic when c
paring it with the DMC results that yield instead very diffu
density distributions in which a fixed geometry complete
loses physical meaning. This is further proof of the fact t
the vdW clusters are not realistically described unless
takes into account quantum effects. The presence, for a g
number of solvent atoms, of several cluster structures,
lie very close in energy, and are separated by very sm
energy barriers, makes the classical picture of the clam
nuclei in the Born–Oppenheimer approximation ve
strongly dependent on the aggregate’s temperature-anne
history. On the other hand, the quantum treatment us
DMC calculations provides a more appealing physical
scription. This point can be demonstrated by looking at F
12, in which we report the zero-point energy~ZPE! com-
puted for the present clusters. One clearly sees that the
plays a very important role in their global energetics, rep
senting about 70% of the total binding energy. One sho
also note that theSIMPLEX minimization is not really reliable
as it provided some total energies that, forn511 and 12,
were below the DMC energies, a further sign of the prese

FIG. 11. SIMPLEX optimization structures for the CO~He!n clusters using the
interactions described in the main text. First row, from left to right: t
clusters withn from 1 to 4. Second row, from left to right: the clusters wi
n from 5 to 7. Third row, from left to right: the clusters withn from 8 to 10.
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of too many equivalent structures and of the inefficiency
the simpleSIMPLEX approach to reach the absolute minimu
geometry.

V. CONCLUSIONS

Pairwise additive intermolecular PES for CO~He!n clus-
ters, n51 – 12, has been constructed from higly accur
He–He interaction67 and anisotropic CO–He potential ob
tained by a recently developed treatment which combi
density functional theory~DFT! with the long-range disper
sion interaction.57 As discussed in Ref. 57 this approach i
dicates that the use of DFT calculations yields a final P
~HHSD! which is remarkably close to the best MC-SC
results38–40 that are obtained with a greater computation
effort and to the semiempirical potential optimized to rep
duce the infrared spectra of the CO–He complex.37

Since the CO–He potential depends on the vibratio
quantum number of CO, we have followed the adiaba
treatment of Ref. 30 to investigate the energies and the st
tures for CO~He!n clusters in the CO vibrational statev50
using the diffusion Monte Carlo~DMC! method. We have
analyzed the relative stability of clusters of different size a
the distributions of He atoms around the CO molecule. T
comparison with the optimal structures obtained bySIMPLEX

minimization70 was also reported.
We have then shown that, in such van der Waals clus

with several shallow minima separated by low isomerizat
barriers, the wave function associated with the ground bo
state exhibits significant amplitude values for configuratio
which are spatially and energetically far from the equili
rium geometry. As a result, the global minimum of the fu
interaction no longer defines uniquely the structure of
complex and indeed, the very notion of a molecular struct
which would be described by the usual representation
terms of clamped nuclei and localized bonds, certainly a c
nerstone of conventional chemistry, becomes ambiguous
has to be used with caution.

FIG. 12. Computed total energies as a function of cluster size~with n from
1 to 10!. Solid line: from theSIMPLEX minimum structures; dashed line: from
the DMC calculations. Top panel: resulting zero-point energies from
calculations of the lower panel. All values in cm21.
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