000044539 001__ 44539
000044539 005__ 20180210132603.0
000044539 0247_ $$2DOI$$a10.1016/j.pmatsci.2005.07.001
000044539 0247_ $$2WOS$$aWOS:000233819400001
000044539 037__ $$aPreJuSER-44539
000044539 041__ $$aeng
000044539 082__ $$a530
000044539 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000044539 1001_ $$0P:(DE-Juel1)VDB518$$aGuo, X.$$b0$$uFZJ
000044539 245__ $$aElectrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria
000044539 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2006
000044539 300__ $$a151
000044539 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000044539 3367_ $$2DataCite$$aOutput Types/Journal article
000044539 3367_ $$00$$2EndNote$$aJournal Article
000044539 3367_ $$2BibTeX$$aARTICLE
000044539 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000044539 3367_ $$2DRIVER$$aarticle
000044539 440_0 $$014803$$aProgress in Materials Science$$v51$$x0079-6425
000044539 500__ $$aRecord converted from VDB: 12.11.2012
000044539 520__ $$aThis article reviews the current understanding of the electrical properties of the grain boundaries of acceptor-doped zirconia and ceria, however, with an emphasis on the grain-boundary defect structure. From an electrical point of view, a grain boundary consists of a grain-boundary core and two adjacent space-charge layers. The grain-boundary cores of acceptor-doped zirconia. and ceria are positively charged, probably owing to the oxygen vacancy enrichment there. Oxygen vacancies are therefore depleted in the space-charge layer. The grain-boundary conductivities of acceptor-doped zirconia and ceria are at least two orders of magnitude lower than the corresponding bulk values, depending on temperature and dopant level. Such a phenomenon is due to the facts: (1) that oxygen vacancies are severely depleted in the space-charge layer, and (2) that the grain-boundary impurity phase blocks the ionic transport across the grain boundaries by decreasing the conduction path width and constricting current lines. In materials of high purity, the effect of the space-charge depletion layer is dominant; however, in materials of normal purity, the effect of the grain-boundary impurity phase is dominant. A Schottky barrier model satisfactorily explains all the phenomenological observations of the grain-boundary electrical properties of materials of high purity, and experimental evidence soundly supports the model. Various factors (alumina addition and grain size) influencing the grain-boundary electrical properties are discussed, and some special aspects of nanocrystalline materials are highlighted (c) 2005 Elsevier Ltd All rights reserved.
000044539 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000044539 588__ $$aDataset connected to Web of Science
000044539 650_7 $$2WoSType$$aJ
000044539 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b1$$uFZJ
000044539 773__ $$0PERI:(DE-600)2015705-8$$a10.1016/j.pmatsci.2005.07.001$$gVol. 51, p. 151$$p151$$q51<151$$tProgress in materials science$$v51$$x0079-6425$$y2006
000044539 8567_ $$uhttp://dx.doi.org/10.1016/j.pmatsci.2005.07.001
000044539 909CO $$ooai:juser.fz-juelich.de:44539$$pVDB
000044539 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000044539 9141_ $$y2006
000044539 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000044539 9201_ $$0I:(DE-Juel1)VDB321$$d31.12.2006$$gIFF$$kIFF-IEM$$lElektronische Materialien$$x0
000044539 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000044539 970__ $$aVDB:(DE-Juel1)65055
000044539 980__ $$aVDB
000044539 980__ $$aConvertedRecord
000044539 980__ $$ajournal
000044539 980__ $$aI:(DE-Juel1)PGI-7-20110106
000044539 980__ $$aI:(DE-82)080009_20140620
000044539 980__ $$aUNRESTRICTED
000044539 981__ $$aI:(DE-Juel1)PGI-7-20110106
000044539 981__ $$aI:(DE-Juel1)VDB881