001     44540
005     20240610120518.0
024 7 _ |a 10.1149/1.1830393
|2 DOI
024 7 _ |a WOS:000228356800046
|2 WOS
024 7 _ |a 1099-0062
|2 ISSN
024 7 _ |a 1944-8775
|2 ISSN
024 7 _ |a 2128/2676
|2 Handle
037 _ _ |a PreJuSER-44540
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Electrochemistry
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |a Guo, X.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB518
245 _ _ |a Nonlinear electrical properties of grain boundaries in oxygen ion conductors: case of acceptor doped ceria
260 _ _ |a Pennington, NJ
|b Soc.
|c 2005
300 _ _ |a J1 - J3
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Electrochemical and Solid State Letters
|x 1099-0062
|0 13562
|y 1
|v 8
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Owing to the positively charged grain boundary cores in acceptor-doped ZrO2 and CeO2, oxygen vacancies are depleted in the space charge layers. The validity of this space charge concept was checked for Y2O3-doped CeO2 ceramic of high purity. Electrical fields up to 2 x 10(5) V cm(-1) were applied to the grain boundaries of 1.0 mol % Y2O3-doped CeO2 at 400 degrees C in air, and the grain boundary properties were separated by means of impedance spectroscopy. It was discovered that the current-voltage relation for individual grain boundary was nonlinear, and that the effective grain boundary thickness increased with increasing bias, which supports the space charge concept. (C) 2004 The Electrochemical Society.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Mi, S.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5304
700 1 _ |a Waser, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1149/1.1830393
|g Vol. 8, p. J1 - J3
|p J1 - J3
|q 8|0 PERI:(DE-600)1483551-4
|t Electrochemical and solid-state letters
|v 8
|y 2005
|x 1099-0062
856 7 _ |u http://dx.doi.org/10.1149/1.1830393
|u http://hdl.handle.net/2128/2676
856 4 _ |u https://juser.fz-juelich.de/record/44540/files/65057.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/44540/files/65057.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/44540/files/65057.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/44540/files/65057.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:44540
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 0
920 1 _ |k IFF-IMF
|l Mikrostrukturforschung
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB37
|x 1
970 _ _ |a VDB:(DE-Juel1)65057
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)PGI-5-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21