000044640 001__ 44640
000044640 005__ 20170601194650.0
000044640 0247_ $$2WOS$$aWOS:000088764100007
000044640 037__ $$aPreJuSER-44640
000044640 041__ $$aeng
000044640 082__ $$a580
000044640 084__ $$2WoS$$aPlant Sciences
000044640 1001_ $$0P:(DE-HGF)0$$aMallick, N.$$b0
000044640 245__ $$aEvidence supporting nitrite-dependent NO release by the green microalga, Scenedesmus obliquus
000044640 260__ $$aMünchen$$bElsevier$$c2000
000044640 300__ $$a40 - 46
000044640 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000044640 3367_ $$2DataCite$$aOutput Types/Journal article
000044640 3367_ $$00$$2EndNote$$aJournal Article
000044640 3367_ $$2BibTeX$$aARTICLE
000044640 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000044640 3367_ $$2DRIVER$$aarticle
000044640 440_0 $$08161$$aJournal of Plant Physiology$$v157$$x0176-1617
000044640 500__ $$aRecord converted from VDB: 12.11.2012
000044640 520__ $$aStudies conducted with respiratory electron transport chain inhibitors and uncouplers such as antimycin A, rotenone, 2,4-dinitrophenol, pentachlorophenol and carbonyl cyanide m-chlorophenylhydrazone resulted in sudden NO bursts in Scenedesmus suspensions incubated under dark-aerobic conditions with supplemented glucose. Anaerobiosis was also found to increase NO production significantly in dark-incubated cells of Scenedesmus. These NO bursts, quite comparable to the usual dight-off, peak (as always appeared after sudden darkening), could be correlated with the increased nitrite concentration under the above-mentioned conditions. Moreover, similar NO bursts concomitant with nitrite accumulation were also observed following supplementation of cycloheximide, MSX, Basta, glutarate and glyphosate. These results therefore support our hypothesis that accumulation of nitrite is the prerequisite for NO production in the case of the chlorophycean microalga Scenedesmus. A hypothetical model for NO formation is proposed.
000044640 536__ $$0G:(DE-Juel1)FUEK82$$2G:(DE-HGF)$$aPflanzenphysiologie des Spurengasaustauschs mit der Atmosphäre$$c36.61.0$$x0
000044640 588__ $$aDataset connected to Web of Science
000044640 650_7 $$2WoSType$$aJ
000044640 65320 $$2Author$$aScenedesmus
000044640 65320 $$2Author$$anitric oxide
000044640 65320 $$2Author$$aMSX glyphosate
000044640 65320 $$2Author$$acycloheximide
000044640 65320 $$2Author$$apentachloraphenol
000044640 65320 $$2Author$$aanaerobiosis
000044640 7001_ $$0P:(DE-Juel1)VDB10697$$aMohn, F. H.$$b1$$uFZJ
000044640 7001_ $$0P:(DE-HGF)0$$aRai, L. C.$$b2
000044640 7001_ $$0P:(DE-Juel1)VDB10698$$aSoeder, C. J.$$b3$$uFZJ
000044640 773__ $$0PERI:(DE-600)2029184-X$$gVol. 157, p. 40 - 46$$p40 - 46$$q157<40 - 46$$tJournal of plant physiology$$v157$$x0176-1617$$y2000
000044640 909CO $$ooai:juser.fz-juelich.de:44640$$pVDB
000044640 9131_ $$0G:(DE-Juel1)FUEK82$$bUmweltvorsorgeforschung$$k36.61.0$$lUmweltforschung$$vPflanzenphysiologie des Spurengasaustauschs mit der Atmosphäre$$x0
000044640 9141_ $$y2000
000044640 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000044640 9201_ $$0I:(DE-Juel1)VDB144$$d31.12.2001$$gICG-6$$kICG-6$$lBiologie des Stoffaustauschs$$x0
000044640 970__ $$aVDB:(DE-Juel1)6534
000044640 980__ $$aVDB
000044640 980__ $$aConvertedRecord
000044640 980__ $$ajournal
000044640 980__ $$aI:(DE-Juel1)VDB144
000044640 980__ $$aUNRESTRICTED