001     44759
005     20240610120257.0
017 _ _ |a This version is available at the following Publisher URL: http://www.biophysj.org/
024 7 _ |a pmid:15731388
|2 pmid
024 7 _ |a pmc:PMC1305474
|2 pmc
024 7 _ |a 10.1529/biophysj.104.047993
|2 DOI
024 7 _ |a WOS:000228688800021
|2 WOS
024 7 _ |a 2128/1516
|2 Handle
037 _ _ |a PreJuSER-44759
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biophysics
100 1 _ |a Grudinin, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB10417
245 _ _ |a Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin-Molecular Dynamics Simulations of the Ground State and the M-Intermediate
260 _ _ |a New York, NY
|b Rockefeller Univ. Press
|c 2005
300 _ _ |a 3252 - 3261
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Biophysical Journal
|x 0006-3495
|0 882
|v 88
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is approximately 95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
536 _ _ |a Neurowissenschaften
|c L01
|0 G:(DE-Juel1)FUEK255
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Bacteriorhodopsins: chemistry
650 _ 2 |2 MeSH
|a Biological Transport
650 _ 2 |2 MeSH
|a Biophysics: methods
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Crystallography, X-Ray
650 _ 2 |2 MeSH
|a Diffusion
650 _ 2 |2 MeSH
|a Dimerization
650 _ 2 |2 MeSH
|a Halobacterium: metabolism
650 _ 2 |2 MeSH
|a Hydrogen Bonding
650 _ 2 |2 MeSH
|a Models, Chemical
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Models, Statistical
650 _ 2 |2 MeSH
|a Phosphatidylcholines: chemistry
650 _ 2 |2 MeSH
|a Protein Conformation
650 _ 2 |2 MeSH
|a Protein Structure, Tertiary
650 _ 2 |2 MeSH
|a Protons
650 _ 2 |2 MeSH
|a Software
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Water: chemistry
650 _ 7 |0 0
|2 NLM Chemicals
|a Phosphatidylcholines
650 _ 7 |0 0
|2 NLM Chemicals
|a Protons
650 _ 7 |0 53026-44-1
|2 NLM Chemicals
|a Bacteriorhodopsins
650 _ 7 |0 6753-55-5
|2 NLM Chemicals
|a 1-palmitoyl-2-oleoylphosphatidylcholine
650 _ 7 |0 7732-18-5
|2 NLM Chemicals
|a Water
650 _ 7 |a J
|2 WoSType
700 1 _ |a Büldt, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)131957
700 1 _ |a Gordeliy, I. L.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB32237
700 1 _ |a Baumgaertner, A.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB17756
773 _ _ |a 10.1529/biophysj.104.047993
|g Vol. 88, p. 3252 - 3261
|p 3252 - 3261
|q 88<3252 - 3261
|0 PERI:(DE-600)1477214-0
|t Biophysical journal
|v 88
|y 2005
|x 0006-3495
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305474
856 4 _ |u https://juser.fz-juelich.de/record/44759/files/65846.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/44759/files/65846.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/44759/files/65846.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/44759/files/65846.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:44759
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
913 1 _ |k L01
|v Neurowissenschaften
|l Funktion und Dysfunktion des Nervensystems
|b Leben
|0 G:(DE-Juel1)FUEK255
|x 1
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-TH-II
|l Theorie II
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB31
|x 0
920 1 _ |k IBI-2
|l Biologische Strukturforschung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB58
|x 1
970 _ _ |a VDB:(DE-Juel1)65846
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21