Hauptseite > Publikationsdatenbank > Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin-Molecular Dynamics Simulations of the Ground State and the M-Intermediate > print |
001 | 44759 | ||
005 | 20240610120257.0 | ||
017 | _ | _ | |a This version is available at the following Publisher URL: http://www.biophysj.org/ |
024 | 7 | _ | |a pmid:15731388 |2 pmid |
024 | 7 | _ | |a pmc:PMC1305474 |2 pmc |
024 | 7 | _ | |a 10.1529/biophysj.104.047993 |2 DOI |
024 | 7 | _ | |a WOS:000228688800021 |2 WOS |
024 | 7 | _ | |a 2128/1516 |2 Handle |
037 | _ | _ | |a PreJuSER-44759 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
084 | _ | _ | |2 WoS |a Biophysics |
100 | 1 | _ | |a Grudinin, S. |b 0 |u FZJ |0 P:(DE-Juel1)VDB10417 |
245 | _ | _ | |a Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin-Molecular Dynamics Simulations of the Ground State and the M-Intermediate |
260 | _ | _ | |a New York, NY |b Rockefeller Univ. Press |c 2005 |
300 | _ | _ | |a 3252 - 3261 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |a Biophysical Journal |x 0006-3495 |0 882 |v 88 |
500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
520 | _ | _ | |a Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is approximately 95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR. |
536 | _ | _ | |a Kondensierte Materie |c M02 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK242 |x 0 |
536 | _ | _ | |a Neurowissenschaften |c L01 |0 G:(DE-Juel1)FUEK255 |x 1 |
588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
650 | _ | 2 | |2 MeSH |a Bacteriorhodopsins: chemistry |
650 | _ | 2 | |2 MeSH |a Biological Transport |
650 | _ | 2 | |2 MeSH |a Biophysics: methods |
650 | _ | 2 | |2 MeSH |a Computer Simulation |
650 | _ | 2 | |2 MeSH |a Crystallography, X-Ray |
650 | _ | 2 | |2 MeSH |a Diffusion |
650 | _ | 2 | |2 MeSH |a Dimerization |
650 | _ | 2 | |2 MeSH |a Halobacterium: metabolism |
650 | _ | 2 | |2 MeSH |a Hydrogen Bonding |
650 | _ | 2 | |2 MeSH |a Models, Chemical |
650 | _ | 2 | |2 MeSH |a Models, Molecular |
650 | _ | 2 | |2 MeSH |a Models, Statistical |
650 | _ | 2 | |2 MeSH |a Phosphatidylcholines: chemistry |
650 | _ | 2 | |2 MeSH |a Protein Conformation |
650 | _ | 2 | |2 MeSH |a Protein Structure, Tertiary |
650 | _ | 2 | |2 MeSH |a Protons |
650 | _ | 2 | |2 MeSH |a Software |
650 | _ | 2 | |2 MeSH |a Time Factors |
650 | _ | 2 | |2 MeSH |a Water: chemistry |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Phosphatidylcholines |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Protons |
650 | _ | 7 | |0 53026-44-1 |2 NLM Chemicals |a Bacteriorhodopsins |
650 | _ | 7 | |0 6753-55-5 |2 NLM Chemicals |a 1-palmitoyl-2-oleoylphosphatidylcholine |
650 | _ | 7 | |0 7732-18-5 |2 NLM Chemicals |a Water |
650 | _ | 7 | |a J |2 WoSType |
700 | 1 | _ | |a Büldt, G. |b 1 |u FZJ |0 P:(DE-Juel1)131957 |
700 | 1 | _ | |a Gordeliy, I. L. |b 2 |u FZJ |0 P:(DE-Juel1)VDB32237 |
700 | 1 | _ | |a Baumgaertner, A. |b 3 |u FZJ |0 P:(DE-Juel1)VDB17756 |
773 | _ | _ | |a 10.1529/biophysj.104.047993 |g Vol. 88, p. 3252 - 3261 |p 3252 - 3261 |q 88<3252 - 3261 |0 PERI:(DE-600)1477214-0 |t Biophysical journal |v 88 |y 2005 |x 0006-3495 |
856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305474 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/44759/files/65846.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/44759/files/65846.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/44759/files/65846.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/44759/files/65846.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:44759 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
913 | 1 | _ | |k M02 |v Kondensierte Materie |l Kondensierte Materie |b Materie |0 G:(DE-Juel1)FUEK242 |x 0 |
913 | 1 | _ | |k L01 |v Neurowissenschaften |l Funktion und Dysfunktion des Nervensystems |b Leben |0 G:(DE-Juel1)FUEK255 |x 1 |
914 | 1 | _ | |y 2005 |
915 | _ | _ | |0 StatID:(DE-HGF)0010 |a JCR/ISI refereed |
915 | _ | _ | |2 StatID |0 StatID:(DE-HGF)0510 |a OpenAccess |
920 | 1 | _ | |k IFF-TH-II |l Theorie II |d 31.12.2006 |g IFF |0 I:(DE-Juel1)VDB31 |x 0 |
920 | 1 | _ | |k IBI-2 |l Biologische Strukturforschung |d 31.12.2006 |g IBI |0 I:(DE-Juel1)VDB58 |x 1 |
970 | _ | _ | |a VDB:(DE-Juel1)65846 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a VDB |
980 | _ | _ | |a JUWEL |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ISB-2-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
980 | _ | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
981 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
981 | _ | _ | |a I:(DE-Juel1)ISB-2-20090406 |
981 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|