001     4488
005     20180208210834.0
024 7 _ |2 pmid
|a pmid:19588020
024 7 _ |2 DOI
|a 10.1039/b901026b
024 7 _ |2 WOS
|a WOS:000268034900017
024 7 _ |2 ISSN
|a 1463-9076
037 _ _ |a PreJuSER-4488
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |a Schindler, C.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB61376
245 _ _ |a Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells
260 _ _ |c 2009
|a Cambridge
|b RSC Publ.
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Chemistry Chemical Physics
|x 1463-9076
|0 4916
|y xx
|v xx
500 _ _ |a Fruitful discussions with Prof. T. Hasegawa, Dr G. Staikov and Dr R. Bruchhaus and financial support by the Deutsche Forschungsgemeinschaft are gratefully acknowledged. The authors thank B. Hollander for support with the RBS measurements.
520 _ _ |a Resistive switching due to electrochemical filament formation and dissolution is observed in a variety of materials. Mostly, an electroforming process is required to modify the active material and form a first filament. In this study, the forming process and low current resistive switching in Ag/Ag-Ge-Se/Pt memory cells was investigated. In contrast to most other resistively switching memory devices, the first current-voltage cycle was needed to reduce the metal content in the chalcogenide layer. Temperature dependent and sweep-rate dependent measurements of the faradaic current were performed, and the metal content in the Ag-Ge-Se thin film was estimated. After forming, resistive switching with a write current of only 1 nA was observed demonstrating the feasibility of the fabrication of memory cells with ultra low power consumption.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Valov, I.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB85752
700 1 _ |a Waser, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |0 PERI:(DE-600)1476244-4
|a 10.1039/b901026b
|g Vol. 11
|q 11
|t Physical Chemistry Chemical Physics
|v 11
|x 1463-9076
|y 2009
856 7 _ |u http://dx.doi.org/10.1039/b901026b
909 C O |o oai:juser.fz-juelich.de:4488
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2009
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)111462
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21