001     45233
005     20240712100823.0
024 7 _ |a 10.1029/2004JD005268
|2 DOI
024 7 _ |a WOS:000227874900003
|2 WOS
024 7 _ |a 0141-8637
|2 ISSN
024 7 _ |a 2128/20490
|2 Handle
037 _ _ |a PreJuSER-45233
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Steinhorst, H.-M.
|0 P:(DE-Juel1)VDB17032
|b 0
|u FZJ
245 _ _ |a How permeable is the edge of the Arctic vortex: Model studies of winter 1999-2000
260 _ _ |c 2005
|a Washington, DC
|b Union
300 _ _ |a D06105
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Geophysical Research D: Atmospheres
|x 0148-0227
|0 6393
|y 6
|v 110
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The edge of the Arctic vortex constitutes a strong barrier to transport; however, the extent of isolation of the vortex air as a function of altitude and season is relatively poorly quantified. In this study, by examining the transport of midlatitude air parcels across the vortex edge into the vortex, we analyze the permeability of the vortex edge. With the three-dimensional version of CLaMS (Chemical Lagrangian Model of the Stratosphere) we explore the dilution of the vortex air due to mixing in winter 1999-2000. An artificial, passive tracer was initialized on 1 December 1999 inside the polar vortex with a value of 100% and with a value of zero outside the polar vortex. Using several different definitions of the vortex edge, the resulting intrusions of midlatitude air into the vortex show the same mean features. This demonstrates that the diagnosed dilution does not strongly depend on the details of the definition of the vortex edge. At about the end of March 2000, the vertical structure of the vortex consisted of well-isolated, pure vortex layers around 500 K and 750 K, with some more diluted layers in between and at the vortex bottom. The influence of wave activity on the evolution of the intrusion layers is studied. The divergence of the Eliassen-Palm flux shows such a high variability during the whole period that it is not possible to assess a direct causality of certain intrusion layers and some specific patterns. Some characteristics of the vortex edge, in particular the shape of the gradient of potential vorticity (PV), can influence the dilution of the vortex. In cases without a distinct maximum in the PV gradient, the defined "vortex edge'' may vary substantially from day to day. The comparison of some properties of the vortex (wind speed, PV field, area of the vortex, the maximum of the PV gradient) of undisturbed versus diluted layers and the variation in time of the intrusions were analyzed. All observed intrusions begin in conditions of weak PV gradient, indicating that the value of the maximum of the PV gradient may be used as a quantitative measure of the permeability of the vortex edge.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Konopka, Paul
|0 P:(DE-Juel1)129130
|b 1
|u FZJ
700 1 _ |a Günther, G.
|0 P:(DE-Juel1)129123
|b 2
|u FZJ
700 1 _ |a Müller, R.
|0 P:(DE-Juel1)129138
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)2016800-7
|a 10.1029/2004JD005268
|g Vol. 110, p. D06105
|p D06105
|q 110|t Journal of Geophysical Research
|v 110
|x 0148-0227
|y 2005
|t Journal of geophysical research / Atmospheres
856 7 _ |u http://dx.doi.org/10.1029/2004JD005268
856 4 _ |u https://juser.fz-juelich.de/record/45233/files/2004JD005268.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/45233/files/2004JD005268.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:45233
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2005
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k ICG-I
|l Stratosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB47
|x 0
970 _ _ |a VDB:(DE-Juel1)67946
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)IEK-7-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21