000004552 001__ 4552
000004552 005__ 20180208201412.0
000004552 0247_ $$2DOI$$a10.1080/01969720902922400
000004552 0247_ $$2WOS$$aWOS:000266436100002
000004552 0247_ $$2ISSN$$a0196-9722
000004552 037__ $$aPreJuSER-4552
000004552 041__ $$aeng
000004552 082__ $$a000
000004552 084__ $$2WoS$$aComputer Science, Cybernetics
000004552 1001_ $$0P:(DE-HGF)0$$aSchadschneider, A.$$b0
000004552 245__ $$aValidation of CA Models of Pedestrian Dynamics with Fundamental Diagrams
000004552 260__ $$aWashington, DC$$bTaylor & Francis$$c2009
000004552 300__ $$a367 - 389
000004552 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000004552 3367_ $$2DataCite$$aOutput Types/Journal article
000004552 3367_ $$00$$2EndNote$$aJournal Article
000004552 3367_ $$2BibTeX$$aARTICLE
000004552 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000004552 3367_ $$2DRIVER$$aarticle
000004552 440_0 $$013102$$aCybernetics and Systems$$v40$$x0196-9722$$y5
000004552 500__ $$aRecord converted from VDB: 12.11.2012
000004552 520__ $$aIn recent years, several approaches for modelling pedestrian dynamics have been proposed. However, so far not much attention has been paid to their quantitative validation. Instead the focus has been on the reproduction of empirically observed collective phenomena like the dynamical formation of lanes. Although this gives an indication of the realism of the model, for practical applications as in safety analysis, reliable quantitative predictions are required. We discuss the experimental situation focusing on the fundamental diagram that is essential for calibration. Furthermore, we present a cellular automaton, the floor field model, which forms the basis for various multi-agent simulations. Apart from the properties of its fundamental diagram, we discuss the role of conflicts and friction effects and their influence on evacuation times.
000004552 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000004552 588__ $$aDataset connected to Web of Science
000004552 650_7 $$2WoSType$$aJ
000004552 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, A.$$b1$$uFZJ
000004552 773__ $$0PERI:(DE-600)2444258-6$$a10.1080/01969720902922400$$gVol. 40, p. 367 - 389$$p367 - 389$$q40<367 - 389$$tCybernetics and Systems$$v40$$x0196-9722$$y2009
000004552 8567_ $$uhttp://dx.doi.org/10.1080/01969720902922400
000004552 909CO $$ooai:juser.fz-juelich.de:4552$$pVDB
000004552 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000004552 9141_ $$y2009
000004552 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000004552 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000004552 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000004552 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000004552 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000004552 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000004552 970__ $$aVDB:(DE-Juel1)111649
000004552 980__ $$aVDB
000004552 980__ $$aConvertedRecord
000004552 980__ $$ajournal
000004552 980__ $$aI:(DE-Juel1)JSC-20090406
000004552 980__ $$aUNRESTRICTED