001     45521
005     20200423204117.0
024 7 _ |a pmid:16269752
|2 pmid
024 7 _ |a pmc:PMC1287687
|2 pmc
024 7 _ |a 10.1128/AEM.71.11.7139-7144.2005
|2 DOI
024 7 _ |a WOS:000233225000083
|2 WOS
024 7 _ |a 2128/2423
|2 Handle
024 7 _ |a altmetric:21813686
|2 altmetric
037 _ _ |a PreJuSER-45521
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biotechnology & Applied Microbiology
084 _ _ |2 WoS
|a Microbiology
100 1 _ |a Peters-Wendisch, P.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB1238
245 _ _ |a Metabolic Engineering of Corynebacterium glutamicum for L-Serine production
260 _ _ |a Washington, DC [u.a.]
|b Soc.
|c 2005
300 _ _ |a 7139 - 7144
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied and Environmental Microbiology
|x 0099-2240
|0 8561
|y 11
|v 71
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism.
536 _ _ |a Biotechnologie
|c L02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK256
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Corynebacterium glutamicum: enzymology
650 _ 2 |2 MeSH
|a Corynebacterium glutamicum: genetics
650 _ 2 |2 MeSH
|a Culture Media
650 _ 2 |2 MeSH
|a Gene Deletion
650 _ 2 |2 MeSH
|a Gene Expression Regulation, Bacterial
650 _ 2 |2 MeSH
|a Genetic Engineering: methods
650 _ 2 |2 MeSH
|a Glycine Hydroxymethyltransferase: genetics
650 _ 2 |2 MeSH
|a Glycine Hydroxymethyltransferase: metabolism
650 _ 2 |2 MeSH
|a L-Serine Dehydratase: genetics
650 _ 2 |2 MeSH
|a L-Serine Dehydratase: metabolism
650 _ 2 |2 MeSH
|a Phosphoglycerate Dehydrogenase: genetics
650 _ 2 |2 MeSH
|a Phosphoglycerate Dehydrogenase: metabolism
650 _ 2 |2 MeSH
|a Phosphoric Monoester Hydrolases: genetics
650 _ 2 |2 MeSH
|a Phosphoric Monoester Hydrolases: metabolism
650 _ 2 |2 MeSH
|a Serine: biosynthesis
650 _ 2 |2 MeSH
|a Transaminases: genetics
650 _ 2 |2 MeSH
|a Transaminases: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Culture Media
650 _ 7 |0 56-45-1
|2 NLM Chemicals
|a Serine
650 _ 7 |0 EC 1.1.1.95
|2 NLM Chemicals
|a Phosphoglycerate Dehydrogenase
650 _ 7 |0 EC 2.1.2.1
|2 NLM Chemicals
|a Glycine Hydroxymethyltransferase
650 _ 7 |0 EC 2.6.1.-
|2 NLM Chemicals
|a Transaminases
650 _ 7 |0 EC 2.6.1.52
|2 NLM Chemicals
|a phosphoserine aminotransferase
650 _ 7 |0 EC 3.1.3.-
|2 NLM Chemicals
|a Phosphoric Monoester Hydrolases
650 _ 7 |0 EC 3.1.3.3
|2 NLM Chemicals
|a phosphoserine phosphatase
650 _ 7 |0 EC 4.3.1.17
|2 NLM Chemicals
|a L-Serine Dehydratase
650 _ 7 |a J
|2 WoSType
700 1 _ |a Stolz, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB28996
700 1 _ |a Etterich, H.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB25622
700 1 _ |a Kennerknecht, N.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB2921
700 1 _ |a Sahm, H.
|b 4
|u FZJ
|0 P:(DE-Juel1)128985
700 1 _ |a Eggeling, L.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB57928
773 _ _ |a 10.1128/AEM.71.11.7139-7144.2005
|g Vol. 71, p. 7139 - 7144
|p 7139 - 7144
|q 71<7139 - 7144
|0 PERI:(DE-600)1478346-0
|t Applied and environmental microbiology
|v 71
|y 2005
|x 0099-2240
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1287687
856 4 _ |u https://juser.fz-juelich.de/record/45521/files/69626.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/45521/files/69626.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/45521/files/69626.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/45521/files/69626.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:45521
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k L02
|v Biotechnologie
|l Biotechnologie
|b Leben
|0 G:(DE-Juel1)FUEK256
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IBT-1
|l Biotechnologie 1
|g IBT
|z ab 31.10.10 weitergeführt als IBG-1
|0 I:(DE-Juel1)VDB55
|x 0
970 _ _ |a VDB:(DE-Juel1)69626
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBG-1-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21