000045605 001__ 45605
000045605 005__ 20180209102221.0
000045605 0247_ $$2pmid$$apmid:16078071
000045605 0247_ $$2DOI$$a10.1007/s00425-005-0060-8
000045605 0247_ $$2WOS$$aWOS:000233725000003
000045605 037__ $$aPreJuSER-45605
000045605 041__ $$aeng
000045605 082__ $$a580
000045605 084__ $$2WoS$$aPlant Sciences
000045605 1001_ $$0P:(DE-Juel1)129338$$aJanzik, I.$$b0$$uFZJ
000045605 245__ $$aOzone has dramatic effects on the regulation of the prechorismate pathway in tobacco (Nicotiana tabacum L.cv. Bel W3)
000045605 260__ $$aBerlin$$bSpringer$$c2005
000045605 300__ $$a20 - 27
000045605 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000045605 3367_ $$2DataCite$$aOutput Types/Journal article
000045605 3367_ $$00$$2EndNote$$aJournal Article
000045605 3367_ $$2BibTeX$$aARTICLE
000045605 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000045605 3367_ $$2DRIVER$$aarticle
000045605 440_0 $$04992$$aPlanta$$v223$$x0032-0935$$y1
000045605 500__ $$aRecord converted from VDB: 12.11.2012
000045605 520__ $$aThe accumulation of aromatic secondary metabolites is a well-known element of the plant response to ozone. Most of these metabolites are synthesized via the three aromatic amino acids phenylalanine, tyrosine and tryptophan. Before branching, the biosynthetic pathway to the three amino acids shares seven enzymatic steps, called the prechorismate pathway, catalysed by 3-deoxy-D: -arabino-heptulosonate-7-phosphate (DAHP) synthase [EC 2.5.1.54], 3-dehydroquinate synthase [EC 4.2.3.4], 3-dehydroquinate dehydratase [EC 4.2.1.10]-shikimate 5-dehydrogenase [EC 1.1.1.25], shikimate kinase [EC 2.7.1.71], 5-enolpyruvylshikimate 3-phosphate synthase [EC 2.5.1.19] and chorismate synthase [EC 4.2.3.5]). We have studied the transcript level of these enzymes and the aromatic metabolite profile in the ozone sensitive tobacco cultivar BelW3 (Nicotiana tabacum L. cv Bel W3), when exposed to an acute ozone pulse (160 nl l(-1), 5 h). Specific cDNA-fragments of the corresponding six genes were isolated from tobacco Bel W3 and used as probes for determining the expression of the prechorismate pathway genes. The fully expanded leaves of ozone treated plants, which developed symptoms like necrotic leaf spots and accumulation of aromatic metabolites, showed a clear induction of the shikimate pathway genes; indicating, that this induction is linked to the development of the symptoms. Distinct kinetics and magnitudes were observed in tobacco leaves for the ozone dependent enhanced mRNA accumulation of the aforementioned genes in BelW3. The strongest and earliest induction due to ozone treatment could be observed for DAHP synthase. An isoform-specific analysis of the transcripts showed a strong induction on transcript level only for one of three isoforms, which was followed by the induction of the DAHP synthase also on protein level. The different induction kinetics of the prechorismate pathway genes indicate that their regulation in response to ozone might be regulated by different signals, for example, ethylene, reactive oxygen species or salicylic acid, which also occur with different kinetics and thus may play different roles in the plant response to ozone.
000045605 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000045605 588__ $$aDataset connected to Web of Science, Pubmed
000045605 650_2 $$2MeSH$$a3-Deoxy-7-Phosphoheptulonate Synthase
000045605 650_2 $$2MeSH$$aAldehyde-Lyases: biosynthesis
000045605 650_2 $$2MeSH$$aAldehyde-Lyases: genetics
000045605 650_2 $$2MeSH$$aAmino Acids, Aromatic: biosynthesis
000045605 650_2 $$2MeSH$$aBlotting, Northern
000045605 650_2 $$2MeSH$$aChorismic Acid: metabolism
000045605 650_2 $$2MeSH$$aChromatography, High Pressure Liquid
000045605 650_2 $$2MeSH$$aDNA, Complementary
000045605 650_2 $$2MeSH$$aDNA, Plant
000045605 650_2 $$2MeSH$$aEnzyme Induction
000045605 650_2 $$2MeSH$$aGene Expression Regulation, Enzymologic
000045605 650_2 $$2MeSH$$aGene Expression Regulation, Plant
000045605 650_2 $$2MeSH$$aOzone: pharmacology
000045605 650_2 $$2MeSH$$aPhosphotransferases (Alcohol Group Acceptor): metabolism
000045605 650_2 $$2MeSH$$aPlant Leaves
000045605 650_2 $$2MeSH$$aTobacco: enzymology
000045605 650_2 $$2MeSH$$aTobacco: genetics
000045605 650_2 $$2MeSH$$aTobacco: metabolism
000045605 650_7 $$00$$2NLM Chemicals$$aAmino Acids, Aromatic
000045605 650_7 $$00$$2NLM Chemicals$$aDNA, Complementary
000045605 650_7 $$00$$2NLM Chemicals$$aDNA, Plant
000045605 650_7 $$010028-15-6$$2NLM Chemicals$$aOzone
000045605 650_7 $$0617-12-9$$2NLM Chemicals$$aChorismic Acid
000045605 650_7 $$0EC 2.5.1.54$$2NLM Chemicals$$a3-Deoxy-7-Phosphoheptulonate Synthase
000045605 650_7 $$0EC 2.7.1.-$$2NLM Chemicals$$aPhosphotransferases (Alcohol Group Acceptor)
000045605 650_7 $$0EC 2.7.1.71$$2NLM Chemicals$$ashikimate kinase
000045605 650_7 $$0EC 4.1.2.-$$2NLM Chemicals$$aAldehyde-Lyases
000045605 650_7 $$2WoSType$$aJ
000045605 65320 $$2Author$$aprechorismate pathway
000045605 65320 $$2Author$$ashikimate pathway
000045605 65320 $$2Author$$atobacco Bel W3
000045605 65320 $$2Author$$aozone
000045605 7001_ $$0P:(DE-Juel1)129386$$aPreiskowski, S.$$b1$$uFZJ
000045605 7001_ $$0P:(DE-Juel1)VDB4417$$aKneifel, H.$$b2$$uFZJ
000045605 773__ $$0PERI:(DE-600)1463030-8$$a10.1007/s00425-005-0060-8$$gVol. 223, p. 20 - 27$$p20 - 27$$q223<20 - 27$$tPlanta$$v223$$x0032-0935$$y2005
000045605 8567_ $$uhttp://dx.doi.org/10.1007/s00425-005-0060-8
000045605 909CO $$ooai:juser.fz-juelich.de:45605$$pVDB
000045605 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000045605 9141_ $$y2005
000045605 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000045605 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000045605 970__ $$aVDB:(DE-Juel1)69966
000045605 980__ $$aVDB
000045605 980__ $$aConvertedRecord
000045605 980__ $$ajournal
000045605 980__ $$aI:(DE-Juel1)IBG-2-20101118
000045605 980__ $$aUNRESTRICTED
000045605 981__ $$aI:(DE-Juel1)IBG-2-20101118
000045605 981__ $$aI:(DE-Juel1)ICG-3-20090406