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Abstract. Ellipsometric microscopy is a technique for simultaneous measure-
ment of thin film thickness and index of refraction at a lateral resolution of
approximately 1 um. Up to now this technique has been used on silicon—air
interfaces. However, biological processes take place often in aqueous solution
and are studied at the glass—water interface. Due to the very low reflectivity of
this interface we had to improve ellipsometric microscopy substantially. Here we
present our approach to suppress the intensity of internal stray light by several
orders of magnitude and show quantitative and laterally resolved ellipsometric
measurements at the glass—water interface. When instrumental polarization was
taken into account, an accuracy of §¥ = 0.41° and §A = 4.3° was achieved.
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1. Introduction

Thin film properties are crucial in many biological problems, especially those related to the
behaviour of living cells. For example, coatings from proteins or polymers are the standard
method for biofunctionalization and biocompatibilization of surfaces. Other areas of interest
concern the interaction of microstructured thin films with either living cells [1]—[3] or cell model
systems [4]-[6]. Moreover, living cells are known to produce thin films during locomotion
which are also known as ‘migration tracks’ and exhibit pronounced inhomogeneities on the
um length scale [7, 8]. In this context it is of special interest to investigate such films at
the glass—water interface, thus allowing for measurements of biologically relevant systems
in this well-characterized environment. An established tool for such investigations is the
reflection interference contrast microscope [9]-[11]. Relative height and thickness changes can
be measured at high lateral resolution (0.5 um) with nanometre vertical resolution. In recent
times the main drawback of the technique—ambiguous height determination from the measured
intensity—was eliminated by extension to dual wavelength operation [12].

Here we present the adaption of another combination of microscopy with a sensitive optical
technique for thin film studies in order to allow for investigations at the glass—water interface:
ellipsometric microscopy. The ability of ellipsometry to measure simultaneously thickness
and refractive index of thin layers adds another dimension to the obtained results. It allows
discrimination of different materials or enables indirect measurement of quantities affecting the
refracting index, e.g. temperature or concentration.

Many approaches to empower ellipsometry with spatial resolution have been reported in
the past [13]-[20] and their characteristics were compared to our instrument in [21], where
we demonstrated decent ellipsometric performance at the silicon—air interface. This required
correction for several systematic errors. The most important issues were a slight nonlinearity of
the utilized CCD camera and the instrumental polarization of the imaging optics. At the glass—
water interface quantitative ellipsometry has not been possible up to now for the following reason.
The small difference in refractive index between substrate (glass) and ambient medium (water)
results in very weakly reflecting samples. Thus, the intensity of the true image became comparable
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to the internal reflections created at the optical components of the setup, even though we had
used optimized lenses. Here we present a solution to this problem and show that quantitative and
spatially resolved ellipsometry is also possible at the glass—water interface. This is an important
step towards the application of ellipsometric microscopy to biological samples and processes.

2. Basic ellipsometry

In reflection ellipsometry, a sample is illuminated with monochromic parallel light of a well-
defined polarization. Ellipsometric setups measure the state of polarization after reflection at the
sample. Using the Fresnel equations for the propagation of light in layered media [22], optical
properties (refractive index n, thickness d) of layers thinner than the wavelength of the light itself
can be inferred from ellipsometric measurements. The change in polarization can be parametrized
by means of the ellipsometric angles W and A which are defined by the ratio of the reflection
coefficients for light polarized perpendicular (R;) and parallel (R,) to the plane of incidence:

tan We'® = Ry = @ei(“’l’_‘p-‘). (1)
R, |Ry|
The change of the amplitude ratio of the electromagnetic field components is parametrized by
tan W. A denotes the phase shift introduced between the two perpendicular components. The
range of the amplitude ratio comprises the interval [0, oo], i.e. ¥ € [0°, 90°], while for A holds
A € [0°,360°].

The design of the ellipsometric microscope is based on a rotating-analyser type ellipsometer
[23]. In this kind of ellipsometer the incoming light is linearly polarized at an angle P with respect
to the plane of incidence. Light reflected at the sample is analysed by a rotating polarizer, the
analyser. The primary measured quantity in this instrument design is the intensity of light that
passes the analyser set at an azimuthal angle A, I/(A). This intensity can be computed from the
electrical field strength (represented as the Jones vector [22]) at the detector Epy.

E
Ep« =R 4, TAR, TsR_, ( 00) (2)

T, = ((1) 8) R . (IZ’),, 1%) 3)

representing Jones matrices [22] for the analyser (T, ) and the specimen (Ts). Ry represents the
rotation matrix (with rotation angle X)

RX:<COSX sz)’

with

—sin X cos X

A and P denote the azimuthal angles of the polarizer and the analyser with respect to the plane
of incidence of the sample. E, represents the electric field strength transmitted by the polarizer.
Exploiting (2) one finds for the measured intensity, /(A), at the detector

I(A) = gpcn /2 - E]T)et -Epet = (1 +acos (2A) + bsin (2A)), 4)
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where
1 2 * 2 x s 2
Iy = ZsoanO(RpRp cos“P + R,R; sin"P), ®))

R, R} cos* P — RR} sin® P

a = ’
R, R cos? P + R,R; sin® P

(6)

B 2R(R,RY) cos Psin P
 R,R%cos®P + R,R¥sin*P’

(7)

The electric permeability is denoted by ¢y, the speed of light by ¢, and n represents the refractive
index of the medium in which the light propagates. The symbol 9i(z) denotes the real part of the
complex number z. The definition of the ellipsometric angles (1) together with (6) and (7) yields

l+a

tan W = |tan P| ] , (8)
) b

cos A = sgn(cosP sinP)——— 9)

1—a

The function sgn(x) returns the sign of x. Because the polarizer orientation P is known it is
possible to determine W and A of the sample by analysing the Fourier modes a, b of the
normalized intensity /(A) /I, incident at the detector. The remaining quadrant ambiguity is solved
by a second measurement with an inserted A /4-wave plate (the compensator). The electrical field
strength at the detector with inserted compensator is then

¢ E
Epy =R_4TARsTs R ¢ Ty s Reop ( OO) ) (10)

where C is the angle the slow axis, the A /4-wave plate, encloses with the plane of incidence and
T, 4 is the Jones matrix of a A /4-wave plate

Ty = (5 ?) ()

The intensity at the detector is

I°(A) = eoen /2 - Ef - ES = IS(1 +a“ cos (2A) + b° sin (2A)), (12)
where

I§ = yeocn/2EG[aRY R, + BRIR,], (13)
aR*R, — BR*R,

a¢ = —L 7L ﬁ“‘, (14)
aR:R, + BRER,

2R(R*R,Y)

b = PV (15)

aR%R, + BRER,
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In the previous equations, the abbreviations

o = cos’(C — P)cos® C +sin’(C — P)sin’ C, (16)

B = cos*(C — P)sin® C +sin*(C — P) cos’ C, (17)

y = sin C cos C(cos*(C — P) — sin*(C — P)) — isin(C — P) cos(C — P)
=y +iy (18)

have been used. Again, the definition of the ellipsometric angles (1) together with (14) and (15)
are employed in order to relate W and A with the Fourier coefficients a, b¢ of the measured
intensity 1€(A):

B [1+ac
tan ¥ =,/ — , (19)
aV1l—a

. _ b*
sin (A +tan ™! %) = sgn(yz)ﬁ. (20)

If the slow axis of the compensator is orientated at C = 90°, these formulae simplify to

, 1+a
tan W¢ = |tan P|

1)

_aC,

C

b
sin A = —sgn(cos P sin P) ——. (22)
1 —a?

By fitting a model function to measured W@ and A‘© values one can extract up to two optical
quantities of the layers constituting the sample. This model function is usually calculated by
applying the Fresnel formulas, valid for stratified, planar layers [22].

3. Experimental setup

The basic idea of our setup (cf figure 1) was described before [21, 24, 25]: an inverted microscope
employing epi-illumination was constructed on an optical bench. Parallel illumination of the
object was achieved by focusing a parallel, polarized beam into the back focal plane of an infinity-
corrected high-power microscope objective (Plan-Apochromat 63 x, oil immersion, NA = 1.4,
Zeiss). The crucial point in the design is that the angle of incidence can be controlled in order
to maximize the ellipsometric contrast. By laterally displacing the rigid mechanically coupled
system of DM and lens 2 (all lenses were achromatic doublets, f, = 60 mm) the pinhole is imaged
(lenses 3 and 4, f3 = 50 mm and f; = 80 mm) into the back focal plane of the objective with
a certain displacement to the optical axis. This displacement causes oblique illumination of the
object plane. The relation between displacement and incident angle can be obtained from Abbe’s
sine condition. The agreement between measured and calculated incident angle was presented
in [21, 25].
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Figure 1. Design of the ellipsometric microscope: lenses 2—4 focus a parallel
beam of light in an off-axis point of the back focal plane, resulting in oblique
illumination of the object in the front focal plane. The object, symbolized by an
arrow, is located at the upper side of the cover slide. The incoming light passes
a polarizer (P) and an optional compensator (C). The angle of incidence in the
front focal plane can be controlled by horizontally shifting the rigidly coupled
system of lens 2 and deflection mirror (DM). Light reflected and diffracted at the
object is collected by the objective, passes a computer controlled analyser (A)
and is focused onto a CCD camera (lenses 5—7). Lenses 3 and 4 form a telescopic
system, i.e. they influence the magnification of the microscope. The pinhole and
lenses 6-7 form a stray light trap. Here the illumination beam path is depicted,
i.e. wherever a focus is indicated, the illumination pinhole is imaged. Lens 7
images both pinholes to infinity and forms an image of the object on the CCD at
the same time.

At the object, light was reflected and diffracted. This light was collected by the objective and
imaged onto a CCD camera (C4880-50, Hamamatsu, Herrsching, Germany). Thereby the infinite
space between objective and tube lens 5 ( f5 = 150 mm) accommodated the optical components
necessary for illumination of the object and for the polarization analysis of the reflected light.
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As the image is maximally blurred in this region those components created almost no image
distortion. Lenses 6 and 7 (fs7 = 50 mm) and the pinhole (200 um) form a stray light trap.
These elements were not present in our previous setup and were necessary for measurements
at the glass—water interface (cf section 5.1). For each pixel the intensity /(A) was measured
as a function of the analyser angle A. Thus, each pixel of the CCD acted as a stand-alone
ellipsometer in a rotating-analyser configuration. The polarizers were mounted in stepper motor
driven goniometers (DRT 65, Owis, Staufen, Germany). A compensator (zeroth order A /4-plate,
Owis) mounted in a motorized filter wheel (Filterwheel 40, Owis) could be rotated into the
optical path. All these devices were computer controlled. The calibration of the azimuthal angles
P, A and C with respect to the plane of incidence was performed with the help of the calibration
methods of Aspnes [26] and de Nijs et al [27] and was already presented by us in [21].

Ellipsometric measurements were performed by acquiring two stacks of pictures (with and
without compensator), each taken typically at 18 equally spaced analyser angles between 0°
and 170°. For processing of raw data, a separate image processing software was developed that
computes the ellipsometric angles W and A for each pixel of the camera. The inherent quadrant
ambiguity of A was automatically resolved by combining the two data sets with and without the
compensator. Within the software it was possible to define a model for the optical properties of
the planar stratified layers of the sample and to fit the corresponding model function to either
whole pictures or selected profiles of W and A. By this procedure laterally resolved information
about the refractive index n and the thickness d of any layer could be retrieved.

4. Sample preparation

The samples were thin structured films of MgF, (n = 1.389) (99.99%, Goodfellow, Bad
Nauheim, Germany) deposited upon standard microscope glass cover slides (Karl Hecht KG,
Sondheim, Germany). Because its refractive index is similar to hydrated proteins or lipids
(n ~ 1.40-1.48 [28]) MgF, serves as a straightforward and well-controlled model system. The
cover slides were cleaned by sonification (15 min) in a 2 vol% aqueous solution of cuvette cleaner
(Hellmanex, Hellma GmbH, Miillheim, Germany). For removal of this detergent, the cover slides
were repeatedly rinsed (10 times) and sonicated in ultra pure water (produced by a Milli-Q
Reagent Grade Water System, R > 18 MQcm~!, pH 5.5, Millipore, Molsheim, France). This
cycle was repeated three times. Thin films were structured by using an electron microscopy grid
(bars: 10 um, openings: 50 um x 50 um) as mask during the deposition (thermal evaporation,
BOC Edwards Auto 306 Turbo, Kirchheim, Germany: substrate temperature 25 °C, pressure
2 x 10~ mbar, deposition rate: 4-7 nm s~!). In order to be able to determine the deposited layer
thickness accurately a second mask allowed for deposition within a6 mm x 8 mm region in close
vicinity to the structured region. Ordinary ellipsometry was not applicable for determination of the
film thickness on glass substrates, because the backside air—glass interface introduced a spurious
reflex. The refractive indices were determined from ellipsometric measurements (A = 632.8 nm,
Plasmos GmbH, Miinchen, Germany) at auxiliary silicon substrates coated during the same
deposition and closely located to the glass cover slides. Film thickness on the actual cover slides
were determined by measuring the height of the macroscopic plateau next to the structure with a
stylus profiler (DekTak 3030ST, 2.5 um needle, Veeco Instruments GmbH, Miinchen, Germany).
The obtained values were verified with geometry-corrected thicknesses measured with the point
ellipsometer on the auxiliary silicon wafers. For the glass samples we assume the measured film
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Figure 2. Measurements at the glass—water interface without the stray light
trap: data obtained from samples with different heights of MgF, and measured
with (crosses, red) and without compensator (circles, blue) in comparison to
expected values (continuous line, black). The incident angle and polarizer setting
angle were ® = 46.6° and P = 45°. All shown data points were already zone
averaged, corrected for nonlinearities and by background subtraction for internal
reflections. Nevertheless, the data were very noisy and could not be corrected for
the instrumental polarization. This demonstrates the necessity to eliminate stray
light.

thicknesses to be accurate up to £5 nm, which is the accuracy estimated from repeated stylus
profiler measurements.

For the actual measurements, the coated cover slides were mounted in a chamber which can
be filled with fluids. Stress, which could make the cover slide birefringent, is only exerted at its
very edge and therefore it is assumed to be free of birefringence.

5. Results

5.1. Improvement of stray light to signal ratio

Our previous experiments [25] showed that the elimination of stray light is crucial in order to
allow for accurate measurements at the glass—water interface. Although we used only lenses with
anti-reflection coatings optimized for the employed wavelength (A = 546.1 nm) a prohibitive
level of stray light was present in our original setup. The measured W and A values were extremely
noisy and exhibited considerable deviations from expected values (cf figure 2). Therefore, it was
necessary to find a way to block this stray light. This was achieved by spatially filtering the
reflected light very close to the detector. The filtering aperture had to be integrated into the setup
in such a way that not too much spatial or ellipsometric information was lost. The appropriate
location for such an aperture was within a plane conjugated to the back focal plane of the
objective. In such a plane the partition of the light carrying the ellipsometric information, i.e. the
light reflected at the object, is focused on a tiny spot. Unfortunately, the setup presented earlier
in [25] did not accommodate any accessible location. Hence, we created a new plane conjugated
to the back focal plane by inserting a telescopic system just before the CCD camera (cf figure 1).
At the focus we placed a pinhole with 200 um diameter. Because the sample is illuminated under
a certain angle of incidence ® # 0° the pinhole is not centred with respect to the optical axis.
Note that the pinhole diameter Dpy, effectively limits the numerical aperture of the microscope
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16
(b) Internal reflections subtracted from raw data (200 um pinhole).

Figure 3. (a) Raw images taken at 18 different analyser azimuths A and obtained
with a 200 pm stray light filtering pinhole. The internal reflections were restricted
to a relatively small region at the bottom of the images. The majority of the field
of view was absolutely free of spurious stray light (cf figure 4). (b) Unfortunately
subtraction of internal-reflection images could not remove all artefacts. All images
were recorded at an incident angle ® = 46.6° and P = 45°. The MgF, layer
deposited on the cover slide had two different heights: 162 nm (grating) and
249 nm (plateaux).

and thus reduces its lateral resolution. This influence was investigated experimentally and the
results are given in section 6.

In figure 3 raw images of a measurement with a pinhole size of 200 um are shown. For
this small pinhole size, spurious reflexes were only visible at the very bottom of the field of
view. Because of the influence of the pinhole on the lateral resolution larger pinhole sizes
would be favourable. Unfortunately, the region affected by stray light increased with the pinhole
diameter. Subtraction of images of the internal reflection did not remove this artefact completely
(figure 3(b)). These background images were recorded by mounting a 1 cm thick glass plate (BK7,
n = 1.5187, Schott, Mainz, Germany) with immersion oil to the objective. As the refractive
indices were matched this ensured that there was no light reflected at this interface and only the
internal reflections created by the illuminating beam were recorded by the CCD camera. For
the 200 um pinhole the region affected by spurious stray light was relatively small. Outside this
region, the reduction of internal stray light was remarkable: dividing for each analyser azimuth
A the images of the internal reflections by measurements at a sample yielded the background-
to-signal ratio (cf figure 4). Frequently, the intensity of the recorded background-images was
zero and in order to improve the readability of the logarithmic plot they were laterally averaged
(Gaussian with aradius of 12 pixels). It could be estimated that the residual intensities were due to
the shot and read-out noise of the CCD camera. Comparing the measured background-to-signal
ratio to the results found in [25], it was obvious that subtraction of internal-reflection images
was no longer necessary.
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Figure 4. Shown are intensities /5(A) of the measured background images
divided by intensities /(A) obtained from measurements at a sample (73.8 nm
MgF,, ® = 46.6°, P = 45°). Comparing data with (broken line) and without the
stray light trap (thick line) shows that spurious stray light is greatly reduced. Note
the logarithmic scale.

5.2. Ellipsometric performance

The addition of the pinhole suppressed the stray light very effectively. Because of this, we
could compare the measured and theoretically expected ellipsometric quantities by the methods
we had developed for silicon substrates [21]: for measurement, we chose an incident angle
® = 46.6° close to the pseudo Brewster angle of the system [25]. The samples were measured at
polarizer settings P = +45°. The measured intensities were subsequently corrected for the slight
nonlinearity of the CCD camera and averaged of homogeneous regions (ca 35 um x 35 um).
Later we will show that averaging could also be omitted. The ellipsometric angles W and
A were calculated from these corrected and averaged values. The resulting ellipsometric
quantities were zone averaged [29, 30], i.e. the W and A pairs measured at polarizer settings
P =45° and P = —45° were averaged. This procedure eliminates certain systematic errors
(mainly component azimuthal angle errors A, § P and §C) to first order. These experimental
data—obtained from measurements with and without compensator—were compared to the
theoretically expected values for the particular composition of planar stratified layers of each
sample (cf figure 5(a)). Compared to measurements without stray light trap (cf figure 2) the
measured data were extremely smooth, but differed systematically from the theoretical data.
These deviations could be attributed to instrumental polarization [31] of the imaging optics.

The influence of the imaging optics on the polarization can be accounted for by applying
the model presented and verified experimentally in [25]. In this model the imaging optics is
treated formally exactly as the sample itself: it contributes its own ellipsometric quantities W,
and A, to the measurement. The ellipsometric measurements W' and A’ of the combined system
‘imaging system + object’ can be corrected for the influence of the imaging system with the help
of the following correction laws:

tan W' = tan W tan® W,,,, (23)

A= A+2A,,. (24)
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Figure 5. (a) Measurements at the glass—water interface with the stray light trap:
measured data (® = 46.6°, P = 45°)—already linearized and zone averaged—in
comparison to theoretical data (thick line, black). Measurements with (crosses,
red) and without (circles, blue) compensator were in excellent agreement, but
exhibit systematic deviations to theoretical expected data. (b) Correcting for
instrumental polarization brought the measured data in excellent agreement with
the expected data (see the residuals shown).

Using the data shown in figure 5 it is possible to obtain the parameters W, and A, of the utilized
imaging optics by minimizing the sum

tan W’ 2
Do —an (5= ) ) +(A] = (A} - 2A,,))%, (25)
p tan~ W,
where W/ and A are the theoretically expected values and W} and A/ are the experimentally
determined (nonlinearity corrected and zone averaged) ellipsometric quantities of figure 5. This
yielded W, =49.0° and A,,; = —11.6° for the correction parameters.® After correction for

3 Here data exhibiting large residuals (data points #9 and #10) were excluded from the minimization. This is justified
as values of W < 5° that cannot be measured accurately and A-values near the discontinuity depend strongly on small
experimental errors (®, refractive index of water and small errors in the assumed layer thickness). For completeness
the resulting values for inclusion of all data points are given: W, = 49.3° and Ay = —13.1°.
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instrumental polarization the data were in very good agreement with the theoretically expected
values (figure 5(b)). Only in the region where W exhibits a minimum and A is discontinuous, the
residuals became very large. This can be explained by looking at the laws of error propagation
(26) and (27), derived from (8) and (9):

1cos? W [tan’P +tan’W\> _ py | .
= _ da =" ;sin 2W)éa, (26)
4 tan ¥ tan P

SA \/ (tan?P + tan’W)2 8b2 + (1/4)((tan® P/ tan W) — (tan® W/ (tan P)) cos?A a2

B 4 tan’P tan®W¥ sin’A
p=w sgn(W¥) 5

~ |sinA|

Near W & 0° errors in W and A tend to diverge. In this region, the ellipsometric quantities

become extremely sensitive to small experimental errors. This kind of singularity is inherent to
measurements with and without compensator. Unfortunately, this behaviour cannot be avoided,
because the usual strategy to suppress propagation of errors by measuring at P = W [32] does not
bring remedy for the system under consideration here: at such small P (=~ W) values, second-order
systematic errors become important and zone averaging becomes ineffective [30]. In addition,
the already weakly reflecting sample would be measured under conditions where even less light
is reflected at the sample.

(27)

5.3. Accuracy

Considering the difficulties the glass—water interface poses for ellipsometric microscopy, it is
almost surprising how accurate ¥ and A could be determined with the presented setup. In
terms of mean absolute deviations, W and A were determined accurately up to 0.41° and 4.3°,
respectively.* In this respect, the modified setup was almost equally accurate in determination
of W/A at the glass—water interface as on silicon substrates. However, problematic is the fact
that the system under consideration does not exhibit much contrast in terms of the deposited
thickness of MgF,: W varies in the range of [0.1°, 12.6°], but the region [0°, 5°] poses serious
experimental problems. The same holds for A which is very prone to systematic errors in the
range of [140, 175] nm. In the complementary thickness range, A varies by about 127°. Using
a material with higher refractive index would result in a much higher ellipsometric contrast.
MgF, was chosen because of its refractive index similarity with hydrated proteins or lipids
(n ~ 1.40-1.48). These considerations led to the choice of one of the most demanding systems
for ellipsometry.

Figure 6(a) shows the results obtained by fitting » and d simultaneously to the corrected
ellipsometric data. At very small heights the obtained refractive indices and thicknesses can be
meaningless. Otherwise, the agreement was surprisingly good. Note that the largest measured
thickness was still far away from the period

=

A ni o i
Dg=—-—|1——=sin"O = 324 nm
211]' l’lj

4 Because of the large influence of systematic errors in the region W A 0° the data points #8, #9 and #10 of figure 5
were omitted in this estimate. Thus, the mean absolute deviation was computed from 22 values for W and A, each.
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Figure 6. (a) Refractive indices and thicknesses simultaneously obtained by
means of a 2D-fit from zone averaged ellipsometric data corrected for detector
nonlinearities and instrumental polarization (i.e. W and A values shown in figure
5(b)): shown are data measured with (crosses, red) and without (circles, blue)
compensator. The thick line represents expected data. (b) Resulting thicknesses,
if the refractive index of MgF, (n = 1.389) is imposed.

Table 1. Accuracy of the ellipsometric microscope at the glass—water interface.
The average absolute deviation of the obtained thickness is about 10 nm. Because
of its great susceptibility to errors the first data point of the graphs presented in
figure 6 was excluded for computation of the mean absolute deviation.

2D fit 1D fit
Material ~ Parameters |Ad| (nm) |An| |Ad| (nm)
MgF, ® =46.6°, P =45 88 5.8x 107 109

of the ellipsometric quantities (n; = 1.5187,n; = 1.389). Thus, a similar reduction of the
accuracy as observed for very thin films was not observed at the far end of the observed thickness
range. Figure 6(b) presents the results obtained when the refractive index is imposed, i.e. the
thicknesses were obtained by means of a 1D fit. The mean average deviation of the found
quantities with respect to the expected values is summarized in table 1. Refractive indices were
found to be about 0.6% accurate. Thicknesses can be obtained with an average accuracy of 10 nm.
Both fits, 2D and 1D, were surprisingly stable with respect to the utilized starting value: only the
first data point shown in figure 6 varied when starting values far from the expected thicknesses
were utilized.

In order to show that retrieval of thicknesses was not only possible for ellipsometric
quantities obtained from laterally averaged intensities, figure 7 presents full-frame W- and

New Journal of Physics 7 (2005) 128 (http://www.njp.org/)


http://www.njp.org/

14 Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Height [nm]

(b)

Figure 7. (a) Contrast enhanced images of W (top) and A (bottom) (sample:
74 £+ 5 nm MgF, atthe glass—water interface, ® = 46.6°, P = 45°). Therectangle
marks the region from which the histograms shown in figure 8 were obtained.
(b) 3D plot of the thicknesses obtained by means of a 1D fit. The residual stray
light reflex causes distortion of the obtained thicknesses. Fortunately this effect
is restricted to a very small region.
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Figure 8. Histogram of the thicknesses within the rectangular region marked in
figure 7(a). A Gaussian fit to the histogram of data obtained from measurements
with (right) and without (left) compensator yielded mean heights of 82.3 = 5 nm
and 76.7 & 6 nm, respectively. The vertical thick bars mark the thickness obtained
by laterally averaging the intensities within the same region.

A-maps. In addition, a 3D-plot of the thicknesses obtained at each single pixel is shown. At
the present stage, the recorded pictures suffer from vignetting because of the too small radii of
lenses 6 and 7. In addition, the effect of residual stray light is clearly visible. Fortunately, this
artefact is restricted to a relatively small region at the very bottom of the images. Figure 8 shows
histograms of thicknesses obtained at single pixels (with and without compensator) in comparison
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Figure 9. Influence of the stray light filtering pinhole on the lateral resolution
(measured at the silicon—air interface, ® = 53.1°, P = 45°): shown are
maximum, i.e. worst case values obtained from intensity profiles across three
different step heights (25, 103 and 137 nm) as a function of the diameter of the
stray light filtering aperture. A significant deterioration was not observed for
pinhole diameters larger than 300 pm.

to thicknesses obtained from laterally averaged intensities (thick vertical bar). A Gaussian fit to
the histograms yielded mean heights of 82.3 & 5nm and 76.7 £ 6 nm for thicknesses obtained
from data measured with and without compensator, respectively. The amplitude of the noise
limits the height sensitivity and thus we find a vertical sensitivity of approximately 5 nm.

6. The influence of the stray light pinhole on the lateral resolution

The stray light pinhole eliminated the spurious internal reflections very effectively. However,
this pinhole also limited the numerical aperture and hence degraded the lateral resolution of the
microscope. In order to estimate its influence on the lateral resolution a series of experiments
with varying pinhole diameters were made. Because glass substrates with sharp structures were
not available, these experiments were performed at the air—silicon interface, using the silicon
substrates with etched structures already described in [21]. Note that these samples had to be
measured with a dry objective (MPlanApo 50x, NA = 0.95, Olympus). These are the only
measurements presented here that were performed at the silicon—air interface, all others took place
at the glass—water interface. We used the ISO standardized knife-edge method [33] for retrieval
of an objective and reproducible estimate of the lateral resolution. The samples were illuminated
under a certain angle of incidence and therefore different lateral resolutions are expected for
various orientations of the structures. Because of coherent superposition of neighbouring Airy
patterns the observed resolution is dependent on their phase relation. This is why the measured
resolution might be dependent on the layer composition of the sample (material and thicknesses).
Therefore we measured samples with different heights and took the maximum value as a measure
for the lateral resolution (for more details see [21]). The results are shown in figure 9. A significant
deterioration of the lateral resolution was only observed for the 200 um pinhole. We did not
attempt to find a quantitative model for the observed behaviour. The utilized part of the objective
exit pupil aperture that is located at its very edge, where lens performance is lowest (cf figure 10):
these regions are expected to exhibit a reduced transmission ability due to the large angles of
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stray light pinhole
projected into BFP
(200 um, ©=53.13°)

aperture limited region
in back focal plane (NA=0.95)

Figure 10. Projection of the 200 um stray light filtering pinhole into the back
focal plane (true to scale).

incidence of the collected light rays. This would have to be incorporated in any accurate model.
However, the pinhole size for which the sudden increase of the lateral resolution limit of structures
perpendicular to the plane of incidence was observed coincided with the prediction of a very
simple model. The slope of the curve should suddenly increase when the pinhole diameter starts
to constrain the diffraction orders from both sides, i.e. if the radius of the projected pinhole
(Dpn/2) - (fs/fs)(fa/f3) touches the border of the backfocal aperture:

dMﬁ + @ﬁé = NAfObj- (28)

fi 2 fefs
For the utilized objective (MPlanApo 50x, NA = 0.95, Olympus, fo,j = 3.6 mm) and an angle
of incidence ® = 53.13° (dyy = 1.8 mm) a pinhole diameter of 225 um in accordance with the
measurements was found. Transferring this to measurements at the glass—water interface, the limit
of the pinhole diameter is estimated at 320 um (NA = 1.4, fop; = 2.61 mm, dyy = 1.8 mm). Of
course, this would have to be validated by experiments at the glass—water interface.

7. Conclusion

We presented a setup which enabled us to perform spatially resolved ellipsometric measurements
of thin films at the glass—water interface. Because this system suffers from low ellipsometric
contrast the accuracy of the obtained heights was considerably reduced to 10 nm, although the
accuracy of the ellipsometric angles was close to that achieved at silicon interfaces. Nevertheless,
refractive indices can be obtained with an astonishing accuracy of 0.6%. In view of the intrinsic
difficulties of the glass—water interface for ellipsometry, a very good ellipsometric performance
at high lateral resolution was achieved.
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