000004582 001__ 4582
000004582 005__ 20200423202506.0
000004582 0247_ $$2DOI$$a10.1007/s11104-009-0190-z
000004582 0247_ $$2WOS$$aWOS:000276234200015
000004582 0247_ $$2ISSN$$a0032-079X
000004582 0247_ $$2uri$$a10.1007/s11104-009-0190-z
000004582 0247_ $$2Handle$$a2128/4398
000004582 0247_ $$2altmetric$$aaltmetric:21801908
000004582 037__ $$aPreJuSER-4582
000004582 041__ $$aeng
000004582 082__ $$a570
000004582 082__ $$a500
000004582 084__ $$2WoS$$aAgronomy
000004582 084__ $$2WoS$$aPlant Sciences
000004582 084__ $$2WoS$$aSoil Science
000004582 1001_ $$0P:(DE-Juel1)129286$$aBlossfeld, S.$$b0$$uFZJ
000004582 245__ $$aRhizosphere pH dynamics in trace-metal-contaminated soils, monitored with planar ph optodes
000004582 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2010
000004582 29510 $$aPlant and Soil Volume 330, Numbers 1-2, 173-184
000004582 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000004582 3367_ $$2DataCite$$aOutput Types/Journal article
000004582 3367_ $$00$$2EndNote$$aJournal Article
000004582 3367_ $$2BibTeX$$aARTICLE
000004582 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000004582 3367_ $$2DRIVER$$aarticle
000004582 440_0 $$09161$$aPlant and Soil$$v330$$x0032-079X$$y1
000004582 500__ $$aThis work was supported by the "Deutscher Akademischer Austausch Dienst" (DAAD) and the "Ministere de l'Education Nationale, de l'Enseignement Superieur et de la Recherche" within the framework of the PROCOPE programme in 2008.
000004582 500__ $$aThe final publication is available at:
http://www.springerlink.com/content/55431383x86127k2/
000004582 500__ $$aRecord converted from JUWEL: 18.07.2013
000004582 520__ $$aThe present study presents new insights into pH dynamics in the rhizosphere of alpine pennycress (Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey), maize (Zea mays L.) and ryegrass (Lolium perenne L.), when growing on three soils contaminated by trace metals with initial pH values varying from 5.6 to 7.4. The pH dynamics were recorded, using a recently developed 2D imaging technique based on planar pH optodes. This showed that alpine pennycress and ryegrass alkalinized their rhizosphere by up to 1.7 and 1.5 pH units, respectively, whereas maize acidified its rhizosphere by up to -0.7 pH units. The alkalinization by the roots of alpine pennycress and ryegrass was permanent and not restricted to specific root zones, whereas the acidification along the maize roots was restricted to the elongation zone and thus only temporary. Calculations showed that such pH changes should have noticeable effects on the solubility of the trace metal in the rhizosphere, and therefore on their uptake by the plants. As a result, it is suggested that models for trace metal uptake should include precise knowledge of rhizospheric pH conditions.
000004582 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000004582 588__ $$aDataset connected to Web of Science
000004582 65320 $$2Author$$aMaize
000004582 65320 $$2Author$$aAlpine pennycress
000004582 65320 $$2Author$$aRyegrass
000004582 65320 $$2Author$$aCadmium
000004582 65320 $$2Author$$aAlkalinization
000004582 65320 $$2Author$$aAcidification
000004582 650_7 $$2WoSType$$aJ
000004582 650_7 $$aAlpine pennycress
000004582 650_7 $$aAcidification
000004582 650_7 $$aMaize
000004582 650_7 $$aAlkalinization
000004582 650_7 $$aCadmium
000004582 650_7 $$aRyegrass
000004582 7001_ $$0P:(DE-HGF)0$$aPerriguey, J.$$b1
000004582 7001_ $$0P:(DE-HGF)0$$aSterckeman, T.$$b2
000004582 7001_ $$0P:(DE-HGF)0$$aMorel, J.-L.$$b3
000004582 7001_ $$0P:(DE-HGF)0$$aLösch, R.$$b4
000004582 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-009-0190-z$$gVol. 330$$q330$$tPlant and soil$$v330$$x0032-079X$$y2010
000004582 8567_ $$uhttp://dx.doi.org/10.1007/s11104-009-0190-z
000004582 8564_ $$uhttps://juser.fz-juelich.de/record/4582/files/Pl.Soil_2010_330.173-184.pdf$$yOpenAccess
000004582 8564_ $$uhttps://juser.fz-juelich.de/record/4582/files/Pl.Soil_2010_330.173-184.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000004582 8564_ $$uhttps://juser.fz-juelich.de/record/4582/files/Pl.Soil_2010_330.173-184.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000004582 8564_ $$uhttps://juser.fz-juelich.de/record/4582/files/Pl.Soil_2010_330.173-184.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000004582 909CO $$ooai:juser.fz-juelich.de:4582$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000004582 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000004582 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000004582 9141_ $$y2010
000004582 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000004582 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000004582 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000004582 970__ $$aVDB:(DE-Juel1)111704
000004582 980__ $$aVDB
000004582 980__ $$aConvertedRecord
000004582 980__ $$ajournal
000004582 980__ $$aI:(DE-Juel1)IBG-2-20101118
000004582 980__ $$aUNRESTRICTED
000004582 980__ $$aJUWEL
000004582 980__ $$aFullTexts
000004582 9801_ $$aFullTexts
000004582 981__ $$aI:(DE-Juel1)IBG-2-20101118
000004582 981__ $$aI:(DE-Juel1)ICG-3-20090406