000045875 001__ 45875
000045875 005__ 20180210141947.0
000045875 0247_ $$2DOI$$a10.1071/FP05074
000045875 0247_ $$2WOS$$aWOS:000229373900006
000045875 037__ $$aPreJuSER-45875
000045875 041__ $$aeng
000045875 082__ $$a580
000045875 084__ $$2WoS$$aPlant Sciences
000045875 1001_ $$0P:(DE-HGF)0$$aGouws, L. M.$$b0
000045875 245__ $$aDistinctive diel growth cycles in leaves and cladodes of CAM plants: complex interactions with substrate availability, turgor and cytoplasmic pH
000045875 260__ $$aCollingwood, Victoria$$bCSIRO Publ.$$c2005
000045875 300__ $$a421 - 428
000045875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000045875 3367_ $$2DataCite$$aOutput Types/Journal article
000045875 3367_ $$00$$2EndNote$$aJournal Article
000045875 3367_ $$2BibTeX$$aARTICLE
000045875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000045875 3367_ $$2DRIVER$$aarticle
000045875 440_0 $$09141$$aFunctional Plant Biology$$v32$$x1445-4408$$y5
000045875 500__ $$aRecord converted from VDB: 12.11.2012
000045875 520__ $$aDistinct diel rhythms of leaf and cladode expansion growth were obtained in crassulacean acid metabolism (CAM) plants under water-limited conditions, with maxima at mid-day during phase III of CO2 assimilation. This pattern coincided with the availability of CO2 for photosynthesis and growth during the decarboxylation of malic acid, with maximum cell turgor due to the nocturnally accumulated malic acid, and with the period of low cytoplasmic pH associated with malic acid movement from vacuole to cytosol. Maximum growth rates were generally only 20% of those in C-3 plants and were reached at a different time of the day compared with C-3 plants. The results suggest that malic acid, as a source of carbohydrates, and a determinant of turgor and cytoplasmic pH, plays a major role in the control of diel growth dynamics in CAM plants under desert conditions. The observed plasticity in phasing of growth rhythms under situations of differing water availability suggests that a complex network of factors controls the diel growth patterns in CAM plants and needs to be investigated further.
000045875 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000045875 588__ $$aDataset connected to Web of Science
000045875 650_7 $$2WoSType$$aJ
000045875 65320 $$2Author$$aimage processing
000045875 65320 $$2Author$$aOpuntia
000045875 65320 $$2Author$$aspatio-temporal dynamics
000045875 7001_ $$0P:(DE-HGF)0$$aOsmond, C. B.$$b1
000045875 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b2$$uFZJ
000045875 7001_ $$0P:(DE-Juel1)VDB2595$$aWalter, A.$$b3$$uFZJ
000045875 773__ $$0PERI:(DE-600)1496158-1$$a10.1071/FP05074$$gVol. 32, p. 421 - 428$$p421 - 428$$q32<421 - 428$$tFunctional plant biology$$v32$$x1445-4408$$y2005
000045875 8567_ $$uhttp://dx.doi.org/10.1071/FP05074
000045875 909CO $$ooai:juser.fz-juelich.de:45875$$pVDB
000045875 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000045875 9141_ $$y2005
000045875 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000045875 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000045875 970__ $$aVDB:(DE-Juel1)71230
000045875 980__ $$aVDB
000045875 980__ $$aConvertedRecord
000045875 980__ $$ajournal
000045875 980__ $$aI:(DE-Juel1)IBG-2-20101118
000045875 980__ $$aUNRESTRICTED
000045875 981__ $$aI:(DE-Juel1)IBG-2-20101118
000045875 981__ $$aI:(DE-Juel1)ICG-3-20090406